1
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes are not underscored by different gut microbiomes. Ecol Evol 2024; 14:e70237. [PMID: 39219576 PMCID: PMC11362613 DOI: 10.1002/ece3.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Although bold and shy behavioral phenotypes in zebrafish (Danio rerio) have been selectively bred and maintained over multiple generations, it is unclear if they are underscored by different gut microbiota. Using the microbiota-gut-brain concept, we examined the relationship between gut microbiota and the behavioral phenotypes within this model animal system to assess possible gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced 16S rRNA gene amplicons from the guts of bold and shy zebrafish individuals using the Illumina Miseq platform. We did not record any significant differences in within-group microbial diversity nor between-group community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiome profiles between the two phenotypes would suggest that in this species, there might exist a stable core gut microbiome, regardless of behavioral phenotypes, and possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This study characterized the gut microbiomes of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and did not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A. Ayayee
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | - Ryan Y. Wong
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
2
|
Hatchett CJ, Hall MK, Messer AR, Schwalbe RA. Lowered GnT-I Activity Decreases Complex-Type N-Glycan Amounts and Results in an Aberrant Primary Motor Neuron Structure in the Spinal Cord. J Dev Biol 2024; 12:21. [PMID: 39189261 PMCID: PMC11348029 DOI: 10.3390/jdb12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
The attachment of sugar to proteins and lipids is a basic modification needed for organismal survival, and perturbations in glycosylation cause severe developmental and neurological difficulties. Here, we investigated the neurological consequences of N-glycan populations in the spinal cord of Wt AB and mgat1b mutant zebrafish. Mutant fish have reduced N-acetylglucosaminyltransferase-I (GnT-I) activity as mgat1a remains intact. GnT-I converts oligomannose N-glycans to hybrid N-glycans, which is needed for complex N-glycan production. MALDI-TOF MS profiles identified N-glycans in the spinal cord for the first time and revealed reduced amounts of complex N-glycans in mutant fish, supporting a lesion in mgat1b. Further lectin blotting showed that oligomannose N-glycans were more prevalent in the spinal cord, skeletal muscle, heart, swim bladder, skin, and testis in mutant fish relative to WT AB, supporting lowered GnT- I activity in a global manner. Developmental delays were noted in hatching and in the swim bladder. Microscopic images of caudal primary (CaP) motor neurons of the spinal cord transiently expressing EGFP in mutant fish were abnormal with significant reductions in collateral branches. Further motor coordination skills were impaired in mutant fish. We conclude that identifying the neurological consequences of aberrant N-glycan processing will enhance our understanding of the role of complex N-glycans in development and nervous system health.
Collapse
Affiliation(s)
| | | | | | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.J.H.); (M.K.H.); (A.R.M.)
| |
Collapse
|
3
|
Ayayee PA, Wong RY. Zebrafish ( Danio rerio) behavioral phenotypes not underscored by different gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596447. [PMID: 38853862 PMCID: PMC11160693 DOI: 10.1101/2024.05.29.596447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Different animal behavioral phenotypes maintained and selectively bred over multiple generations may be underscored by dissimilar gut microbial community compositions or not have any significant dissimilarity in community composition. Operating within the microbiota-gut-brain axis framework, we anticipated differences in gut microbiome profiles between zebrafish (Danio rerio) selectively bred to display the bold and shy personality types. This would highlight gut microbe-mediated effects on host behavior. To this end, we amplified and sequenced a fragment of the 16S rRNA gene from the guts of bold and shy zebrafish individuals (n=10) via Miseq. We uncovered no significant difference in within-group microbial diversity nor between-group microbial community composition of the two behavioral phenotypes. Interestingly, though not statistically different, we determined that the gut microbial community of the bold phenotype was dominated by Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae. The absence of any significant difference in gut microbiota profiles between the two phenotypes would suggest that in this species, there might exist a stable "core" gut microbiome, regardless of behavioral phenotypes, and or possibly, a limited role for the gut microbiota in modulating this selected-for host behavior. This is the first study to characterize the gut microbial community of distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states) and not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are crucial to our understanding of the modulating impacts of the gut microbiome on normative animal behavior.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
4
|
Di Mauro G, González VJ, Bambini F, Camarda S, Prado E, Holgado JP, Vázquez E, Ballerini L, Cellot G. MoS 2 2D materials induce spinal cord neuroinflammation and neurotoxicity affecting locomotor performance in zebrafish. NANOSCALE HORIZONS 2024; 9:785-798. [PMID: 38466179 DOI: 10.1039/d4nh00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
MoS2 nanosheets belong to an emerging family of nanomaterials named bidimensional transition metal dichalcogenides (2D TMDCs). The use of such promising materials, featuring outstanding chemical and physical properties, is expected to increase in several fields of science and technology, with an enhanced risk of environmental dispersion and associated wildlife and human exposures. In this framework, the assessment of MoS2 nanosheets toxicity is instrumental to safe industrial developments. Currently, the impact of the nanomaterial on the nervous tissue is unexplored. In this work, we use as in vivo experimental model the early-stage zebrafish, to investigate whether mechano-chemically exfoliated MoS2 nanosheets reach and affect, when added in the behavioral ambient, the nervous system. By high throughput screening of zebrafish larvae locomotor behavioral changes upon exposure to MoS2 nanosheets and whole organism live imaging of spinal neuronal and glial cell calcium activity, we report that sub-acute and prolonged ambient exposures to MoS2 nanosheets elicit locomotor abnormalities, dependent on dose and observation time. While 25 μg mL-1 concentration treatments exerted transient effects, 50 μg mL-1 ones induced long-lasting changes, correlated to neuroinflammation-driven alterations in the spinal cord, such as astrogliosis, glial intracellular calcium dysregulation, neuronal hyperactivity and motor axons retraction. By combining integrated technological approaches to zebrafish, we described that MoS2 2D nanomaterials can reach, upon water (i.e. ambient) exposure, the nervous system of larvae, resulting in a direct neurological damage.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Francesco Bambini
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Silvia Camarda
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Science, University of Castilla La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Juan Pedro Holgado
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, UCLM, Avda. Camilo José Cela S/N, Ciudad Real, Spain
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Giada Cellot
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
5
|
Kelly JJ, Wen H, Brehm P. Single-cell RNAseq analysis of spinal locomotor circuitry in larval zebrafish. eLife 2023; 12:RP89338. [PMID: 37975797 PMCID: PMC10656102 DOI: 10.7554/elife.89338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that in addition to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study, we use single-cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron, in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes.' The ion channel types are specialized for promoting high-frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high-speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.
