1
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. eLife 2025; 13:RP103504. [PMID: 39868989 PMCID: PMC11771960 DOI: 10.7554/elife.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the 'hemisection' was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional ('intact', left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ('hemisected', right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
2
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612376. [PMID: 39314446 PMCID: PMC11419089 DOI: 10.1101/2024.09.10.612376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the "hemisection" was always applied to the right side. Based on our model, we hypothesized that following hemisection, the contralesional ("intact", left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ("hemisected", right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and the role of supraspinal drives and sensory feedback. eLife 2024; 13:RP98841. [PMID: 39401073 PMCID: PMC11473106 DOI: 10.7554/elife.98841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
4
|
Ogura A, Chujo Y, Mano N, Mori K, Konishi T, Kuwabara T, Wakida M, Hase K. Effects of ankle joint degree of freedom of knee-ankle-foot orthoses on loading patterns and triceps surae muscle activity on the paretic side in individuals with subacute severe hemiplegia: a retrospective study. J Neuroeng Rehabil 2024; 21:150. [PMID: 39227980 PMCID: PMC11373454 DOI: 10.1186/s12984-024-01432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Individuals with subacute severe hemiplegia often undergo alternate gait training to overcome challenges in achieving walking independence. However, the ankle joint setting in a knee-ankle-foot orthosis (KAFO) depends on trunk function or paralysis stage for alternate gait training with a KAFO. The optimal degree of ankle joint freedom in a KAFO and the specific ankle joint conditions for effective rehabilitation remain unclear. Therefore, this study aimed to investigate the effects of different degrees of freedom of the ankle joint on center-of-pressure (CoP) parameters and muscle activity on the paretic side using a KAFO and to investigate the recommended setting of ankle joint angle in a KAFO depending on physical function. METHODS This study included 14 participants with subacute stroke (67.4 ± 13.3 years). The CoP parameters and muscle activity of the gastrocnemius lateralis (GCL) and soleus muscles were compared using a linear mixed model (LMM) under two ankle joint conditions in the KAFO: fixed at 0° and free ankle dorsiflexion. We confirmed the relationship between changes in CoP parameters or muscle activity under different conditions and physical functional characteristics such as the Fugl-Meyer Assessment of Lower Extremity Synergy Score (FMAs) and Trunk Impairment Scale (TIS) using LMM. RESULTS Anterior-posterior displacement of CoP (AP_CoP) (p = 0.011) and muscle activity of the GCL (p = 0.043) increased in the free condition of ankle dorsiflexion compared with that in the fixed condition. The FMAs (p = 0.004) and TIS (p = 0.008) demonstrated a positive relationship with AP_CoP. A positive relationship was also found between TIS and the percentage of medial forefoot loading time in the CoP (p < 0.001). CONCLUSIONS For individuals with severe subacute hemiplegia, the ankle dorsiflexion induction in the KAFO, which did not impede the forward tilt of the shank, promotes anterior movement in the CoP and muscle activity of the GCL. This study suggests that adjusting the dorsiflexion mobility of the ankle joint in the KAFO according to improvement in physical function promotes loading of the CoP to the medial forefoot.
Collapse
Affiliation(s)
- Ayumu Ogura
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yuta Chujo
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashimachi, Hirakata, Osaka, 573-1136, Japan.
| | - Naoto Mano
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Kimihiko Mori
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashimachi, Hirakata, Osaka, 573-1136, Japan
| | - Takayuki Konishi
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takayuki Kuwabara
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Masanori Wakida
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyamahigashimachi, Hirakata, Osaka, 573-1136, Japan
| | - Kimitaka Hase
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, 2-3-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
5
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory feedback and central neuronal interactions in mouse locomotion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240207. [PMID: 39169962 PMCID: PMC11335407 DOI: 10.1098/rsos.240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay91400, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| |
Collapse
|
6
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and role of supraspinal drives and sensory feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586122. [PMID: 38585778 PMCID: PMC10996463 DOI: 10.1101/2024.03.21.586122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (< 0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
|
7
|
Gradwell MA, Ozeri-Engelhard N, Eisdorfer JT, Laflamme OD, Gonzalez M, Upadhyay A, Medlock L, Shrier T, Patel KR, Aoki A, Gandhi M, Abbas-Zadeh G, Oputa O, Thackray JK, Ricci M, George A, Yusuf N, Keating J, Imtiaz Z, Alomary SA, Bohic M, Haas M, Hernandez Y, Prescott SA, Akay T, Abraira VE. Multimodal sensory control of motor performance by glycinergic interneurons of the mouse spinal cord deep dorsal horn. Neuron 2024; 112:1302-1327.e13. [PMID: 38452762 DOI: 10.1016/j.neuron.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
Collapse
Affiliation(s)
- Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nofar Ozeri-Engelhard
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jaclyn T Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olivier D Laflamme
- Dalhousie PhD program, Dalhousie University, Halifax, NS, Canada; Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tara Shrier
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Adin Aoki
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Gandhi
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gloria Abbas-Zadeh
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olisemaka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA; Tourette International Collaborative Genetics Study (TIC Genetics)
| | - Matthew Ricci
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arlene George
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nusrath Yusuf
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zarghona Imtiaz
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Simona A Alomary
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael Haas
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yurdiana Hernandez
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Raghav Hari Krishna VS, Kim J, Chang SH, Choe Y, Park H. Proportional sway-based electrotactile feedback improves lateral standing balance. Front Neurosci 2024; 18:1249783. [PMID: 38562307 PMCID: PMC10982372 DOI: 10.3389/fnins.2024.1249783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Plantar cutaneous augmentation is a promising approach in balance rehabilitation by enhancing motion-dependent sensory feedback. The effect of plantar cutaneous augmentation on balance has been mainly investigated in its passive form (e.g., textured insole) or on lower-limb amputees. In this study, we tested the effect of plantar cutaneous augmentation on balance in its active form (i.e., electrical stimulation) for individuals with intact limbs. Methods Ten healthy subjects participated in the study and were instructed to maintain their balance as long as possible on the balance board, with or without electrotactile feedback evoked on the medial side of the heel, synched with the lateral board sway. Electrotactile feedback was given in two different modes: 1) Discrete-mode E-stim as the stimulation on/off by a predefined threshold of lateral board sway and 2) Proportional-mode E-stim as the stimulation frequency proportional to the amount of lateral board sway. All subjects were distracted from the balancing task by the n-back counting task, to test subjects' balancing capability with minimal cognitive involvement. Results Proportional-mode E-stim, along with the n-back counting task, increased the balance time from 1.86 ± 0.03 s to 1.98 ± 0.04 s (p = 0.010). However, discrete-mode E-stim did not change the balance time (p = 0.669). Proportional-mode E-stim also increased the time duration per each swayed state (p = 0.035) while discrete-mode E-stim did not (p = 0.053). Discussion These results suggest that proportional-mode E-stim is more effective than discrete-mode E-stim on improving standing balance. It is perhaps because the proportional electrotactile feedback better mimics the natural tactile sensation of foot pressure than its discrete counterpart.
Collapse
Affiliation(s)
- V S Raghav Hari Krishna
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Jeonghee Kim
- Department of Electronic Engineering, Department of Biomedical Engineering, and Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea
| | - Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yoonsuck Choe
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Hangue Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Zill SN, Dallmann CJ, Zyhowski W, Chaudhry H, Gebehart C, Szczecinski NS. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. J Neurophysiol 2024; 131:198-215. [PMID: 38166479 PMCID: PMC11286306 DOI: 10.1152/jn.00414.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024] Open
Abstract
Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/dt) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. Bioinspir Biomim 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/dt) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines.NEW & NOTEWORTHY Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/dt) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Chris J Dallmann
- Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - William Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
10
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory Feedback and Central Neuronal Interactions in Mouse Locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564886. [PMID: 37961258 PMCID: PMC10634960 DOI: 10.1101/2023.10.31.564886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
11
|
Ijspeert AJ, Daley MA. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies. J Exp Biol 2023; 226:jeb245784. [PMID: 37565347 DOI: 10.1242/jeb.245784] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.
