1
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Cai J, Zhu Y, Deng G, Ouyang L, Xiao W, Zhou F, Han Y, Yuan F, Huang L, Li X. Effect and underlying mechanism of Huangjing Qianshi decoction in pre-diabetes mouse model. BMC Complement Med Ther 2025; 25:151. [PMID: 40269867 PMCID: PMC12020235 DOI: 10.1186/s12906-025-04893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Insulin secretion deficiency and increased insulin resistance are key pathological pathways that lead to pre-diabetes. Without intervention, pre-diabetes can easily develop into type 2 diabetes mellitus. However, no specific medicine is available for treating pre-diabetes except for intervention through lifestyle changes. Huangjing Qianshi decoction (HJQST) is a qi-replenishing and yin-nourishing Chinese medicinal compound. However, the mode and mechanism of action of HJQST in improving pre-diabetes remain unclear. Here, we studied the effect of HJQST on pre-diabetes. METHODS BKS-db mice were induced to develop pre-diabetes and treated with HJQST and metformin (MET). After treatment for 51 days, hematoxylin-eosin and oil red O staining were used to analyze the pathological damage and lipid droplet formation in the pancreatic, liver and skeletal muscle of pre-diabetic mice. Serum levels of free fat acid (FFA), glycated hemoglobin A1c (HbA1c), fasting insulin (INS), reactive oxygen species (ROS), and tumor necrosis factor-α (TNF-α) were analyzed. Levels of glucose transporter 4 (GLUT-4), INS, nuclear receptor subfamily 3 group c member 2 (NR3C2), phosphorylated-signal transducer and activator of transcription 1 (p-STAT1), peroxisome proliferator activated receptor co-activator 1 α (PGC-1α), and protein inhibitor of activated STAT1 (PIAS1) protein were analyzed by immunohistochemistry and western blot. RESULTS The body weight, fasting blood glucose (FBS) levels, and serum levels of HbA1c, FFA, ROS, and TNF-α were significantly decreased, whereas the insulin level was significantly increased in pre-diabetic BKS-db mice after HJQST treatment. Additionally, HJQST treatment improved pancreatic and liver damage and the lipid droplet formation in liver and skeletal muscle. Furthermore, the increased NR3C2 and p-STAT1 protein levels and decreased GLUT-4, INS, PIAS1, and PGC-1a protein levels in pre-diabetic mice were reversed by HJQST treatment. CONCLUSION HJQST treatment could reverse high FBS level and aberrant lipid metabolism, oxidative stress, and inflammation in pre-diabetes, all of which are related to the NR3C2/PIAS1/STAT1/PGC-1α signal axis.
Collapse
Affiliation(s)
- Jialuo Cai
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yilin Zhu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Guiming Deng
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Linqi Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wangzhong Xiao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Fang Zhou
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuanshan Han
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Feiyun Yuan
- Library's Office, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Huang
- Preparation Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xiaoping Li
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
3
|
Yang J, Tan F, Chen Y, Li X, Yuan C. The emerging role of long non-coding RNA SOX2-OT in cancers and non-malignant diseases. J Physiol Biochem 2025; 81:57-83. [PMID: 39702742 DOI: 10.1007/s13105-024-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024]
Abstract
SOX2 overlapping transcript (SOX2-OT) is a long non-coding RNA located at chromosome 3q26.33 in humans. Convincing data confirm that SOX2-OT is evolutionarily conserved and plays a significant role in various malignant and non-malignant diseases. In most cancers, the upregulation of SOX2-OT acts as an oncogenic factor, strongly correlating with tumor risk, adverse clinicopathological features, and poor prognosis. Mechanistically, SOX2-OT is regulated by seven transcription factors and influences cellular behavior by modulating SOX2 expression, competitively binding 20 types of miRNAs, stabilizing protein expression, or promoting protein ubiquitination. It also participates in epigenetic modifications and activates multiple signaling pathways to regulate cancer cell proliferation, apoptosis, migration, invasion, autophagy, immune evasion, and resistance to chemotherapy/targeted therapies. Additionally, SOX2-OT triggers apoptosis, oxidative stress, and inflammatory responses, contributing to neurodevelopmental disorders, cardiovascular diseases, and diabetes-related conditions. Genetic polymorphisms of SOX2-OT have also been linked to breast cancer, gastric cancer, recurrent miscarriage, sepsis, and eating disorders in patients with bipolar disorder. This review provides an overview of recent research progress on SOX2-OT in human diseases, highlights its substantial potential as a prognostic and diagnostic biomarker, and explores its future clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China.