Collapse
Affiliation(s)
- Jimmy J Kelly
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Hua Wen
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Lin LY, Kantha P, Horng JL. Toxic effects of polystyrene nanoparticles on the development, escape locomotion, and lateral-line sensory function of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109701. [PMID: 37478959 DOI: 10.1016/j.cbpc.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Environmental pollution by micro- and nanosized plastic particles is a potential threat to aquatic animals. Polystyrene is one of the most common plastic particles in aquatic environments. Previous studies found that polystyrene nanoparticles (PNs) can penetrate the integument and accumulate in the organs of fish embryos. However, the potential impacts of PNs on fish embryos are not fully understood. To investigate this issue, zebrafish embryos were exposed to different concentrations (10, 25, and 50 mg/L) of PNs (25 nm) for 96 h (4-100 h post-fertilization), and various endpoints were examined, including developmental morphology (body length, sizes of the eyes, otic vesicles, otoliths, pericardial cavity, and yolk sac), locomotion (touch-evoked escape response and spinal motor neurons), and lateral-line function (hair cell number and hair bundle number). Exposure to 50 mg/L of PNs resulted in significant adverse effects across all endpoints studied, indicating that embryonic development was severely disrupted, and both locomotion and sensory function were impaired. However, at 25 mg/L of PNs, only locomotion and sensory function were significantly affected. The effects were insignificant in all examined endpoints at 10 mg/L of PNs. Transcript levels of several marker genes for neuronal function and eye development were suppressed after treatment. Exposure to fluorescent PNs showed that they accumulated in various organs including, the eyes, gills, blood vessels, gallbladder, gut, and lateral line neuromasts. Overall, this study suggests that short-term exposure to a high concentration of PNs can threaten fish survival by impairing embryonic development, locomotion performance, and mechanical sensory function.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Kelly JJ, Wen H, Brehm P. Single cell RNA-seq analysis of spinal locomotor circuitry in larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543939. [PMID: 37333232 PMCID: PMC10274715 DOI: 10.1101/2023.06.06.543939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that additional to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study we use single cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron (PMn) in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes'. The ion channel types are specialized for promoting high frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.
Collapse
Affiliation(s)
- Jimmy J Kelly
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Skiba A, Kozioł E, Luca SV, Budzyńska B, Podlasz P, Van Der Ent W, Shojaeinia E, Esguerra CV, Nour M, Marcourt L, Wolfender JL, Skalicka-Woźniak K. Evaluation of the Antiseizure Activity of Endemic Plant Halfordia kendack Guillaumin and Its Main Constituent, Halfordin, on a Zebrafish Pentylenetetrazole (PTZ)-Induced Seizure Model. Int J Mol Sci 2023; 24:ijms24032598. [PMID: 36768918 PMCID: PMC9916433 DOI: 10.3390/ijms24032598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 μg/mL and 100 μg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 μM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.
Collapse
Affiliation(s)
- Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| | - Ewelina Kozioł
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Wietske Van Der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Elham Shojaeinia
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mohammed Nour
- Institut des Sciences Exactes et Appliquées (ISEA)-EA 4243, France University of New Caledonia, 98851 Nouméa, New Caledonia, France
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| |
Collapse
|
9
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
10
|
Transformation of an early-established motor circuit during maturation in zebrafish. Cell Rep 2022; 39:110654. [PMID: 35417694 PMCID: PMC9071512 DOI: 10.1016/j.celrep.2022.110654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Locomotion is mediated by spinal circuits that generate movements with a precise coordination and vigor. The assembly of these circuits is defined early during development; however, whether their organization and function remain invariant throughout development is unclear. Here, we show that the first established fast circuit between two dorsally located V2a interneuron types and the four primary motoneurons undergoes major transformation in adult zebrafish compared with what was reported in larvae. There is a loss of existing connections and establishment of new connections combined with alterations in the mode, plasticity, and strength of synaptic transmission. In addition, we show that this circuit no longer serves as a swim rhythm generator, but instead its components become embedded within the spinal escape circuit and control propulsion following the initial escape turn. Our results thus reveal significant changes in the organization and function of a motor circuit as animals develop toward adulthood.
Collapse
|
11
|
Vasudevan D, Liu YC, Barrios JP, Wheeler MK, Douglass AD, Dorsky RI. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury. Exp Neurol 2021; 342:113737. [PMID: 33957107 DOI: 10.1016/j.expneurol.2021.113737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023]
Abstract
Whereas humans and other adult mammals lack the ability to regain locomotor function after spinal cord injury, zebrafish are able to recover swimming behavior even after complete spinal cord transection. We have previously shown that zebrafish larvae regenerate lost spinal cord neurons within 9 days post-injury (dpi), but it is unknown whether these neurons are physiologically active or integrate into functional circuitry. Here we show that genetically defined premotor interneurons are regenerated in injured spinal cord segments as functional recovery begins. Further, we show that these newly-generated interneurons receive excitatory input and fire synchronously with motor output by 9 dpi. Taken together, our data indicate that regenerative neurogenesis in the zebrafish spinal cord produces interneurons with the ability to integrate into existing locomotor circuitry.
Collapse
Affiliation(s)
- Deeptha Vasudevan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Yen-Chyi Liu
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Maya K Wheeler
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish. Methods Mol Biol 2021; 2191:201-220. [PMID: 32865747 DOI: 10.1007/978-1-0716-0830-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.
Collapse
|
13
|
Trawiński J, Kozioł E, Skibiński R. Influence of the UV-Vis irradiation on the acute toxicity to zebrafish and mutagenicity of the selected psychotropic drugs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1624-1637. [PMID: 33043805 DOI: 10.1080/10934529.2020.1829890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The influence of the UV-Vis radiation on the toxicity of agomelatine, loxapine, clozapine and tiapride was studied. The phototransformation procedure was conducted with the use of simulated solar radiation. In the case of each compound irradiation time necessary to decompose half of the initial concentration was chosen. The embryotoxicity and acute toxicity were evaluated using zebrafish (Danio rerio) embryos and larvae. The mutagenicity assay was done with the use of a micro-plate Ames test. Generally, the embryotoxicity decreased after the irradiation procedure. The obtained results showed that tiapride is the least toxic compound to zebrafish, however, its toxicity toward larvae increases after the irradiation. Similarly, the mutagenic potential of the mixture of tiapride photoproducts is higher than in the case of parent compound. The phototransformation of loxapine resulted in the change of the acute toxicity profile and increased the rate of reverse mutations in the Ames test. Oppositely, the irradiation of agomelatine caused the decrease of mutagenic potential and acute toxicity was also lower in the postirradiated mixture. The phototransformation of clozapine did not alter the mutagenicity and decreased the acute toxicity to the zebrafish larvae. In silico calculations showed a satisfactory prediction ability in some instances, especially in the case of mutagenic potential of the tiapride phototransformation products.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewelina Kozioł
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Cellot G, Vranic S, Shin Y, Worsley R, Rodrigues AF, Bussy C, Casiraghi C, Kostarelos K, McDearmid JR. Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an in vivo zebrafish model. NANOSCALE HORIZONS 2020; 5:1250-1263. [PMID: 32558850 DOI: 10.1039/c9nh00777f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Graphene oxide (GO), an oxidised form of graphene, is widely used for biomedical applications, due to its dispersibility in water and simple surface chemistry tunability. In particular, small (less than 500 nm in lateral dimension) and thin (1-3 carbon monolayers) graphene oxide nanosheets (s-GO) have been shown to selectively inhibit glutamatergic transmission in neuronal cultures in vitro and in brain explants obtained from animals injected with the nanomaterial. This raises the exciting prospect that s-GO can be developed as a platform for novel nervous system therapeutics. It has not yet been investigated whether the interference of the nanomaterial with neurotransmission may have a downstream outcome in modulation of behaviour depending specifically on the activation of those synapses. To address this problem we use early stage zebrafish as an in vivo model to study the impact of s-GO on nervous system function. Microinjection of s-GO into the embryonic zebrafish spinal cord selectively reduces the excitatory synaptic transmission of the spinal network, monitored in vivo through patch clamp recordings, without affecting spinal cell survival. This effect is accompanied by a perturbation in the swimming activity of larvae, which is the locomotor behaviour generated by the neuronal network of the spinal cord. Such results indicate that the impact of s-GO on glutamate based neuronal transmission is preserved in vivo and can induce changes in animal behaviour. These findings pave the way for use of s-GO as a modulator of nervous system function.