Collapse
Affiliation(s)
- Auke J Ijspeert
- BioRobotics Laboratory, EPFL - Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Schnerwitzki D, Englert C, Schmidt M. Adapting the pantograph limb: Differential robustness of fore- and hindlimb kinematics against genetically induced perturbation in the neural control networks and its evolutionary implications. ZOOLOGY 2023; 157:126076. [PMID: 36842298 DOI: 10.1016/j.zool.2023.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The evolutionary transformation of limb morphology to the four-segmented pantograph of therians is among the milestones of mammalian evolution. But, it is still unknown if changes of the mechanical limb function were accompanied by corresponding changes in development and sensorimotor control. The impressive locomotor performance of mammals leaves no doubt about the high integration of pattern formation, neural control and mechanics. But, deviations from normal intra- and interlimb coordination (spatial and temporal) become evident in the presence of perturbations. We induced a perturbation in the development of the neural circuits of the spinal cord of mice (Mus musculus) using a deletion of the Wilms tumor suppressor gene Wt1 in a subpopulation of dI6 interneurons. These interneurons are assumed to participate in the intermuscular coordination within the limb and in left-right-coordination between the limbs. We describe the locomotor kinematics in mice with conditional Wt1 knockout and compare them to mice without Wt1 deletion. Unlike knockout neonates, knockout adult mice do not display severe deviations from normal (=control group) interlimb coordination, but the coordinated protraction and retraction of the limbs is altered. The forelimbs are more affected by deviations from the control than the hindlimbs. This observation appears to reflect a different degree of integration and resistance against the induced perturbation between the limbs. Interestingly, the observed effects are similar to locomotor deficits reported to arise when sensory feedback from proprioceptors or cutaneous receptors is impaired. A putative participation of Wt1 positive dI6 interneurons in sensorimotor integration is therefore considered.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Manuela Schmidt
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Ernst-Haeckel building and Didactics of Biology, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| |
Collapse
|
13
|
Santuz A, Akay T. Muscle spindles and their role in maintaining robust locomotion. J Physiol 2023; 601:275-285. [PMID: 36510697 PMCID: PMC10483674 DOI: 10.1113/jp282563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Biomechanical and Sensory Feedback Regularize the Behavior of Different Locomotor Central Pattern Generators. Biomimetics (Basel) 2022; 7:biomimetics7040226. [PMID: 36546926 PMCID: PMC9776051 DOI: 10.3390/biomimetics7040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This work presents an in-depth numerical investigation into a hypothesized two-layer central pattern generator (CPG) that controls mammalian walking and how different parameter choices might affect the stepping of a simulated neuromechanical model. Particular attention is paid to the functional role of features that have not received a great deal of attention in previous work: the weak cross-excitatory connectivity within the rhythm generator and the synapse strength between the two layers. Sensitivity evaluations of deafferented CPG models and the combined neuromechanical model are performed. Locomotion frequency is increased in two different ways for both models to investigate whether the model's stability can be predicted by trends in the CPG's phase response curves (PRCs). Our results show that the weak cross-excitatory connection can make the CPG more sensitive to perturbations and that increasing the synaptic strength between the two layers results in a trade-off between forced phase locking and the amount of phase delay that can exist between the two layers. Additionally, although the models exhibit these differences in behavior when disconnected from the biomechanical model, these differences seem to disappear with the full neuromechanical model and result in similar behavior despite a variety of parameter combinations. This indicates that the neural variables do not have to be fixed precisely for stable walking; the biomechanical entrainment and sensory feedback may cancel out the strengths of excitatory connectivity in the neural circuit and play a critical role in shaping locomotor behavior. Our results support the importance of including biomechanical models in the development of computational neuroscience models that control mammalian locomotion.
Collapse
|
15
|
Santuz A, Laflamme OD, Akay T. The brain integrates proprioceptive information to ensure robust locomotion. J Physiol 2022; 600:5267-5294. [PMID: 36271747 DOI: 10.1113/jp283181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Robust locomotion relies on information from proprioceptors: sensory organs that communicate the position of body parts to the spinal cord and brain. Proprioceptive circuits in the spinal cord are known to coarsely regulate locomotion in the presence of perturbations. Yet, the regulatory importance of the brain in maintaining robust locomotion remains less clear. Here, through mouse genetic studies and in vivo electrophysiology, we examined the role of the brain in integrating proprioceptive information during perturbed locomotion. The systemic removal of proprioceptors left the mice in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild-type mice and characterised by longer and less accurate synergistic activation patterns. By contrast, after surgically interrupting the ascending proprioceptive projection to the brain through the dorsal column of the spinal cord, wild-type mice showed normal walking behaviour, yet lost the ability to respond to external perturbations. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving robust, safe locomotion. KEY POINTS: Whether brain integration of proprioceptive feedback is crucial for coping with perturbed locomotion is not clear. We showed a crucial role of the brain for responding to external perturbations and ensure robust locomotion. We used mouse genetics to remove proprioceptors and a spinal lesion model to interrupt the flow of proprioceptive information to the brain through the dorsal column in wild-type animals. Using a custom-built treadmill, we administered sudden and random mechanical perturbations to mice during walking. External perturbations affected locomotion in wild-type mice similar to the absence of proprioceptors in genetically modified mice. Proprioceptive feedback from muscle spindles and Golgi tendon organs contributed to locomotor robustness. Wild-type mice lost the ability to respond to external perturbations after interruption of the ascending proprioceptive projection to the brainstem.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Flett S, Garcia J, Cowley KC. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review. J Neurophysiol 2022; 128:649-670. [PMID: 35894427 PMCID: PMC9668071 DOI: 10.1152/jn.00205.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in sensory, motor, and autonomic dysfunction. Obesity, cardiovascular disease, and metabolic disease are highly prevalent after SCI. Although inadequate voluntary activation of skeletal muscle contributes, it is absent or inadequate activation of thoracic spinal sympathetic neural circuitry and suboptimal activation of homeostatic (cardiovascular and temperature) and metabolic support systems that truly limits exercise capacity, particularly for those with cervical SCI. Thus, when electrical spinal cord stimulation (SCS) studies aimed at improving motor functions began mentioning effects on exercise-related autonomic functions, a potential new area of clinical application appeared. To survey this new area of potential benefit, we performed a systematic scoping review of clinical SCS studies involving these spinally mediated autonomic functions. Nineteen studies were included, 8 used transcutaneous and 11 used epidural SCS. Improvements in blood pressure regulation at rest or in response to orthostatic challenge were investigated most systematically, whereas reports of improved temperature regulation, whole body metabolism, and peak exercise performance were mainly anecdotal. Effective stimulation locations and parameters varied between studies, suggesting multiple stimulation parameters and rostrocaudal spinal locations may influence the same sympathetic function. Brainstem and spinal neural mechanisms providing excitatory drive to sympathetic neurons that activate homeostatic and metabolic tissues that provide support for movement and exercise and their integration with locomotor neural circuitry are discussed. A unifying conceptual framework for the integrated neural control of locomotor and sympathetic function is presented which may inform future research needed to take full advantage of SCS for improving these spinally mediated autonomic functions.