- The Second People's Hospital of Yichang, Hubei, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Wang J, Jin J, Li G. NR3C2 activates LCN2 transcription to promote endoplasmic reticulum stress and cell apoptosis in ischemic cerebral infarction. Brain Res 2024; 1822:148632. [PMID: 37832761 DOI: 10.1016/j.brainres.2023.148632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Endoplasmic reticulum (ER) stress can lead to cell death and worsen tissue damage during ischemic events. Nuclear receptor subfamily 3 group C member 2 (NR3C2) and lipocalin 2 (LCN2) are known to be associated with ER stress. In this study, we obtained a potential interaction between NR3C2 and LCN2 through bioinformatics. The primary objective was to investigate their roles and interactions in the context of ER stress in ischemic cerebral infarction (ICI). A mouse model of ICI was generated by middle cerebral artery occlusion, resulting in elevated levels of NR3C2 and LCN2 in brain tissues. NR3C2 bound to the LCN2 promoter, thereby activating its transcription. Either knockdown of LCN2 or NR3C2 led to an improvement in neurologic deficits in mice, along with a reduction in infract size, tissue damage, ER stress, inflammation, and cell apoptosis in their brain tissues. Similar results were reproduced in HT22 cells, where LCN2 or NR3C2 knockdown alleviated oxygen-glucose deprivation-induced ER stress, inflammation, and cell apoptosis while improving cell viability. However, the protective effects of NR3C2 knockdown were counteracted when LCN2 was overexpressed, both in vitro and in vivo. Overall, this study demonstrates that NR3C2 activates LCN2 transcription, ultimately promoting ER stress and cell apoptosis in the context of ICI.
Collapse
Affiliation(s)
- Jianxiu Wang
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Jing Jin
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Guozhong Li
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
5
|
Wu S, Liu S, Huang R, Zhou Y, Zou Y, Yang W, Zhang J. Adiponectin inhibits LPS-induced nucleus pulposus cell pyroptosis through the miR-135a-5p/TXNIP signaling pathway. Aging (Albany NY) 2023; 15:13680-13692. [PMID: 38048212 PMCID: PMC10756118 DOI: 10.18632/aging.205226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/15/2023] [Indexed: 12/06/2023]
Abstract
Pyroptosis, a newly discovered programmed cell death process, is characterized by NLRP3 inflammasome activation and pro-inflammatory mediator release. Nucleus pulposus (NP) cell pyroptosis is an important cause of intervertebral disc degeneration (IDD). Adiponectin (APN) is an adipokine and has an anti-inflammatory effect. However, whether and how APN protects against NP cell pyroptosis remains unexplored. Our results showed that human degenerated NP tissue displayed a significant increase in the protein levels of NLRP3, caspase-1 and GSDMD-N. APN expression was down-regulated in human degenerated NP tissue and NP cells challenged with lipopolysaccharide (LPS). Lentivirus-mediated overexpression of APN increased miR-135a-5p levels, decreased thioredoxin-interacting protein (TXNIP) expression and its interaction with NLRP3, and inhibited pyroptosis in human NP cells stimulated with LPS. TXNIP was identified as a direct target of miR-135a-5p. The inhibitory effects of APN on pyroptosis were reversed by pretreatment with miR-135a-5p inhibitor or lentiviral vector expressing TXNIP in LPS-treated human NP cells. In summary, these data suggest that APN restrains LPS-induced pyroptosis through the miR-135a-5p/TXNIP signaling pathway in human NP cells. Increasing APN levels could be a new approach to retard IDD.