Collapse
Affiliation(s)
- Giada Cellot
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wolter ME, Svoboda KR. Doing the locomotion: Insights and potential pitfalls associated with using locomotor activity as a readout of the circadian rhythm in larval zebrafish. J Neurosci Methods 2019; 330:108465. [PMID: 31634493 DOI: 10.1016/j.jneumeth.2019.108465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Zebrafish have been used as a model to study circadian rhythms (CRs) for over 20 years by analyzing various endpoints including locomotor activity. Such studies often utilize high-throughput analysis monitoring activity of larvae placed in well plates numbering >48 wells per plate. Although the CR can be influenced by numerous factors, it is not clear if such effects are permanent. Here, we investigated the variability of CRs of larvae analyzed in different types of well plates and determined the permanency of experimentally-induced aberrations in CRs. NEW METHOD Utilized the tracking software Ethovision XT to investigate how different well plate sizes influence the CR. Re-tested subjects for recovery from long-term CR disruptions and evaluated CR patterns at the individual level. RESULTS CR tracking using locomotion as a readout is best in 24 well plates. CR consistency is not maintained in larvae tracked in 48 or 96 well plates. A perturbed CR due to constant light recovered after just 3 days of a normal light/dark cycle. COMPARISON WITH EXISTING METHODS Unlike other CR locomotor-based assays, our approach allowed for a medium-throughput analysis of individual CRs, minimized variability and allowed for the re-evaluation of larval CRs 4-5 days later. CONCLUSIONS This medium-throughput locomotor CR analysis allows for a standardized, less variable approach whereby larvae can be re-tested to identify potential long-term changes after experimental manipulations. Long-term behavioral experiments in 48 or 96 well plates may impart stress on the larvae due to space constraints which could impact nervous system function and/or behavior.
Collapse
Affiliation(s)
- Matthew E Wolter
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
16
|
Wan Y, Wei Z, Looger LL, Koyama M, Druckmann S, Keller PJ. Single-Cell Reconstruction of Emerging Population Activity in an Entire Developing Circuit. Cell 2019; 179:355-372.e23. [PMID: 31564455 PMCID: PMC7055533 DOI: 10.1016/j.cell.2019.08.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Animal survival requires a functioning nervous system to develop during embryogenesis. Newborn neurons must assemble into circuits producing activity patterns capable of instructing behaviors. Elucidating how this process is coordinated requires new methods that follow maturation and activity of all cells across a developing circuit. We present an imaging method for comprehensively tracking neuron lineages, movements, molecular identities, and activity in the entire developing zebrafish spinal cord, from neurogenesis until the emergence of patterned activity instructing the earliest spontaneous motor behavior. We found that motoneurons are active first and form local patterned ensembles with neighboring neurons. These ensembles merge, synchronize globally after reaching a threshold size, and finally recruit commissural interneurons to orchestrate the left-right alternating patterns important for locomotion in vertebrates. Individual neurons undergo functional maturation stereotypically based on their birth time and anatomical origin. Our study provides a general strategy for reconstructing how functioning circuits emerge during embryogenesis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Neurobiology, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
17
|
Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E, Gagnon JA, Randlett O, Bianco IH, Lacoste AMB, Glushenkova E, Barrios JP, Schier AF, Kunes S, Engert F, Douglass AD. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat Neurosci 2019; 22:1477-1492. [PMID: 31358991 PMCID: PMC6820349 DOI: 10.1038/s41593-019-0452-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Animals have evolved specialized neural circuits to defend themselves from pain- and injury-causing stimuli. Using a combination of optical, behavioral and genetic approaches in the larval zebrafish, we describe a novel role for hypothalamic oxytocin (OXT) neurons in the processing of noxious stimuli. In vivo imaging revealed that a large and distributed fraction of zebrafish OXT neurons respond strongly to noxious inputs, including the activation of damage-sensing TRPA1 receptors. OXT population activity reflects the sensorimotor transformation of the noxious stimulus, with some neurons encoding sensory information and others correlating more strongly with large-angle swims. Notably, OXT neuron activation is sufficient to generate this defensive behavior via the recruitment of brainstem premotor targets, whereas ablation of OXT neurons or loss of the peptide attenuates behavioral responses to TRPA1 activation. These data highlight a crucial role for OXT neurons in the generation of appropriate defensive responses to noxious input.