Collapse
Affiliation(s)
- Sarah Flett
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juanita Garcia
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Saputra AA, Botzheim J, Ijspeert AJ, Kubota N. Combining Reflexes and External Sensory Information in a Neuromusculoskeletal Model to Control a Quadruped Robot. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7981-7994. [PMID: 33635813 DOI: 10.1109/tcyb.2021.3052253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article examines the importance of integrating locomotion and cognitive information for achieving dynamic locomotion from a viewpoint combining biology and ecological psychology. We present a mammalian neuromusculoskeletal model from external sensory information processing to muscle activation, which includes: 1) a visual-attention control mechanism for controlling attention to external inputs; 2) object recognition representing the primary motor cortex; 3) a motor control model that determines motor commands traveling down the corticospinal and reticulospinal tracts; 4) a central pattern generation model representing pattern generation in the spinal cord; and 5) a muscle reflex model representing the muscle model and its reflex mechanism. The proposed model is able to generate the locomotion of a quadruped robot in flat and natural terrain. The experiment also shows the importance of a postural reflex mechanism when experiencing a sudden obstacle. We show the reflex mechanism when a sudden obstacle is separately detected from both external (retina) and internal (touching afferent) sensory information. We present the biological rationale for supporting the proposed model. Finally, we discuss future contributions, trends, and the importance of the proposed research.
Collapse
|
18
|
Pace Running of a Quadruped Robot Driven by Pneumatic Muscle Actuators: An Experimental Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Our goal is to design a neuromorphic locomotion controller for a prospective bioinspired quadruped robot driven by artificial muscle actuators. In this paper, we focus on achieving a running gait called a pace, in which the ipsilateral pairs of legs move in phase, while the two pairs together move out of phase, by a quadruped robot with realistic legs driven by pneumatic muscle actuators. The robot is controlled by weakly coupled two-level central pattern generators to generate a pace gait with leg loading feedback. Each leg is moved through four sequential phases like an animal, i.e., touch-down, stance, lift-off, and swing phases. We find that leg loading feedback to the central pattern generator can contribute to stabilizing pace running with an appropriate cycle autonomously determined by synchronizing each leg’s oscillation with the roll body oscillation without a human specifying the cycle. The experimental results conclude that our proposed neuromorphic controller is beneficial for achieving pace running by a muscle-driven quadruped robot.
Collapse
|
19
|
Rasul A, Lorentzen J, Frisk RF, Sinkjær T, Nielsen JB. Contribution of sensory feedback to Soleus muscle activity during voluntary contraction in humans. J Neurophysiol 2022; 127:1147-1158. [PMID: 35320034 DOI: 10.1152/jn.00430.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback contributes to plantar flexor muscle activity during walking, but it is unknown whether this is also the case during non-locomotor movements. Here, we explored the effect of reduction of sensory feedback to ankle plantar flexors during voluntary isometric contractions. 13 adult volunteers were seated with the right leg attached to a foot plate which could be moved in dorsi- or plantarflexion direction by a computer-controlled motor. During static plantar flexion while the plantar flexors were slowly stretched, a sudden plantar flexion caused a decline in Soleus EMG at stretch reflex latency. This decline in EMG remained when transmission from dorsiflexors was blocked. It disappeared following block of transmission from plantar flexors. Imposed plantarflexion failed to produce a similar decline in EMG during static or ramp-and-hold plantar flexion in the absence of slow stretch. Instead, a decline in EMG was observed 15-20 ms later, which disappeared following block of transmission from dorsiflexors. Imposed plantarflexion in the stance phase during walking caused a decline in SOL EMG which in contrast remained following block of transmission from dorsiflexors. These findings imply that the contribution of spinal interneurons to the neural drive to muscles during gait and voluntary movement differs and supports that a locomotion specific spinal network contributes to plantar flexor muscle activity during human walking.
Collapse
Affiliation(s)
- Aqella Rasul
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Rasmus Feld Frisk
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Thomas Sinkjær
- Department of Health Science and Technology. Aalborg University, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
20
|
Clark DJ, Hawkins KA, Winesett SP, Cox BA, Pesquera S, Miles JW, Fuller DD, Fox EJ. Enhancing Locomotor Learning With Transcutaneous Spinal Electrical Stimulation and Somatosensory Augmentation: A Pilot Randomized Controlled Trial in Older Adults. Front Aging Neurosci 2022; 14:837467. [PMID: 35309891 PMCID: PMC8924500 DOI: 10.3389/fnagi.2022.837467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated locomotor learning of a complex terrain walking task in older adults, when combined with two adjuvant interventions: transcutaneous spinal direct current stimulation (tsDCS) to increase lumbar spinal cord excitability, and textured shoe insoles to increase somatosensory feedback to the spinal cord. The spinal cord has a crucial contribution to control of walking, and is a novel therapeutic target for rehabilitation of older adults. The complex terrain task involved walking a 10-meter course consisting of nine obstacles and three sections of compliant (soft) walking surface. Twenty-three participants were randomly assigned to one of the following groups: sham tsDCS and smooth insoles (sham/smooth; control group), sham tsDCS and textured insoles (sham/textured), active tsDCS and smooth insoles (active/smooth), and active tsDCS and textured insoles (active/textured). The first objective was to assess the feasibility, tolerability, and safety of the interventions. The second objective was to assess preliminary efficacy for increasing locomotor learning, as defined by retention of gains in walking speed between a baseline visit of task practice, and a subsequent follow-up visit. Variability of the center of mass while walking over the course was also evaluated. The change in executive control of walking (prefrontal cortical activity) between the baseline and follow-up visits was measured with functional near infrared spectroscopy. The study results demonstrated feasibility based on enrollment and retention of participants, tolerability based on self-report, and safety based on absence of adverse events. Preliminary efficacy was supported based on trends showing larger gains in walking speed and more pronounced reductions in mediolateral center of mass variability at the follow-up visit in the groups randomized to active tsDCS or textured insoles. These data justify future larger studies to further assess dosing and efficacy of these intervention approaches. In conclusion, rehabilitation interventions that target spinal control of walking present a potential opportunity for enhancing walking function in older adults.
Collapse
Affiliation(s)
- David J. Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
- *Correspondence: David J. Clark,
| | - Kelly A. Hawkins
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Brigette A. Cox
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sarah Pesquera
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Jon W. Miles
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Emily J. Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Brooks Rehabilitation, Jacksonville, FL, United States
| |
Collapse
|
21
|
Young FR, Chiel HJ, Tresch MC, Heckman CJ, Hunt AJ, Quinn RD. Analyzing Modeled Torque Profiles to Understand Scale-Dependent Active Muscle Responses in the Hip Joint. Biomimetics (Basel) 2022; 7:biomimetics7010017. [PMID: 35225910 PMCID: PMC8883942 DOI: 10.3390/biomimetics7010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Animal locomotion is influenced by a combination of constituent joint torques (e.g., due to limb inertia and passive viscoelasticity), which determine the necessary muscular response to move the limb. Across animal size-scales, the relative contributions of these constituent joint torques affect the muscular response in different ways. We used a multi-muscle biomechanical model to analyze how passive torque components change due to an animal’s size-scale during locomotion. By changing the size-scale of the model, we characterized emergent muscular responses at the hip as a result of the changing constituent torque profile. Specifically, we found that activation phases between extensor and flexor torques to be opposite between small and large sizes for the same kinematic motion. These results suggest general principles of how animal size affects neural control strategies. Our modeled torque profiles show a strong agreement with documented hindlimb torque during locomotion and can provide insights into the neural organization and muscle activation behavior of animals whose motion has not been extensively documented.