Collapse
Affiliation(s)
- Shuang Wu
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shida Liu
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Rui Huang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Youbing Zhou
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongcheng Zou
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wei Yang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jian Zhang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
6
|
Chen X, Li W, Chang C. NR3C2 mediates oxidised low-density lipoprotein-induced human coronary endothelial cells dysfunction via modulation of NLRP3 inflammasome activation. Autoimmunity 2023; 56:2189135. [PMID: 36919662 DOI: 10.1080/08916934.2023.2189135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nuclear receptor subfamily 3 group C member 2 (NR3C2) has been revealed to affect the progression of multiple inflammatory diseases, while NR3C2's efficacy in coronary artery disease (CAD) remains largely unsolved. The study intended to elucidate the possible mechanisms of NR3C2 in oxidised low density lipoprotein (ox-LDL)-induced inflammation in human coronary endothelial cells (HCAECs) via regulating NACHT, LRR, and PYD domains-containing protein 3 (NLRP3). Patients who underwent CT angiography or coronary angiography for suspected CAD in our hospital were collected. The patients were divided into the CAD and the non-CAD (NCAD) groups. The expression of NR3C2 and NLRP3 in the peripheral blood of patients in both groups was examined by RT-qPCR. HCAECs were treated with ox-LDL to establish the model. The expression of NR3C2 and NLRP3 in ox-LDL-induced HCAECs was tested by RT-qPCR. The proliferation of HCAECs was measured using CCK-8 assay, the apoptosis of HCAECs was assessed by flow cytometry, and the levels of inflammation-related factors IL-1β and IL-18 in the cell supernatant were evaluated by ELISA. The molecular mechanisms of these factors in the proliferation and apoptosis of HCAECs and in the inflammatory response were further determined by knockdown and overexpression systems. The relationship between NR3C2 and NLRP3 was determined by ChIP and luciferase activity assays and bioinformatics analysis. NR3C2 and NLRP3 levels were elevated in the serum of CAD patients. The ox-LDL treatment elevated NR3C2 levels, evoked apoptosis and inflammation, and impeded cell viability in HCAECs, whereas downregulation of NR3C2 increased cell viability and reduced apoptosis and inflammatory response in ox-LDL-induced inflammation in HCAECs. NR3C2 levels were positively correlated with NLRP3, and NR3C2 elevated NLRP3 expression through transcription. Overexpression of NLRP3 counteracted the impacts of silencing NR3C2 on cell viability, cell apoptosis, and inflammatory response in ox-LDL-induced HCAECs. Our research stresses that NR3C2 transcription promotes NLRP3 to induce inflammatory responses in ox-LDL-induced HCAECs.
Collapse
Affiliation(s)
- Xiaofan Chen
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengdong Chang
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
8
|
MacKenzie SM, Birch LA, Lamprou S, Rezvanisanijouybari P, Fayad M, Zennaro MC, Davies E. MicroRNAs in aldosterone production and action. VITAMINS AND HORMONES 2023; 124:137-163. [PMID: 38408798 DOI: 10.1016/bs.vh.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Aldosterone is a cardiovascular hormone with a key role in blood pressure regulation, among other processes, mediated through its targeting of the mineralocorticoid receptor in the renal tubule and selected other tissues. Its secretion from the adrenal gland is a highly controlled process subject to regulatory influence from the renin-angiotensin system and the hypothalamic-pituitary-adrenal axis. MicroRNAs are small endogenous non-coding RNA molecules capable of regulating gene expression post-transcriptionally through stimulation of mRNA degradation or suppression of translation. Several studies have now identified that microRNA levels are changed in cases of aldosterone dysregulation and that microRNAs are capable of regulating the expression of various genes involved in aldosterone production and action. In this article we summarise the major studies concerning this topic. We also discuss the potential role for circulating microRNAs as diagnostic biomarkers for primary aldosteronism, a highly treatable form of secondary hypertension, which would be highly desirable given the current underdiagnosis of this condition.