Collapse
Affiliation(s)
- Caroline L Wee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maxim Nikitchenko
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Sasha J Luks-Morgan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Erin Song
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - James A Gagnon
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Isaac H Bianco
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alix M B Lacoste
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Elena Glushenkova
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Samuel Kunes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
Petel Légaré V, Harji ZA, Rampal CJ, Allard-Chamard X, Rodríguez EC, Armstrong GAB. Augmentation of spinal cord glutamatergic synaptic currents in zebrafish primary motoneurons expressing mutant human TARDBP (TDP-43). Sci Rep 2019; 9:9122. [PMID: 31235725 PMCID: PMC6591224 DOI: 10.1038/s41598-019-45530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Though there is compelling evidence that de-innervation of neuromuscular junctions (NMJ) occurs early in amyotrophic lateral sclerosis (ALS), defects arising at synapses in the spinal cord remain incompletely understood. To investigate spinal cord synaptic dysfunction, we took advantage of a zebrafish larval model and expressed either wild type human TARDBP (wtTARDBP) or the ALS-causing G348C variant (mutTARDBP). The larval zebrafish is ideally suited to examine synaptic connectivity between descending populations of neurons and spinal cord motoneurons as a fully intact spinal cord is preserved during experimentation. Here we provide evidence that the tail-beat motor pattern is reduced in both frequency and duration in larvae expressing mutTARDBP. In addition, we report that motor-related synaptic depolarizations in primary motoneurons of the spinal cord are shorter in duration and fewer action potentials are evoked in larvae expressing mutTARDBP. To more thoroughly examine spinal cord synaptic dysfunction in our ALS model, we isolated AMPA/kainate-mediated glutamatergic miniature excitatory post-synaptic currents in primary motoneurons and found that in addition to displaying a larger amplitude, the frequency of quantal events was higher in larvae expressing mutTARDBP when compared to larvae expressing wtTARDBP. In a final series of experiments, we optogenetically drove neuronal activity in the hindbrain and spinal cord population of descending ipsilateral glutamatergic interneurons (expressing Chx10) using the Gal4-UAS system and found that larvae expressing mutTARDBP displayed abnormal tail-beat patterns in response to optogenetic stimuli and augmented synaptic connectivity with motoneurons. These findings indicate that expression of mutTARDBP results in functionally altered glutamatergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ziyaan A Harji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esteban C Rodríguez
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
19
|
Meade ME, Roginsky JE, Schulz JR. Primary cell culture of adult zebrafish spinal neurons for electrophysiological studies. J Neurosci Methods 2019; 322:50-57. [PMID: 31028770 DOI: 10.1016/j.jneumeth.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) are growing in popularity as a vertebrate model organism for the study of spinal neurocircuitry and locomotion. While many studies have used the zebrafish model system for electrophysiological analyses in embryonic and larval stages, there is a growing interest in studying spinal circuits and neurons from adult fish. NEW METHOD To expand upon the existing toolset available to the zebrafish research community, we have developed the first primary cell culture system of adult zebrafish spinal neurons. The intact spinal cord is dissected, and neurons are isolated through enzymatic digestion and mechanical dissociation. Identifiable neurons are viable for electrophysiological analyses after two days in culture. RESULTS Spinal neurons in culture were confirmed by immunofluorescence labeling and found to exhibit distinct morphologies from other cell types, allowing neurons to be identified based on morphology alone. Neurons were suitable for calcium imaging and whole cell patch clamp recordings, which revealed excitable cells with voltage-gated whole cell currents, including tetrodotoxin-sensitive sodium currents. COMPARISON WITH EXISTING METHODS This primary cell culture system is the only methodology available to isolate neurons from the adult zebrafish spinal cord. Other methods rely on keeping the spinal cord intact or the utilization of embryonic or larval stage fish. This method provides a robust platform for use in neurophysiological and pharmacological studies. CONCLUSIONS The novel primary cell culture system described here provides the first in vitro methodology available to isolate and culture neurons from the adult zebrafish spinal cord for use in electrophysiological analyses.
Collapse
Affiliation(s)
- Max E Meade
- Occidental College, Department of Biology, 1600 Campus Road, Los Angeles, California, 90041, United States.
| | - Jessica E Roginsky
- Occidental College, Department of Biology, 1600 Campus Road, Los Angeles, California, 90041, United States.
| | - Joseph R Schulz
- Occidental College, Department of Biology, 1600 Campus Road, Los Angeles, California, 90041, United States.
| |
Collapse
|
20
|
Aourz N, Serruys ASK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, van Leuven F, de Witte PAM, Smolders I, Crawford AD. Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem Neurosci 2019; 10:1992-2003. [PMID: 30351911 DOI: 10.1021/acschemneuro.8b00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action.
Collapse
Affiliation(s)
- Najat Aourz
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Joëlle N. Chabwine
- Salama Neuroscience Center, Bukavu, South Kivu BP 54, Democratic Republic of the Congo
| | | | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Alexander I. Grey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Appolinary R. Kamuhabwa
- Department of Pharmacognosy, Muhimbili University of Health & Allied Sciences, Dar es Salaam 11000, Tanzania
| | - Laura Walrave
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Fred van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilse Smolders
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
21
|
Kozioł E, Deniz FSS, Orhan IE, Marcourt L, Budzyńska B, Wolfender JL, Crawford AD, Skalicka-Woźniak K. High-performance counter-current chromatography isolation and initial neuroactivity characterization of furanocoumarin derivatives from Peucedanum alsaticum L (Apiaceae). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:259-264. [PMID: 30668376 DOI: 10.1016/j.phymed.2018.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Medicinal plants are a proven source of drug-like small molecules with activity towards targets relevant for diseases of the central nervous system (CNS). Plant species of the Apiaceae family have to date yielded a number of neuroactive metabolites, such as coumarin derivatives with acetylcholinesterase inhibitory activity or anti-seizure activity. PURPOSE To accelerate the discovery of neuroactive phytochemicals with potential as CNS drug leads, we sought to rapidly isolate furanocoumarins, primary constituents of the dichloromethane (DCM) extract of the fruits of Peucedanum alsaticum L. (Apiaceae), using high-performance counter-current chromatography (HPCCC) and to evaluate their neuroactivity using both in vitro and in vivo microscale bioassays based on cholinesterase ELISAs and zebrafish epilepsy models. RESEARCH METHODS AND PROCEDURE In this study the DCM extract was subjected to HPCCC for the efficient separation (60 min) and isolation of furanocoumarins. Isolated compounds were identified with TOF-ESI-MS and NMR techniques and examined as inhibitors of AChE and BChE using ELISA microtiter assays. Anti-seizure properties of the extract and of the isolated compounds were evaluated using a zebrafish epilepsy model based on the GABAA antagonist pentylenetetrazol (PTZ), which induces increased locomotor activity and seizure-like behavior. RESULTS The solvent system, composed of n-heptane, ethyl acetate, methanol and water (3:1:3:1, v/v/v/v), enabled the isolation of 2.63 mg lucidafuranocoumarin A (purity 98%) and 8.82 mg bergamottin (purity 96%) from 1.6 g crude DCM extract. The crude extract, at a concentration of 100 µg/ml, exhibited a weak inhibitory activity against acetylcholinesterase (AChE) (9.63 ± 1.59%) and a moderate inhibitory activity against butyrylcholinestrase (BChE) (49.41 ± 2.19%). Lucidafuranocoumarin A (100 µg/ml) was inactive against AChE but showed moderate inhibition towards BChE (40.66 ± 1.25%). The DCM extract of P. alsaticum fruits (0.62-1.75 µg/ml) and bergamottin (2-10 µm) exhibited weak anti-seizure activity, while lucidafuranocoumarin A (10-16 µm) was found to significantly inhibit PTZ-induced seizures. The percentage of seizure inhibition for the isolated compounds, at their most bioactive concentration, was 26% for bergamottin and 69% for lucidafuranocoumarin A. CONCLUSION Our findings underscore the utility of HPCCC for the rapid isolation of rare coumarin derivatives, and the potential of microscale in vivo bioassays based on zebrafish disease models for the rapid assessment of neuroactivity of these drug-like natural products.