Collapse
Affiliation(s)
- Fletcher R. Young
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence:
| | - Hillel J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthew C. Tresch
- Biomedical Engineering, Physical Medicine and Rehabilitation, Physiology, Northwestern University, Chicago, IL 60611, USA;
| | - Charles J. Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander J. Hunt
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201, USA;
| | - Roger D. Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
22
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Coelho T, Silva C, Viegas I, Gamboa Ó, Ferreira A. A Controlled Clinical Study of Intensive Neurorehabilitation in Post-Surgical Dogs with Severe Acute Intervertebral Disc Extrusion. Animals (Basel) 2021; 11:ani11113034. [PMID: 34827767 PMCID: PMC8614363 DOI: 10.3390/ani11113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This study explores the potential intensive neurorehabilitation plasticity effects in post-surgical paraplegic dogs with severe acute intervertebral disc extrusion aiming to achieve ambulatory status. The intensive neurorehabilitation protocol translated in 99.4% (167/168) of recovery in deep pain perception-positive dogs and 58.5% (55/94) in deep pain perception-negative dogs. There was 37.3% (22/59) spinal reflex locomotion, obtained within a maximum period of 3 months. Thus, intensive neurorehabilitation may be a useful approach for this population of dogs, avoiding future euthanasia and promoting an estimated time window of 3 months to recover. Abstract This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation (INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-positive (DPP+) (with absent/decreased flexor reflex) and DPP-negative (DDP−) dogs, with acute intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs (n = 367) were divided into a study group (SG) (n = 262) and a control group (CG) (n = 105). The SG was based on prospective clinical cases, and the CG was created by retrospective medical records. All SG dogs performed an INR protocol by the hospitalization regime based on locomotor training, electrical stimulation, and, for DPP−, a combination with pharmacological management. All were monitored throughout the process, and measuring the outcome for DPP+ was performed by OFS and, for the DPP−, by the new Functional Neurorehabilitation Scale (FNRS-DPP−). In the SG, DPP+ dogs had an ambulation rate of 99.4% (n = 167) and, in DPP−, of 58.5% (n = 55). Moreover, in DPP+, there was a strong statistically significant difference between groups regarding ambulation (p < 0.001). The same significant difference was verified in the DPP– dogs (p = 0.007). Furthermore, a tendency toward a significant statistical difference (p = 0.058) regarding DPP recovery was demonstrated between groups. Of the 59 dogs that did not recover DPP, 22 dogs achieved spinal reflex locomotion (SRL), 37.2% within a maximum of 3 months. The progressive myelomalacia cases were 14.9% (14/94). Therefore, although it is difficult to assess the contribution of INR for recovery, the results suggested that ambulation success may be improved, mainly regarding time.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Inês Viegas
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
24
|
Fukuoka Y, Habu Y, Inoue K, Ogura S, Mori Y. Autonomous speed adaptation by a muscle-driven hind leg robot modeled on a cat without intervention from brain. INT J ADV ROBOT SYST 2021. [DOI: 10.1177/17298814211044936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aims to design a nervous system model to drive the realistic muscle-driven legs for the locomotion of a quadruped robot. We evaluate our proposed nervous system model with a hind leg simulated model and robot. We apply a two-level central pattern generator for each leg, which generates locomotion rhythms and reproduces cat-like leg trajectories by driving different sets of the muscles at any timing during one cycle of moving the leg. The central pattern generator receives sensory feedback from leg loading. A cat simulated model and a robot with two hind legs, each with three joints driven by six muscle models, are controlled by our nervous system model. Even though their hind legs are forced backward at a wide range of speeds, they can adapt to the speed variation by autonomously adjusting its stride and cyclic duration without changing any parameters or receiving any descending inputs. In addition to the autonomous speed adaptation, the cat hind leg robot switched from a trot-like gait to a gallop-like gait while speeding up. These features can be observed in existing animal locomotion tests. These results demonstrate that our nervous system is useful as a valid and practical legged locomotion controller.
Collapse
Affiliation(s)
- Yasuhiro Fukuoka
- Graduate School of Mechanical Science and Engineering, Ibaraki University, Ibaraki, Japan
| | | | | | | | - Yoshikazu Mori
- Graduate School of Mechanical Science and Engineering, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
25
|
Merlet AN, Harnie J, Frigon A. Inhibition and Facilitation of the Spinal Locomotor Central Pattern Generator and Reflex Circuits by Somatosensory Feedback From the Lumbar and Perineal Regions After Spinal Cord Injury. Front Neurosci 2021; 15:720542. [PMID: 34393721 PMCID: PMC8355562 DOI: 10.3389/fnins.2021.720542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
Somatosensory feedback from peripheral receptors dynamically interacts with networks located in the spinal cord and brain to control mammalian locomotion. Although somatosensory feedback from the limbs plays a major role in regulating locomotor output, those from other regions, such as lumbar and perineal areas also shape locomotor activity. In mammals with a complete spinal cord injury, inputs from the lumbar region powerfully inhibit hindlimb locomotion, while those from the perineal region facilitate it. Our recent work in cats with a complete spinal cord injury shows that they also have opposite effects on cutaneous reflexes from the foot. Lumbar inputs increase the gain of reflexes while those from the perineal region decrease it. The purpose of this review is to discuss how somatosensory feedback from the lumbar and perineal regions modulate the spinal locomotor central pattern generator and reflex circuits after spinal cord injury and the possible mechanisms involved. We also discuss how spinal cord injury can lead to a loss of functional specificity through the abnormal activation of functions by somatosensory feedback, such as the concurrent activation of locomotion and micturition. Lastly, we discuss the potential functions of somatosensory feedback from the lumbar and perineal regions and their potential for promoting motor recovery after spinal cord injury.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
MacLean MK, Ferris DP. Human muscle activity and lower limb biomechanics of overground walking at varying levels of simulated reduced gravity and gait speeds. PLoS One 2021; 16:e0253467. [PMID: 34260611 PMCID: PMC8279339 DOI: 10.1371/journal.pone.0253467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Reducing the mechanical load on the human body through simulated reduced gravity can reveal important insight into locomotion biomechanics. The purpose of this study was to quantify the effects of simulated reduced gravity on muscle activation levels and lower limb biomechanics across a range of overground walking speeds. Our overall hypothesis was that muscle activation amplitudes would not decrease proportionally to gravity level. We recruited 12 participants (6 female, 6 male) to walk overground at 1.0, 0.76, 0.55, and 0.31 G for four speeds: 0.4, 0.8, 1.2, and 1.6 ms-1. We found that peak ground reaction forces, peak knee extension moment in early stance, peak hip flexion moment, and peak ankle extension moment all decreased substantially with reduced gravity. The peak knee extension moment at late stance/early swing did not change with gravity. The effect of gravity on muscle activity amplitude varied considerably with muscle and speed, often varying nonlinearly with gravity level. Quadriceps (rectus femoris, vastus lateralis, & vastus medialis) and medial gastrocnemius activity decreased in stance phase with reduced gravity. Soleus and lateral gastrocnemius activity had no statistical differences with gravity level. Tibialis anterior and biceps femoris increased with simulated reduced gravity in swing and stance phase, respectively. The uncoupled relationship between simulated gravity level and muscle activity have important implications for understanding biomechanical muscle functions during human walking and for the use of bodyweight support for gait rehabilitation after injury.
Collapse
Affiliation(s)
- Mhairi K. MacLean
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MKM); (DPF)
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MKM); (DPF)
| |
Collapse
|
27
|
Garcia-Ramirez DL, Ha NT, Bibu S, Stachowski NJ, Dougherty KJ. Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse. J Neurosci 2021; 41:5833-5848. [PMID: 34006587 PMCID: PMC8265802 DOI: 10.1523/jneurosci.1576-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCIs) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell type-specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole-cell patch-clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT7 receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT2B/2C receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI.SIGNIFICANCE STATEMENT Current therapies to gain locomotor control after spinal cord injury (SCI) target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.