Collapse
Affiliation(s)
- Scott M MacKenzie
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | - Lara A Birch
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Stelios Lamprou
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Parisa Rezvanisanijouybari
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - May Fayad
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom; Université Paris Cité, PARCC, INSERM, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, INSERM, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Eleanor Davies
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Li Y, Liu C, Fan H, Du Y, Zhang R, Zhan S, Zhang G, Bu N. Gli2-induced lncRNA Peg13 alleviates cerebral ischemia-reperfusion injury by suppressing Yy1 transcription in a PRC2 complex-dependent manner. Metab Brain Dis 2023; 38:1389-1404. [PMID: 36662414 DOI: 10.1007/s11011-023-01159-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endothelial cell dysfunction plays an important role in cerebral ischemia-reperfusion (I/R) injury. LncRNA Peg13 is reported to be down-regulated in brain microvascular endothelial cells (BMVECs) induced by glucose-oxygen deprivation (OGD), but the mechanism of its involvement in I/R progression remains to be further explored. Here, mouse BMVECs (bEnd.3 cells) were treated with OGD / reoxygenation (OGD/R) to simulate I/R injury in vitro. Peg13 and Gli2 expression was decreased in OGD/R-treated bEnd.3 cells. And overexpression of Peg13 or Gli2 prevented OGD/R-induced reduction in cell migration and angiogenesis, as well as upregulation in cell apoptosis and oxidative stress levels. Mechanism exploration showed that Gli2 promoted the transcription of Peg13. And Peg13 repressed Yy1 transcription by binding to Ezh2 (a key subunit of PRC2 complex) and inducing the enrichment of H3K27me3 in Yy1 promoter region, thereby suppressing the transcriptional inhibition effect of Yy1 on Notch3 and promoting the expression of Notch3. Consistently, Notch3 overexpression hindered OGD/R-induced endothelium dysfunction. In addition, a brain I/R injury model was established using middle cerebral artery occlusion surgery. And lentivirus-mediated Gli2 and Peg13 overexpression vectors were injected into mice via the lateral ventricle one week before surgery. The results showed that overexpression of Peg13 or Gli2 alleviated I/R-induced neurological deficit, cerebral infarct and cerebral edema. And simultaneous overexpression of Peg13 and Gli2 showed a better protective effect than overexpression of Gli2 or Peg13 alone. In conclusion, Peg13 regulated by Gli2 inhibits Yy1 transcription in a PCR2 complex-dependent manner, and blocks the transcriptional repression of Notch3 by Yy1, thereby exerting neuroprotective effects on cerebral I/R injury.
Collapse
Affiliation(s)
- Yanling Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China.
| | - Chuntian Liu
- Department of Geriatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi province, China
| | - Hong Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Yun Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Guilian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ning Bu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| |
Collapse
|
10
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
11
|
miR-135a-5p Suppresses TBK1 and Activates NRF2/TXNIP Antioxidant Pathway in LPS-Driven ALI in Mice. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9088727. [PMID: 35912153 PMCID: PMC9329002 DOI: 10.1155/2022/9088727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Objective. Acute inflammation and oxidative stress are present in large numbers in patients with acute lung injury (ALI). This investigation probed miR-135a-5p/TBK1 axis within ALI together with its new therapeutic target. Methods. MLE-12 cultures were treated with lipopolysaccharide (LPS) and transfected with miR-135a-5p mimics or TBK1 vector. An ALI mouse model was also established. Analysis was done on the relationships between TBK1 and miR-135a-5p. Inflammatory components, SOD, MDA, and ROS content were all assessed. Results. Obvious inflammatory lesions were observed in lung tissues of ALI mice. Overexpression of miR-135a-5p or TBK1 knockdown remarkably decreased IL-1β, IL-6, and TNF-α serum concentrations and increased IL-10 level within lung tissues. Activated NRF2/TXNIP pathway and oxidative stress were additionally found within ALI murines, which were regulated by miR-315a-5p and TBK1. Further research revealed that miR-135a-5p negatively regulated TBK1 expression to mediate proinflammatory response and oxidative stress. Conclusion. miR-135a-5p targeted TBK1 to regulate inflammatory/oxidative stress responses in ALI. Such results might bring a new potential target for ALI treatment.