Collapse
Affiliation(s)
- Ewelina Kozioł
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Barbara Budzyńska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Alexander D Crawford
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland.
| |
Collapse
|
22
|
Berg EM, Björnfors ER, Pallucchi I, Picton LD, El Manira A. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish. Front Neural Circuits 2018; 12:73. [PMID: 30271327 PMCID: PMC6146226 DOI: 10.3389/fncir.2018.00073] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022] Open
Abstract
Locomotor behaviors are critical for survival and enable animals to navigate their environment, find food and evade predators. The circuits in the brain and spinal cord that initiate and maintain such different modes of locomotion in vertebrates have been studied in numerous species for over a century. In recent decades, the zebrafish has emerged as one of the main model systems for the study of locomotion, owing to its experimental amenability, and work in zebrafish has revealed numerous new insights into locomotor circuit function. Here, we review the literature that has led to our current understanding of the neural circuits controlling swimming and escape in zebrafish. We highlight recent studies that have enriched our comprehension of key topics, such as the interactions between premotor excitatory interneurons (INs) and motoneurons (MNs), supraspinal and spinal circuits that coordinate escape maneuvers, and developmental changes in overall circuit composition. We also discuss roles for neuromodulators and sensory inputs in modifying the relative strengths of constituent circuit components to provide flexibility in zebrafish behavior, allowing the animal to accommodate changes in the environment. We aim to provide a coherent framework for understanding the circuitry in the brain and spinal cord of zebrafish that allows the animal to flexibly transition between different speeds, and modes, of locomotion.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | | | - Irene Pallucchi
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | - Laurence D Picton
- Department of Neuroscience, Karolinska Institute (KI), Stockholm, Sweden
| | | |
Collapse
|
23
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
24
|
Schaefer N, Zheng F, van Brederode J, Berger A, Leacock S, Hirata H, Paige CJ, Harvey RJ, Alzheimer C, Villmann C. Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease. Front Mol Neurosci 2018; 11:167. [PMID: 29910711 PMCID: PMC5992992 DOI: 10.3389/fnmol.2018.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 11/25/2022] Open
Abstract
Mutations in GlyR α1 or β subunit genes in humans and rodents lead to severe startle disease characterized by rigidity, massive stiffness and excessive startle responses upon unexpected tactile or acoustic stimuli. The recently characterized startle disease mouse mutant shaky carries a missense mutation (Q177K) in the β8-β9 loop within the large extracellular N-terminal domain of the GlyR α1 subunit. This results in a disrupted hydrogen bond network around K177 and faster GlyR decay times. Symptoms in mice start at postnatal day 14 and increase until premature death of homozygous shaky mice around 4–6 weeks after birth. Here we investigate the in vivo functional effects of the Q177K mutation using behavioral analysis coupled to protein biochemistry and functional assays. Western blot analysis revealed GlyR α1 subunit expression in wild-type and shaky animals around postnatal day 7, a week before symptoms in mutant mice become obvious. Before 2 weeks of age, homozygous shaky mice appeared healthy and showed no changes in body weight. However, analysis of gait and hind-limb clasping revealed that motor coordination was already impaired. Motor coordination and the activity pattern at P28 improved significantly upon diazepam treatment, a pharmacotherapy used in human startle disease. To investigate whether functional deficits in glycinergic neurotransmission are present prior to phenotypic onset, we performed whole-cell recordings from hypoglossal motoneurons (HMs) in brain stem slices from wild-type and shaky mice at different postnatal stages. Shaky homozygotes showed a decline in mIPSC amplitude and frequency at P9-P13, progressing to significant reductions in mIPSC amplitude and decay time at P18-24 compared to wild-type littermates. Extrasynaptic GlyRs recorded by bath-application of glycine also revealed reduced current amplitudes in shaky mice compared to wild-type neurons, suggesting that presynaptic GlyR function is also impaired. Thus, a distinct, but behaviorally ineffective impairment of glycinergic synapses precedes the symptoms onset in shaky mice. These findings extend our current knowledge on startle disease in the shaky mouse model in that they demonstrate how the progression of GlyR dysfunction causes, with a delay of about 1 week, the appearance of disease symptoms.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes van Brederode
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sophie Leacock
- Research Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Monesson-Olson B, McClain JJ, Case AE, Dorman HE, Turkewitz DR, Steiner AB, Downes GB. Expression of the eight GABAA receptor α subunits in the developing zebrafish central nervous system. PLoS One 2018; 13:e0196083. [PMID: 29702678 PMCID: PMC5922542 DOI: 10.1371/journal.pone.0196083] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/05/2018] [Indexed: 11/26/2022] Open
Abstract
GABA is a robust regulator of both developing and mature neural networks. It exerts many of its effects through GABAA receptors, which are heteropentamers assembled from a large array of subunits encoded by distinct genes. In mammals, there are 19 different GABAA subunit types, which are divided into the α, β, γ, δ, ε, π, θ and ρ subfamilies. The immense diversity of GABAA receptors is not fully understood. However, it is known that specific isoforms, with their distinct biophysical properties and expression profiles, tune responses to GABA. Although larval zebrafish are well-established as a model system for neural circuit analysis, little is known about GABAA receptors diversity and expression in this system. Here, using database analysis, we show that the zebrafish genome contains at least 23 subunits. All but the mammalian θ and ε subunits have at least one zebrafish ortholog, while five mammalian GABAA receptor subunits have two zebrafish orthologs. Zebrafish contain one subunit, β4, which does not have a clear mammalian ortholog. Similar to mammalian GABAA receptors, the zebrafish α subfamily is the largest and most diverse of the subfamilies. In zebrafish there are eight α subunits, and RNA in situ hybridization across early zebrafish development revealed that they demonstrate distinct patterns of expression in the brain, spinal cord, and retina. Some subunits were very broadly distributed, whereas others were restricted to small populations of cells. Subunit-specific expression patterns in zebrafish resembled were those found in frogs and rodents, which suggests that the roles of different GABAA receptor isoforms are largely conserved among vertebrates. This study provides a platform to examine isoform specific roles of GABAA receptors within zebrafish neural circuits and it highlights the potential of this system to better understand the remarkable heterogeneity of GABAA receptors.
Collapse
Affiliation(s)
- Bryan Monesson-Olson
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, United States of America
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Jon J. McClain
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Abigail E. Case
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Hanna E. Dorman
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Daniel R. Turkewitz
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY, United States of America
| | - Aaron B. Steiner
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY, United States of America
| | - Gerald B. Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, United States of America
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Medan V, Mäki-Marttunen T, Sztarker J, Preuss T. Differential processing in modality-specific Mauthner cell dendrites. J Physiol 2017; 596:667-689. [PMID: 29148564 DOI: 10.1113/jp274861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. ABSTRACT Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway.,Simula Research Laboratory, Lysaker, Norway
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
27
|
Mwaffo V, Zhang P, Romero Cruz S, Porfiri M. Zebrafish swimming in the flow: a particle image velocimetry study. PeerJ 2017; 5:e4041. [PMID: 29158978 PMCID: PMC5691796 DOI: 10.7717/peerj.4041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 01/30/2023] Open
Abstract
Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.