Collapse
Affiliation(s)
- D Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Ngoc T Ha
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Steve Bibu
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Nicholas J Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
28
|
Shon A, Brakel K, Hook M, Park H. Fully Implantable Plantar Cutaneous Augmentation System for Rats Using Closed-loop Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:326-338. [PMID: 33861705 DOI: 10.1109/tbcas.2021.3072894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plantar cutaneous feedback plays an important role in stable and efficient gait, by modulating the activity of ankle dorsi- and plantar-flexor muscles. However, central and peripheral nervous system trauma often decrease plantar cutaneous feedback and/or interneuronal excitability in processing the plantar cutaneous feedback. In this study, we tested a fully implantable neural recording and stimulation system augmenting plantar cutaneous feedback. Electromyograms were recorded from the medial gastrocnemius muscle for stance phase detection, while biphasic stimulation pulses were applied to the distal-tibial nerve during the stance phase to augment plantar cutaneous feedback. A Bluetooth low energy and a Qi-standard inductive link were adopted for wireless communication and wireless charging, respectively. To test the operation of the system, one intact rat walked on a treadmill with the electrical system implanted into its back. Leg kinematics were recorded to identify the stance phase. Stimulation was applied, with a 250-ms onset delay from stance onset and 200-ms duration, resulting in the onset at 47.58 ± 2.82% of stance phase and the offset at 83.49 ± 4.26% of stance phase (Mean ± SEM). The conduction velocity of the compound action potential (31.2 m/s and 41.6 m/s at 1·T and 2·T, respectively) suggests that the evoked action potential was characteristic of an afferent volley for cutaneous feedback. We also demonstrated successful wireless charging and system reset functions. The experimental results suggest that the presented implantable system can be a valuable neural interface tool to investigate the effect of plantar cutaneous augmentation on gait in a rat model.
Collapse
|
29
|
Valle G, Saliji A, Fogle E, Cimolato A, Petrini FM, Raspopovic S. Mechanisms of neuro-robotic prosthesis operation in leg amputees. SCIENCE ADVANCES 2021; 7:7/17/eabd8354. [PMID: 33883127 PMCID: PMC8059925 DOI: 10.1126/sciadv.abd8354] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 05/31/2023]
Abstract
Above-knee amputees suffer the lack of sensory information, even while using most advanced prostheses. Restoring intraneural sensory feedback results in functional and cognitive benefits. It is unknown how this artificial feedback, restored through a neuro-robotic leg, influences users' sensorimotor strategies and its implications for future wearable robotics. To unveil these mechanisms, we measured gait markers of a sensorized neuroprosthesis in two leg amputees during motor tasks of different difficulty. Novel sensorimotor strategies were intuitively promoted, allowing for a higher walking speed in both tasks. We objectively quantified the augmented prosthesis' confidence and observed the reshaping of the legs' kinematics toward a more physiological gait. In a possible scenario of a leg amputee driving a conventional car, we showed a finer pressure estimation from the prosthesis. Users exploited different features of the neural stimulation during tasks, suggesting that a simple prosthesis sensorization could be effective for future neuro-robotic prostheses.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Albulena Saliji
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Ezra Fogle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Cimolato
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Francesco M Petrini
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- SensArs Neuroprosthetics, Saint-Sulpice CH-1025, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
30
|
Merlet AN, Harnie J, Macovei M, Doelman A, Gaudreault N, Frigon A. Cutaneous inputs from perineal region facilitate spinal locomotor activity and modulate cutaneous reflexes from the foot in spinal cats. J Neurosci Res 2021; 99:1448-1473. [PMID: 33527519 DOI: 10.1002/jnr.24791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022]
Abstract
It is well known that mechanically stimulating the perineal region potently facilitates hindlimb locomotion and weight support in mammals with a spinal transection (spinal mammals). However, how perineal stimulation mediates this excitatory effect is poorly understood. We evaluated the effect of mechanically stimulating (vibration or pinch) the perineal region on ipsilateral (9-14 ms onset) and contralateral (14-18 ms onset) short-latency cutaneous reflex responses evoked by electrically stimulating the superficial peroneal or distal tibial nerve in seven adult spinal cats where hindlimb movement was restrained. Cutaneous reflexes were evoked before, during, and after mechanical stimulation of the perineal region. We found that vibration or pinch of the perineal region effectively triggered rhythmic activity, ipsilateral and contralateral to nerve stimulation. When electrically stimulating nerves, adding perineal stimulation modulated rhythmic activity by decreasing cycle and burst durations and by increasing the amplitude of flexors and extensors. Perineal stimulation also disrupted the timing of the ipsilateral rhythm, which had been entrained by nerve stimulation. Mechanically stimulating the perineal region decreased ipsilateral and contralateral short-latency reflex responses evoked by cutaneous inputs, a phenomenon we observed in muscles crossing different joints and located in different limbs. The results suggest that the excitatory effect of perineal stimulation on locomotion and weight support is mediated by increasing the excitability of central pattern-generating circuitry and not by increasing excitatory inputs from cutaneous afferents of the foot. Our results are consistent with a state-dependent modulation of reflexes by spinal interneuronal circuits.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Madalina Macovei
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adam Doelman
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathaly Gaudreault
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Shon A, Brakel K, Hook M, Park H. Closed-Loop Plantar Cutaneous Augmentation by Electrical Nerve Stimulation Increases Ankle Plantarflexion During Treadmill Walking. IEEE Trans Biomed Eng 2021; 68:2798-2809. [PMID: 33497323 DOI: 10.1109/tbme.2021.3054564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ankle plantarflexion plays an important role in forward propulsion and anterior-posterior balance during locomotion. This component of gait is often critically impacted by neurotraumas and neurological diseases. We hypothesized that augmenting plantar cutaneous feedback, via closed-loop distal-tibial nerve stimulation, could increase ankle plantarflexion during walking. To test the hypothesis, one intact rat walked on a motorized treadmill with implanted electronic device and electrodes for closed-loop neural recording and stimulation. Constant-current biphasic electrical pulse train was applied to distal-tibial nerve, based on electromyogram recorded from the medial gastrocnemius muscle, to be timed with the stance phase. The stimulation current threshold to evoke plantar cutaneous feedback was set at 30 μA (1·T), based on compound action potential evoked by stimulation. The maximum ankle joint angle at plantarflexion, during the application of stimulation currents of 3.3·T and 6.6·T, respectively, was increased from 149.4° (baseline) to 165.4° and 161.6°. The minimum ankle joint angle at dorsiflexion was decreased from 59.4° (baseline) to 53.1°, during the application of stimulation currents of 3.3·T, but not changed by 6.6·T. Plantar cutaneous augmentation also changed other gait kinematic parameters. Stance duty factor was increased from 51.9% (baseline) to 65.7% and 64.0%, respectively, by 3.3·T and 6.6·T, primarily due to a decrease in swing duration. Cycle duration was consistently decreased by the stimulation. In the control trial after two stimulation trials, a strong after-effect was detected in overall gait kinematics as well as ankle plantarflexion, suggesting that this stimulation has the potential for producing long-term changes in gait kinematics.