Collapse
|
12
|
Lu Y, Zhang X, Li X, Deng L, Wei C, Yang D, Tan X, Pan W, Pang L. MiR-135a-5p suppresses trophoblast proliferative, migratory, invasive, and angiogenic activity in the context of unexplained spontaneous abortion. Reprod Biol Endocrinol 2022; 20:82. [PMID: 35610725 PMCID: PMC9128262 DOI: 10.1186/s12958-022-00952-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Spontaneous abortions (SA) is amongst the most common complications associated with pregnancy in humans, and the underlying causes cannot be identified in roughly half of SA cases. We found miR-135a-5p to be significantly upregulated in SA-associated villus tissues, yet the function it plays in this context has yet to be clarified. This study explored the function of miR-135a-5p and its potential as a biomarker for unexplained SA. METHOD RT-qPCR was employed for appraising miR-135a-5p expression within villus tissues with its clinical diagnostic values being assessed using ROC curves. The effects of miR-135a-5p in HTR-8/SVneo cells were analyzed via wound healing, Transwell, flow cytometry, EdU, CCK-8, and tube formation assays. Moreover, protein expression was examined via Western blotting, and interactions between miR-135a-5p and PTPN1 were explored through RIP-PCR, bioinformatics analyses and luciferase reporter assays. RESULTS Relative to normal pregnancy (NP), villus tissue samples from pregnancies that ended in unexplained sporadic miscarriage (USM) or unexplained recurrent SA (URSA) exhibited miR-135a-5p upregulation. When this miRNA was overexpressed in HTR-8/SVneo cells, their migration, proliferation, and cell cycle progression were suppressed, as were their tube forming and invasive activities. miR-135a-5p over-expression also downregulated the protein level of cyclins, PTPN1, MMP2 and MMP9. In RIP-PCR assays, the Ago2 protein exhibited significant miR-135a-5p and PTPN1 mRNA enrichment, and dual-luciferase reporter assays indicated PTPN1 to be a bona fide miR-135a-5p target gene within HTR-8/SVneo cells. CONCLUSION miR-135a-5p may suppress trophoblast migratory, invasive, proliferative, and angiogenic activity via targeting PTPN1, and it may thus offer value as a biomarker for unexplained SA.
Collapse
Affiliation(s)
- Yebin Lu
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Guangxi Medical University, Guangxi, China
| | - Xiaoli Zhang
- Guangxi Medical University, Guangxi, China
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xueyu Li
- Guangxi Medical University, Guangxi, China
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Lingjie Deng
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | | | - Dongmei Yang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xuemei Tan
- Guangxi Medical University, Guangxi, China
| | | | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
13
|
Yang P, Liang K, Wang W, Zhou D, Chen Y, Jiang X, Fu R, Zhu B, Lin X. LncRNA SOX2-OTinhibitionprotects against myocardialischemia/reperfusion-inducedinjury via themicroRNA-186-5p (miR-186-5p)/Yin Yang 1 (YY1)pathway. Bioengineered 2022; 13:280-290. [PMID: 34967264 PMCID: PMC8805857 DOI: 10.1080/21655979.2021.2000229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) exert essential effects in regulating myocardial ischemia/reperfusion (MI/R)-induced injury. This work intended to explore the functions of lncRNA SOX2-OT and its regulatory mechanism within MI/R-induced injury. In this study, gene expression was determined by RT-qPCR. Western blotting was applied for the detection of protein levels. Pro-inflammatory cytokine concentrations, cardiomyocyte viability, and apoptosis were detected via ELISA, CCK-8 and flow cytometry. In the in vitro model, SOX2-OT and YY1 were both upregulated, while miR-186-5p was downregulated. SOX2-OT knockdown attenuated oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cardiomyocyte dysregulation through relieving inflammation, promoting proliferation, and reducing apoptosis in OGD/R-treated H2C9 cells. SOX2-OT positively regulated YY1 expression via miR-186-5p. Moreover, miR-186-5p inhibition or YY1 upregulation abolished the effects of SOX2-OT blocking on the inflammatory responses, proliferation, and apoptosis of OGD/R-challenged H2C9 cells. In conclusion, our results, for the first time, demonstrated that SOX2-OT inhibition attenuated MI/R injury in vitro via regulating the miR-186-5p/YY1 axis, offering potential therapeutic targets for MI/R injury treatment.
Collapse
Affiliation(s)
- Pengjie Yang
- Department of Thoracic Surgery, Affiliated People’s Hospital of Inner Mongolia Medical University
| | - Kun Liang
- Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Weisong Wang
- Department of Dispensary, Affiliated Hospital of Inner Mongolia Medical University
| | - Dehua Zhou
- Department of Emergency, People’s Hospital of Inner Mongolia Autonomous Region
| | - Yuan Chen
- Department of Pharmacy, Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, P.R.China
| | - Xueyan Jiang
- Department of Pharmacy, Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, P.R.China
| | - Rong Fu
- Department of Pharmacy, Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, P.R.China
| | - Benben Zhu
- Department of Pharmacy, Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, P.R.China
| | - Xuefeng Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Baotou Medical College, Baotou, P.R.China
| |
Collapse
|
14
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|