Collapse
Affiliation(s)
- Violet Mwaffo
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States of America
| | - Peng Zhang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States of America
| | - Sebastián Romero Cruz
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States of America
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States of America
| |
Collapse
|
28
|
Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017; 11:581. [PMID: 29093660 PMCID: PMC5651258 DOI: 10.3389/fnins.2017.00581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.
Collapse
Affiliation(s)
- Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Kyle A Mayr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Charlie H T Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM, Moon J, Wetzel AW, Scott Champion A, Graham BJ, Randlett O, Plummer GS, Portugues R, Bianco IH, Saalfeld S, Baden AD, Lillaney K, Burns R, Vogelstein JT, Schier AF, Lee WCA, Jeong WK, Lichtman JW, Engert F. Whole-brain serial-section electron microscopy in larval zebrafish. Nature 2017; 545:345-349. [PMID: 28489821 PMCID: PMC5594570 DOI: 10.1038/nature22356] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
Collapse
Affiliation(s)
- David Grant Colburn Hildebrand
- Graduate Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, USA
| | - Russel Miguel Torres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Woohyuk Choi
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tran Minh Quan
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jungmin Moon
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Arthur Willis Wetzel
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | - Brett Jesse Graham
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - George Scott Plummer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Isaac Henry Bianco
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | | | - Kunal Lillaney
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randal Burns
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joshua Tzvi Vogelstein
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander Franz Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Won-Ki Jeong
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jeff William Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Tsuruwaka Y, Shimada E, Tsutsui K, Ogawa T. Ca 2+ dynamics in zebrafish morphogenesis. PeerJ 2017; 5:e2894. [PMID: 28133572 PMCID: PMC5251937 DOI: 10.7717/peerj.2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Intracellular calcium ion (Ca2+) signaling is heavily involved in development, as illustrated by the use of a number of Ca2+ indicators. However, continuous Ca2+ patterns during morphogenesis have not yet been studied using fluorescence resonance energy transfer to track the Ca2+ sensor. In the present study, we monitored Ca2+ levels during zebrafish morphogenesis and differentiation with yellow cameleon, YC2.12. Our results show not only clear changes in Ca2+ levels but also continuous Ca2+ patterns at 24 hpf and later periods for the first time. Serial Ca2+dynamics during early pharyngula period (Prim-5-20; 24–33 hpf) was successfully observed with cameleon, which have not reported anywhere yet. In fact, high Ca2+ level occurred concurrently with hindbrain development in segmentation and pharyngula periods. Ca2+ patterns in the late gastrula through segmentation periods which were obtained with cameleon, were similar to those obtained previously with other Ca2+sensor. Our results suggested that the use of various Ca2+ sensors may lead to novel findings in studies of Ca2+ dynamics. We hope that these results will prove valuable for further research in Ca2+ signaling.
Collapse
Affiliation(s)
- Yusuke Tsuruwaka
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eriko Shimada
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.,Department of Animal Science, University of California, Davis, CA, United States.,Cellevolt, Yokohama, Japan
| | - Kenta Tsutsui
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tomohisa Ogawa
- Marine Bioresource Exploration Research Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
31
|
Melancon E, De La Torre Canny SG, Sichel S, Kelly M, Wiles T, Rawls J, Eisen J, Guillemin K. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol 2017; 138:61-100. [PMID: 28129860 PMCID: PMC5568843 DOI: 10.1016/bs.mcb.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal-microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research.
Collapse
Affiliation(s)
- E. Melancon
- University of Oregon, Eugene, OR, Unites States
| | | | - S. Sichel
- University of Oregon, Eugene, OR, Unites States
| | - M. Kelly
- University of Oregon, Eugene, OR, Unites States
| | - T.J. Wiles
- University of Oregon, Eugene, OR, Unites States
| | - J.F. Rawls
- Duke University, Durham, NC, United States
| | - J.S. Eisen
- University of Oregon, Eugene, OR, Unites States
| | - K. Guillemin
- University of Oregon, Eugene, OR, Unites States
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
32
|
McNeil PL, Nebot C, Sloman KA. Physiological and Behavioral Effects of Exposure to Environmentally Relevant Concentrations of Prednisolone During Zebrafish (Danio rerio) Embryogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5294-304. [PMID: 27120978 DOI: 10.1021/acs.est.6b00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The presence of synthetic glucocorticoids within the aquatic environment has been highlighted as a potential environmental concern as they may mimic the role of endogenous glucocorticoids during vertebrate ontogeny. Prednisolone is a commonly prescribed synthetic glucocorticoid which has been repeatedly detected in the environment. This study investigated the impact of environmentally relevant concentrations of prednisolone (0.1, 1, and 10 μg/L) during zebrafish embryogenesis using physiological and behavioral end points which are known to be mediated by endogenous glucocorticoids. The frequency of spontaneous muscle contractions (24 hpf) was significantly reduced by prednisolone and 0.1 μg/L increased the distance embryos swam in response to a mechanosensory stimulus (48 hpf). The percentage of embryos hatched significantly increased following prednisolone treatment (1 and 10 μg/L), while growth and mortality were unaffected. The onset of heart contraction was differentially affected by prednisolone while heart rate and oxygen consumption both increased significantly throughout embryogenesis. No substantial effect on the axial musculature was observed. Morphological changes to the lower jaw were detected at 96 hpf in response to 1 μg/L of prednisolone. Several parameters of swim behavior were also significantly affected. Environmentally relevant concentrations of prednisolone therefore alter early zebrafish ontogeny and significantly affect embryo behavior.
Collapse
Affiliation(s)
- Paul L McNeil
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland , Paisley, U.K
| | - Carolina Nebot
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela , Lugo, Spain
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland , Paisley, U.K
| |
Collapse
|
33
|
Anatomical Organization of Multiple Modulatory Inputs in a Rhythmic Motor System. PLoS One 2015; 10:e0142956. [PMID: 26566032 PMCID: PMC4643987 DOI: 10.1371/journal.pone.0142956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
In rhythmic motor systems, descending projection neuron inputs elicit distinct outputs from their target central pattern generator (CPG) circuits. Projection neuron activity is regulated by sensory inputs and inputs from other regions of the nervous system, relaying information about the current status of an organism. To gain insight into the organization of multiple inputs targeting a projection neuron, we used the identified neuron MCN1 in the stomatogastric nervous system of the crab, Cancer borealis. MCN1 originates in the commissural ganglion and projects to the stomatogastric ganglion (STG). MCN1 activity is differentially regulated by multiple inputs including neuroendocrine (POC) and proprioceptive (GPR) neurons, to elicit distinct outputs from CPG circuits in the STG. We asked whether these defined inputs are compact and spatially segregated or dispersed and overlapping relative to their target projection neuron. Immunocytochemical labeling, intracellular dye injection and three-dimensional (3D) confocal microscopy revealed overlap of MCN1 neurites and POC and GPR terminals. The POC neuron terminals form a defined neuroendocrine organ (anterior commissural organ: ACO) that utilizes peptidergic paracrine signaling to act on MCN1. The MCN1 arborization consistently coincided with the ACO structure, despite morphological variation between preparations. Contrary to a previous 2D study, our 3D analysis revealed that GPR axons did not terminate in a compact bundle, but arborized more extensively near MCN1, arguing against sparse connectivity of GPR onto MCN1. Consistent innervation patterns suggest that integration of the sensory GPR and peptidergic POC inputs occur through more distributed and more tightly constrained anatomical interactions with their common modulatory projection neuron target than anticipated.