Collapse
|
32
|
The Spinal Control of Backward Locomotion. J Neurosci 2020; 41:630-647. [PMID: 33239399 DOI: 10.1523/jneurosci.0816-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Animal locomotion requires changing direction, from forward to backward. Here, we tested the hypothesis that sensorimotor circuits within the spinal cord generate backward locomotion and adjust it to task demands. We collected kinematic and electromyography (EMG) data during forward and backward locomotion at different treadmill speeds before and after complete spinal transection in six adult cats (three males and three females). After spinal transection, five/six cats performed backward locomotion, which required tonic somatosensory input in the form of perineal stimulation. One spinal cat performed forward locomotion but not backward locomotion while two others stepped backward but not forward. Spatiotemporal adjustments to increasing speed were similar in intact and spinal cats during backward locomotion and strategies were similar to forward locomotion, with shorter cycle and stance durations and longer stride lengths. Patterns of muscle activations, including muscle synergies, were similar for forward and backward locomotion in spinal cats. Indeed, we identified five muscle synergies that were similar during forward and backward locomotion. Lastly, spinal cats also stepped backward on a split-belt treadmill, with the left and right hindlimbs stepping at different speeds. Therefore, our results show that spinal sensorimotor circuits generate backward locomotion but require additional excitability compared with forward locomotion. Similar strategies for speed modulation and similar patterns of muscle activations and muscle synergies during forward and backward locomotion are consistent with a shared spinal locomotor network, with sensory feedback from the limbs controlling the direction.SIGNIFICANCE STATEMENT Animal locomotion requires changing direction, including forward, sideways and backward. This paper shows that the center controlling locomotion within the spinal cord can produce a backward pattern when instructed by sensory signals from the limbs. However, the spinal locomotor network requires greater excitability to produce backward locomotion compared with forward locomotion. The paper also shows that the spinal network controlling locomotion in the forward direction also controls locomotion in the backward direction.
Collapse
|
33
|
Clark DJ, Chatterjee SA, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ. Combining Frontal Transcranial Direct Current Stimulation With Walking Rehabilitation to Enhance Mobility and Executive Function: A Pilot Clinical Trial. Neuromodulation 2020; 24:950-959. [PMID: 32808403 DOI: 10.1111/ner.13250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This pilot study assessed whether frontal lobe transcranial direct current stimulation (tDCS) combined with complex walking rehabilitation is feasible, safe, and shows preliminary efficacy for improving walking and executive function. MATERIALS AND METHODS Participants were randomized to one of the following 18-session interventions: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Active tDCS was delivered over F3 (cathode) and F4 (anode) scalp locations for 20 min at 2 mA intensity. Outcome measures included tests of walking function, executive function, and prefrontal activity measured by functional near infrared spectroscopy. RESULTS Ninety percent of participants completed the intervention protocol successfully. tDCS side effects of tingling or burning sensations were low (average rating less than two out of 10). All groups demonstrated gains in walking performance based on within-group effect sizes (d ≥ 0.50) for one or more assessments. The Sham/Typical group showed the greatest gains for walking based on between-group effect sizes. For executive function, the Active/Complex group showed the greatest gains based on moderate to large between-group effect sizes (d = 0.52-1.11). Functional near-infrared spectroscopy (fNIRS) findings suggest improved prefrontal cortical activity during walking. CONCLUSIONS Eighteen sessions of walking rehabilitation combined with tDCS is a feasible and safe intervention for older adults. Preliminary effects size data indicate a potential improvement in executive function by adding frontal tDCS to walking rehabilitation. This study justifies future larger clinical trials to better understand the benefits of combining tDCS with walking rehabilitation.
Collapse
Affiliation(s)
- David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Sudeshna A Chatterjee
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jared W Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dorian K Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Takeoka A, Arber S. Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury. Cell Rep 2020; 27:71-85.e3. [PMID: 30943416 DOI: 10.1016/j.celrep.2019.03.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Somatosensory feedback from proprioceptive afferents (PAs) is essential for locomotor recovery after spinal cord injury. To determine where or when proprioception is required for locomotor recovery after injury, we established an intersectional genetic model for PA ablation with spatial and temporal confinement. We found that complete or spatially restricted PA ablation in intact mice differentially affects locomotor performance. Following incomplete spinal cord injury, PA ablation below but not above the lesion severely restricts locomotor recovery and descending circuit reorganization. Furthermore, ablation of PAs after behavioral recovery permanently reverts functional improvements, demonstrating their essential role for maintaining regained locomotor function despite the presence of reorganized descending circuits. In parallel to recovery, PAs undergo reorganization of activity-dependent synaptic connectivity to specific local spinal targets. Our study reveals that PAs interacting with local spinal circuits serve as a continued driving force to initiate and maintain locomotor output after injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Neuro-electronics Research Flanders (NERF), 3001 Leuven, Belgium; Vlaams Institute for Biotechnology (VIB), 3001 Leuven, Belgium; Department of Neuroscience and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
35
|
Urbin M, Liu M, Bottorff EC, Gaunt RA, Fisher LE, Weber DJ. Hindlimb motor responses evoked by microstimulation of the lumbar dorsal root ganglia during quiet standing. J Neural Eng 2019; 17:016019. [PMID: 31597128 PMCID: PMC10321059 DOI: 10.1088/1741-2552/ab4c6c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Somatosensory afferent pathways have been a target for neural prostheses that seek to restore sensory feedback from amputated limbs and to recruit muscles paralyzed by neurological injury. These pathways supply inputs to spinal reflex circuits that are necessary for coordinating muscle activity in the lower limb. The dorsal root ganglia (DRG) is a potential site for accessing sensory neurons because DRG microstimulation selectively recruits major nerve branches of the cat hindlimb. Previous DRG microstimulation experiments have been performed in anesthetized animals, but effects on muscle recruitment and behavior in awake animals have not been examined. OBJECTIVE The objective of the current study was to measure the effects of DRG microstimulation on evoking changes in hindlimb muscle activity during quiet standing. APPROACH In this study, 32-channel penetrating microelectrode arrays were implanted chronically in the left L6 and L7 DRG of four cats. During each week of testing, one DRG electrode was selected to deliver microstimulation pulse-trains during quiet standing. Electromyographic (EMG) signals were recorded from intramuscular electrodes in ten hindlimb muscles, and ground-reaction forces (GRF) were measured under the foot of the implanted limb. MAIN RESULTS DRG Microstimulation evoked a mix of excitatory and inhibitory responses across muscles. Response rates were highest when microstimulation was applied on the L7 array, producing more excitatory than inhibitory responses. Response rates for the L6 array were lower, and the composition of responses was more evenly balanced between excitation and inhibition. On approximately one third of testing weeks, microstimulation induced a transient unloading of the hindlimb as indicated by a decrease in GRF. Reciprocal inhibition at the knee was a prevalent response pattern across testing days which contributed to the unloading force on this subset of testing weeks. SIGNIFICANCE Results show that single-channel microstimulation in the lumbar DRG evokes stereotyped patterns of muscle recruitment in awake animals, demonstrating that even limited sensory input can elicit hindlimb behavior. These findings imply that DRG microstimulation may have utility in neural prosthetic applications aimed at restoring somatosensory feedback and promoting motor function after neurological injury.
Collapse
Affiliation(s)
- M.A. Urbin
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, 15213
| | - Monica Liu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
| | | | - Robert A. Gaunt
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
| | - Lee E. Fisher
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
| | - Douglas J. Weber
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
| |
Collapse
|
36
|
Habu Y, Uta K, Fukuoka Y. Three-dimensional walking of a simulated muscle-driven quadruped robot with neuromorphic two-level central pattern generators. INT J ADV ROBOT SYST 2019. [DOI: 10.1177/1729881419885288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We aim to design a neuromorphic controller for the locomotion of a quadruped robot with muscle-driven leg mechanisms. To this end, we use a simulated cat model; each leg of the model is equipped with three joints driven by six muscle models incorporating two-joint muscles. For each leg, we use a two-level central pattern generator consisting of a rhythm generation part to produce basic rhythms and a pattern formation part to synergistically activate a different set of muscles in each of the four sequential phases (swing, touchdown, stance, and liftoff). Conventionally, it was difficult for a quadruped model with such realistic neural systems and muscle-driven leg mechanisms to walk even on flat terrain, but because of our improved neural and mechanical components, our quadruped model succeeds in reproducing motoneuron activations and leg trajectories similar to those in cats and achieves stable three-dimensional locomotion at a variety of speeds. Moreover, the quadruped is capable of walking upslope and over irregular terrains and adapting to perturbations, even without adjusting the parameters.