Collapse
|
34
|
Nair A, Azatian G, McHenry MJ. The kinematics of directional control in the fast start of zebrafish larvae. ACTA ACUST UNITED AC 2015; 218:3996-4004. [PMID: 26519511 DOI: 10.1242/jeb.126292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
Abstract
Larval fish use the 'fast start' escape response to rapidly evade the strike of a predator with a three-dimensional (3D) maneuver. Although this behavior is essential for the survival of fishes, it is not clear how its motion is controlled by the motor system of a larval fish. As a basis for understanding this control, we measured the high-speed kinematics of the body of zebrafish (Danio rerio) larvae when executing the fast start in a variety of directions. We found that the angular excursion in the lateral direction is correlated with the yaw angle in the initial stage of bending (stage 1). In this way, larvae moved in a manner similar to that reported for adult fish. However, larvae also have the ability to control the elevation of a fast start. We found that escapes directed downwards or upwards were achieved by pitching the body throughout the stages of the fast start. Changes in the pitching angle in each stage were significantly correlated with the elevation angle of the trajectory. Therefore, as a larva performs rapid oscillations in yaw that contribute to undulatory motion, the elevation of an escape is generated by more gradual and sustained changes in pitch. These observations are consistent with a model of motor control where elevation is directed through the differential activation of the epaxial and hypaxial musculature. This 3D motion could serve to enhance evasiveness by varying elevation without slowing the escape from a predator.
Collapse
Affiliation(s)
- Arjun Nair
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92617, USA
| | - Grigor Azatian
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92617, USA
| | - Matthew J McHenry
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92617, USA
| |
Collapse
|
35
|
Stil A, Drapeau P. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish. Dev Neurobiol 2015; 76:642-60. [PMID: 26408263 DOI: 10.1002/dneu.22350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023]
Abstract
We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.
Collapse
Affiliation(s)
- Aurélie Stil
- Hospital Research Centre (CRCHUM) and Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada, H2X 0A9
| | - Pierre Drapeau
- Hospital Research Centre (CRCHUM) and Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada, H2X 0A9
| |
Collapse
|
36
|
Husch A, Dietz SB, Hong DN, Harris-Warrick RM. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J Neurophysiol 2014; 113:1124-34. [PMID: 25520435 DOI: 10.1152/jn.00741.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
Collapse
Affiliation(s)
- Andreas Husch
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Shelby B Dietz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Diana N Hong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
37
|
Moly PK, Ikenaga T, Kamihagi C, Islam AT, Hatta K. Identification of initially appearing glycine-immunoreactive neurons in the embryonic zebrafish brain. Dev Neurobiol 2014; 74:616-32. [DOI: 10.1002/dneu.22158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Pricila Khan Moly
- Graduate School of Life Science; University of Hyogo; 3-2-1 Kouto, Kamigori, Ako-gun Hyogo 678-1297 Japan
| | - Takanori Ikenaga
- Graduate School of Life Science; University of Hyogo; 3-2-1 Kouto, Kamigori, Ako-gun Hyogo 678-1297 Japan
| | - Chihiro Kamihagi
- Graduate School of Life Science; University of Hyogo; 3-2-1 Kouto, Kamigori, Ako-gun Hyogo 678-1297 Japan
| | - A.F.M. Tariqul Islam
- Graduate School of Life Science; University of Hyogo; 3-2-1 Kouto, Kamigori, Ako-gun Hyogo 678-1297 Japan
| | - Kohei Hatta
- Graduate School of Life Science; University of Hyogo; 3-2-1 Kouto, Kamigori, Ako-gun Hyogo 678-1297 Japan
| |
Collapse
|
38
|
Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycine receptor expression. J Neurosci 2013; 33:14638-44. [PMID: 24027265 DOI: 10.1523/jneurosci.1157-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RNA helicases regulate RNA metabolism, but their substrate specificity and in vivo function remain largely unknown. We isolated spontaneous mutant zebrafish that exhibit an abnormal dorsal bend at the beginning of tactile-evoked escape swimming. Similar behavioral defects were observed in zebrafish embryos treated with strychnine, which blocks glycine receptors (GlyRs), suggesting that the abnormal motor response in mutants may be attributable to a deficit in glycinergic synaptic transmission. We identified a missense mutation in the gene encoding RNA helicase Dhx37. In Dhx37 mutants, ribosomal RNA levels were unchanged, whereas GlyR α1, α3, and α4a subunit mRNA levels were decreased due to a splicing defect. We found that Dhx37 can interact with GlyR α1, α3, and α4a transcripts but not with the GlyR α2 subunit mRNA. Overexpression of GlyR α1, α3, or α4a subunits in Dhx37-deficient embryos restored normal behavior. Conversely, antisense-mediated knockdown of multiple GlyR α subunits in wild-type embryos was required to recapitulate the Dhx37 mutant phenotype. These results indicate that Dhx37 is specifically required for the biogenesis of a subset of GlyR α subunit mRNAs, thereby regulating glycinergic synaptic transmission and associated motor behaviors. To our knowledge, this is the first identification of pathologically relevant substrates for an RNA helicase.
Collapse
|
39
|
Johnston L, Ball RE, Acuff S, Gaudet J, Sornborger A, Lauderdale JD. Electrophysiological recording in the brain of intact adult zebrafish. J Vis Exp 2013:e51065. [PMID: 24300281 DOI: 10.3791/51065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages.
Collapse
|
40
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|
41
|
Abramsson A, Kettunen P, Banote RK, Lott E, Li M, Arner A, Zetterberg H. The zebrafish amyloid precursor protein-b is required for motor neuron guidance and synapse formation. Dev Biol 2013; 381:377-88. [PMID: 23850871 DOI: 10.1016/j.ydbio.2013.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane protein mostly recognized for its association with Alzheimer's disease. The physiological function of APP is still not completely understood much because of the redundancy between genes in the APP family. In this study we have used zebrafish to study the physiological function of the zebrafish APP homologue, appb, during development. We show that appb is expressed in post-mitotic neurons in the spinal cord. Knockdown of appb by 50-60% results in a behavioral phenotype with increased spontaneous coiling and prolonged touch-induced activity. The spinal cord motor neurons in these embryos show defective formation and axonal outgrowth patterning. Reduction in Appb also results in patterning defects and changed density of pre- and post-synapses in the neuromuscular junctions. Together, our data show that development of functional locomotion in zebrafish depends on a critical role of Appb in the patterning of motor neurons and neuromuscular junctions.