Collapse
Affiliation(s)
- Yasushi Habu
- Graduate School of Science and Engineering, Ibaraki University, Hitachi-shi, Ibaraki, Japan
| | - Keiichiro Uta
- Nagoya Works, Mitsubishi Electric Corporation, Nagoya-shi, Aichi, Japan
| | - Yasuhiro Fukuoka
- Department of Intelligent Systems Engineering, College of Engineering, Ibaraki University, Hitachi-shi, Ibaraki, Japan
| |
Collapse
|
37
|
Wu M, Hsu CJ, Kim J. Forced use of paretic leg induced by constraining the non-paretic leg leads to motor learning in individuals post-stroke. Exp Brain Res 2019; 237:2691-2703. [PMID: 31407027 PMCID: PMC6755123 DOI: 10.1007/s00221-019-05624-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to determine whether applying repetitive constraint forces to the non-paretic leg during walking would induce motor learning of enhanced use of the paretic leg in individuals post-stroke. Sixteen individuals post chronic (> 6 months) stroke were recruited in this study. Each subject was tested in two conditions, i.e., applying a constraint force to the non-paretic leg during treadmill walking and treadmill walking only. For the constraint condition, subjects walked on a treadmill with no force for 1 min (baseline), with force for 7 min (adaptation), and then without force for 1 min (post-adaptation). For the treadmill only condition, a similar protocol was used but no force was applied. EMGs from muscles of the paretic leg and ankle kinematic data were recorded. Spatial-temporal gait parameters during overground walking pre and post treadmill walking were also collected. Integrated EMGs of ankle plantarflexors and hip extensors during stance phase significantly increased during the early adaptation period, and partially retained (15-21% increase) during the post-adaptation period for the constraint force condition, which were significantly greater than that for the treadmill only (3-5%) condition. The symmetry of step length during overground walking significantly improved (p = 0.04) after treadmill walking with the constraint condition, but had no significant change after treadmill walking only. Repetitively applying constraint force to the non-paretic leg during treadmill walking may lead to a motor learning of enhanced use of the paretic leg in individuals post-stroke, which may transfer to overground walking.
Collapse
Affiliation(s)
- Ming Wu
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 East Erie Street, 23rd Floor, Chicago, IL, 60611, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Chao-Jung Hsu
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 East Erie Street, 23rd Floor, Chicago, IL, 60611, USA
| | - Janis Kim
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 East Erie Street, 23rd Floor, Chicago, IL, 60611, USA
| |
Collapse
|
38
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
39
|
Proprioception: Bottom-up directive for motor recovery after spinal cord injury. Neurosci Res 2019; 154:1-8. [PMID: 31336141 DOI: 10.1016/j.neures.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
Proprioceptive feedback provides movement-matched sensory information essential for motor control and recovery after spinal cord injury. While it is understood that the fundamental contribution of proprioceptive feedback circuits in locomotor recovery is to activate the local spinal cord interneurons and motor neurons in a context-dependent manner, the precise mechanisms by which proprioception enables motor recovery after a spinal cord injury remain elusive. Furthermore, how proprioception contributes to motor learning mechanisms intrinsic to spinal cord networks and gives rise to motor recovery is currently unknown. This review discusses the existence of motor learning mechanisms intrinsic to spinal cord circuits and circuit-level insights on how proprioception might contribute to spinal cord plasticity, adaptability, and learning, in addition to the logic in which proprioception helps to establish an internal motor command to execute motor output using spared circuits after a spinal cord injury.
Collapse
|
40
|
Fujiki S, Aoi S, Funato T, Sato Y, Tsuchiya K, Yanagihara D. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting. Sci Rep 2018; 8:17341. [PMID: 30478405 PMCID: PMC6255885 DOI: 10.1038/s41598-018-35714-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
To investigate the adaptive locomotion mechanism in animals, a split-belt treadmill has been used, which has two parallel belts to produce left–right symmetric and asymmetric environments for walking. Spinal cats walking on the treadmill have suggested the contribution of the spinal cord and associated peripheral nervous system to the adaptive locomotion. Physiological studies have shown that phase resetting of locomotor commands involving a phase shift occurs depending on the types of sensory nerves and stimulation timing, and that muscle activation patterns during walking are represented by a linear combination of a few numbers of basic temporal patterns despite the complexity of the activation patterns. Our working hypothesis was that resetting the onset timings of basic temporal patterns based on the sensory information from the leg, especially extension of hip flexors, contributes to adaptive locomotion on the split-belt treadmill. Our hypothesis was examined by conducting forward dynamic simulations using a neuromusculoskeletal model of a rat walking on a split-belt treadmill with its hindlimbs and by comparing the simulated motions with the measured motions of rats.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Yota Sato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
41
|
Bacqué-Cazenave J, Courtand G, Beraneck M, Lambert FM, Combes D. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus. Front Neural Circuits 2018; 12:95. [PMID: 30420798 PMCID: PMC6216112 DOI: 10.3389/fncir.2018.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
In larval xenopus, locomotor-induced oculomotor behavior produces gaze-stabilizing eye movements to counteract the disruptive effects of tail undulation during swimming. While neuronal circuitries responsible for feed-forward intrinsic spino-extraocular signaling have recently been described, the resulting oculomotor behavior remains poorly understood. Conveying locomotor CPG efference copy, the spino-extraocular motor command coordinates the multi-segmental rostrocaudal spinal rhythmic activity with the extraocular motor activity. By recording sequences of xenopus tadpole free swimming, we quantified the temporal calibration of conjugate eye movements originating from spino-extraocular motor coupled activity during pre-metamorphic tail-based undulatory swimming. Our results show that eye movements are produced only during robust propulsive forward swimming activity and increase with the amplitude of tail movements. The use of larval isolated in vitro and semi-intact fixed head preparations revealed that spinal locomotor networks driving the rostral portion of the tail set the precise timing of the spino-extraocular motor coupling by adjusting the phase relationship between spinal segment and extraocular rhythmic activity with the swimming frequency. The resulting spinal-evoked oculomotor behavior produced conjugated eye movements that were in phase opposition with the mid-caudal part of the tail. This time adjustment is independent of locomotor activity in the more caudal spinal parts of the tail. Altogether our findings demonstrate that locomotor feed-forward spino-extraocular signaling produce conjugate eye movements that compensate specifically the undulation of the mid-caudal tail during active swimming. Finally, this study constitutes the first extensive behavioral quantification of spino-extraocular motor coupling, which sets the basis for understanding the mechanisms of locomotor-induced oculomotor behavior in larval frog.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Gilles Courtand
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Mathieu Beraneck
- CNRS UMR 8119, Center for Neurophysics, Physiology, and Pathology, Université Paris Descartes, Paris, France
| | - François M Lambert
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Denis Combes
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Plant GW, Weinrich JA, Kaltschmidt JA. Sensory and descending motor circuitry during development and injury. Curr Opin Neurobiol 2018; 53:156-161. [PMID: 30205323 DOI: 10.1016/j.conb.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
Proprioceptive sensory input and descending supraspinal projections are two major inputs that feed into and influence spinal circuitry and locomotor behaviors. Here we review their influence on each other during development and after spinal cord injury. We highlight developmental mechanisms of circuit formation as they relate to the sensory-motor circuit and its reciprocal interactions with local spinal interneurons, as well as competitive interactions between proprioceptive and descending supraspinal inputs in the setting of spinal cord injury.
Collapse
Affiliation(s)
- Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jarret Ap Weinrich
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Duysens J, Forner-Cordero A. Walking with perturbations: a guide for biped humans and robots. BIOINSPIRATION & BIOMIMETICS 2018; 13:061001. [PMID: 30109860 DOI: 10.1088/1748-3190/aada54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical with its flexor half linked more tightly to the rhythm generator. The stability of bipedal gait, which is an important problem for robots and biological systems, is also addressed. While it is not possible to determine how biological biped systems guarantee stability, robot solutions can be useful to propose new hypotheses for biology. In the second part of this review, the focus is on gait perturbations, which is an important topic in robotics in view of the frequent falls of robots when faced with perturbations. From the human physiology it is known that the initial reaction often consists of a brief interruption followed by an adequate response. For instance, the successful recovery from a trip is achieved using some basic reactions (termed elevating and lowering strategies), that depend on the phase of the step cycle of the trip occurrence. Reactions to stepping unexpectedly in a hole depend on comparing expected and real feedback. Implementation of these ideas in models and robotics starts to emerge, with the most advanced robots being able to learn how to fall safely and how to deal with complicated disturbances such as provided by walking on a split-belt.
Collapse
Affiliation(s)
- Jacques Duysens
- Biomechatronics Lab., Mechatronics Department, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária 05508-030, São Paulo-SP, Brasil. Department of Kinesiology, FaBeR, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
45
|
Dallmann CJ, Hoinville T, Dürr V, Schmitz J. A load-based mechanism for inter-leg coordination in insects. Proc Biol Sci 2018; 284:rspb.2017.1755. [PMID: 29187626 PMCID: PMC5740276 DOI: 10.1098/rspb.2017.1755] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Thierry Hoinville
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
46
|
Parker J, Bondy B, Prilutsky BI, Cymbalyuk G. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator. J Neurophysiol 2018; 120:1074-1089. [PMID: 29766765 DOI: 10.1152/jn.00696.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of the same neuronal circuit to control different motor functions is an actively debated concept. Previously, we showed in a model that a single multistable central pattern generator (CPG) could produce two different rhythmic motor patterns, slow and fast, corresponding to cat locomotion and paw shaking. A locomotor-like rhythm (~1 Hz) and a paw shake-like rhythm (~10 Hz) did coexist in our model, and, by applying a single pulse of current, we could switch the CPG from one regime to another (Bondy B, Klishko AN, Edwards DH, Prilutsky BI, Cymbalyuk G. In: Neuromechanical Modeling of Posture and Locomotion, 2016). Here we investigated the roles of slow intrinsic ionic currents in this multistability. The CPG is modeled as a half-center oscillator circuit comprising two reciprocally inhibitory neurons. Each neuron is equipped with two slow inward currents, a Na+ current ( INaS) and a Ca2+ current ( ICaS). ICaS inactivates much more slowly and at more hyperpolarized voltages than INaS. We demonstrate that INaS is the primary current driving the paw shake-like bursting. ICaS is crucial for the locomotor-like bursting, and it is inactivated during the paw shake-like activity. We investigate the sensitivity of the bursting regimes to perturbations, using a pulse of current to induce a switch from one regime to the other, and we demonstrate that the transition duration is dependent on pulse amplitude and application phase. We also investigate the modulatory roles of the strength of various currents on characteristics of these rhythms and show that their effects are regime specific. We conclude that a multistable CPG is physiologically plausible and derive testable predictions of the model. NEW & NOTEWORTHY Little is known about how a single central pattern generator could produce multiple rhythms. We describe a novel mechanism for multistability of bursting regimes with strongly distinct periods. The proposed mechanism emphasizes the role of intrinsic cellular dynamics over synaptic dynamics in the production of multistability. We describe how the temporal characteristics of multiple rhythms could be controlled by neuromodulation and how single pulses of current could produce a switch between regimes in a functional fashion.
Collapse
Affiliation(s)
- Jessica Parker
- Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Brian Bondy
- Neuroscience Institute, Georgia State University , Atlanta, Georgia.,Institute for Neuroscience, University of Texas , Austin, Texas
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | | |
Collapse
|
47
|
Nichols TR. Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 2018; 119:1186-1200. [PMID: 29212914 PMCID: PMC5899305 DOI: 10.1152/jn.00216.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
48
|
Moraud EM, von Zitzewitz J, Miehlbradt J, Wurth S, Formento E, DiGiovanna J, Capogrosso M, Courtine G, Micera S. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury. Sci Rep 2018; 8:76. [PMID: 29311614 PMCID: PMC5758718 DOI: 10.1038/s41598-017-18293-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
After spinal cord injury (SCI), sensory feedback circuits critically contribute to leg motor execution. Compelled by the importance to engage these circuits during gait rehabilitation, assistive robotics and training protocols have primarily focused on guiding leg movements to reinforce sensory feedback. Despite the importance of trunk postural dynamics on gait and balance, trunk assistance has comparatively received little attention. Typically, trunk movements are either constrained within bodyweight support systems, or manually adjusted by therapists. Here, we show that real-time control of trunk posture re-established dynamic balance amongst bilateral proprioceptive feedback circuits, and thereby restored left-right symmetry, loading and stepping consistency in rats with severe SCI. We developed a robotic system that adjusts mediolateral trunk posture during locomotion. This system uncovered robust relationships between trunk orientation and the modulation of bilateral leg kinematics and muscle activity. Computer simulations suggested that these modulations emerged from corrections in the balance between flexor- and extensor-related proprioceptive feedback. We leveraged this knowledge to engineer control policies that regulate trunk orientation and postural sway in real-time. This dynamical postural interface immediately improved stepping quality in all rats regardless of broad differences in deficits. These results emphasize the importance of trunk regulation to optimize performance during rehabilitation.
Collapse
Affiliation(s)
- Eduardo Martin Moraud
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland.
| | - Joachim von Zitzewitz
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
| | - Jenifer Miehlbradt
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
| | - Sophie Wurth
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
| | - Emanuele Formento
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
| | - Jack DiGiovanna
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland
| | | | - Grégoire Courtine
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland.
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), CH-1202, Geneva, Switzerland.,The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| |
Collapse
|
49
|
Koch SC, Del Barrio MG, Dalet A, Gatto G, Günther T, Zhang J, Seidler B, Saur D, Schüle R, Goulding M. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait. Neuron 2017; 96:1419-1431.e5. [PMID: 29224725 PMCID: PMC5828033 DOI: 10.1016/j.neuron.2017.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/27/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023]
Abstract
Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORβ orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm. Genetic manipulations that abrogate inhibitory RORβ IN function result in an ataxic gait characterized by exaggerated flexion movements and marked alterations to the step cycle. Inactivation of RORβ in inhibitory neurons leads to reduced presynaptic inhibition and changes to sensory-evoked reflexes, arguing that the RORβ inhibitory INs function to suppress the sensory transmission pathways that activate flexor motor reflexes and interfere with the ongoing locomotor program. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stephanie C Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Günther
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Jingming Zhang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Barbara Seidler
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Dieter Saur
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Gregor RJ, Maas H, Bulgakova MA, Oliver A, English AW, Prilutsky BI. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles. J Neurophysiol 2017; 119:1166-1185. [PMID: 29187556 DOI: 10.1152/jn.00661.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Collapse
Affiliation(s)
- Robert J Gregor
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | | | - Alanna Oliver
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine , Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|