Collapse
Affiliation(s)
- Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND Zebrafish is an amenable vertebrate model useful for the study of development and genetics. Small molecule screenings in zebrafish have successfully identified several drugs that affect developmental process. OBJECTIVE This review covers the basics of zebrafish muscle system such as muscle development and muscle defects. It also reviews the potential use of zebrafish for chemical screening with regards to muscle disorders. CONCLUSION During embryogenesis, zebrafish start to coil their body by contracting trunk muscles 17 h postfertilization, indicating that a motor circuit and skeletal muscle are functionally developed at early stages. Mutagenesis screens in zebrafish have identified many motility mutants that display morphological or functional defects in the CNS, clustering defects of acetylcholine receptors at the neuromuscular junctions or pathological defects of muscles. Most of the muscular mutants are useful as animal models of human muscle disease such as muscle dystrophy. As zebrafish live in water, pharmacological drugs are easily assayable during development, and thus zebrafish may be used to determine novel drugs that mitigate muscle disease.
Collapse
Affiliation(s)
- Hiromi Hirata
- Nagoya University, Graduate School of Science, Proof to Hiromi Hirata Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan +81 52 789 2980 ; +81 52 789 2979 ;
| |
Collapse
|
43
|
Afrikanova T, Serruys ASK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 2013; 8:e54166. [PMID: 23342097 PMCID: PMC3544809 DOI: 10.1371/journal.pone.0054166] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
Zebrafish have recently emerged as an attractive in vivo model for epilepsy. Seven-day-old zebrafish larvae exposed to the GABA(A) antagonist pentylenetetrazol (PTZ) exhibit increased locomotor activity, seizure-like behavior, and epileptiform electrographic activity. A previous study showed that 12 out of 13 antiepileptic drugs (AEDs) suppressed PTZ-mediated increases in larval movement, indicating the potential utility of zebrafish as a high-throughput in vivo model for AED discovery. However, a question remained as to whether an AED-induced decrease in locomotion is truly indicative of anticonvulsant activity, as some drugs may impair larval movement through other mechanisms such as general toxicity or sedation. We therefore carried out a study in PTZ-treated zebrafish larvae, to directly compare the ability of AEDs to inhibit seizure-like behavioral manifestations with their capacity to suppress epileptiform electrographic activity. We re-tested the 13 AEDs of which 12 were previously reported to inhibit convulsions in the larval movement tracking assay, administering concentrations that did not, on their own, impair locomotion. In parallel, we carried out open-field recordings on larval brains after treatment with each AED. For the majority of AEDs we obtained the same response in both the behavioral and electrographic assays. Overall our data correlate well with those reported in the literature for acute rodent PTZ tests, indicating that the larval zebrafish brain is more discriminatory than previously thought in its response to AEDs with different modes of action. Our results underscore the validity of using the zebrafish larval locomotor assay as a rapid first-pass screening tool in assessing the anticonvulsant and/or proconvulsant activity of compounds, but also highlight the importance of performing adequate validation when using in vivo models.
Collapse
Affiliation(s)
- Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Olivia E. M. Buenafe
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Ralph Clinckers
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Decoding the rules of recruitment of excitatory interneurons in the adult zebrafish locomotor network. Proc Natl Acad Sci U S A 2012; 109:E3631-9. [PMID: 23236181 DOI: 10.1073/pnas.1216256110] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural networks in the spinal cord transform signals from the brain into coordinated locomotor movements. An optimal adjustment of the speed of locomotion entails a precise order of recruitment of interneurons underlying excitation within these networks. However, the mechanisms encoding the recruitment threshold of excitatory interneurons have remained unclear. Here we show, using a juvenile/adult zebrafish preparation, that excitatory V2a interneurons are incrementally recruited with increased swimming frequency. The order of recruitment is not imprinted by the topography or the input resistance of the V2a interneurons. Rather, it is determined by scaling the effect of excitatory synaptic currents by the input resistance. We also show that the locomotor networks are composed of multiple microcircuits encompassing subsets of V2a interneurons and motoneurons that are recruited in a continuum with increased swimming speeds. Thus, our results provide insights into the organization and mechanisms determining the recruitment of spinal microcircuits to ensure optimal execution of locomotor movements.
Collapse
|
45
|
Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proc Natl Acad Sci U S A 2012; 109:5511-6. [PMID: 22431619 DOI: 10.1073/pnas.1115377109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural circuits in the spinal cord transform instructive signals from the brain into well-coordinated locomotor movements by virtue of rhythm-generating components. Although evidence suggests that excitatory interneurons are the essence of locomotor rhythm generation, their molecular identity and the assessment of their necessity have remained unclear. Here we show, using larval zebrafish, that V2a interneurons represent an intrinsic source of excitation necessary for the normal expression of the locomotor rhythm. Acute and selective ablation of these interneurons increases the threshold of induction of swimming activity, decreases the burst frequency, and alters the coordination of the rostro-caudal propagation of activity. Thus, our results argue that V2a interneurons represent a source of excitation that endows the spinal circuit with the capacity to generate locomotion.
Collapse
|
46
|
Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 2011; 6:e29132. [PMID: 22216183 PMCID: PMC3247236 DOI: 10.1371/journal.pone.0029132] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 01/28/2023] Open
Abstract
The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5–2.0 Hz. A more extended form (termed “short-term habituation” here), which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Reichl
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Monica Y. Song
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amanda D. Dearinger
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Naseem Moridzadeh
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine D. Lu
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaycey Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph Esdin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at University of Calfornia Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Motor behaviour results from information processing across multiple neural networks acting at all levels from initial selection of the behaviour to its final generation. Understanding how motor behaviour is produced requires identifying the constituent neurons of these networks, their cellular properties, and their pattern of synaptic connectivity. Neural networks have been traditionally studied with neurophysiological and neuroanatomical approaches. These approaches have been highly successful in particularly suitable 'model' preparations, typically ones in which the numbers of neurons in the networks were relatively small, neural network composition was unvarying across individual animals, and the preparations continued to produce fictive motor patterns in vitro. However, analysing networks without these characteristics, and analysing the complete ensemble of networks that cooperatively generate behaviours, is difficult with these approaches. Recently developed molecular and neurogenetic tools provide additional avenues for analysing motor networks by allowing individual or groups of neurons within networks to be manipulated in novel ways and allowing experiments to be performed not only in vitro but also in vivo. We review here some of the new insights into motor network function that these advances have provided and indicate how these advances might bridge gaps in our understanding of motor control. To these ends, we first review motor neural network organisation highlighting cross-phylum principles. We then use prominent examples from the field to show how neurogenetic approaches can complement classical physiological studies, and identify additional areas where these approaches could be advantageously applied.
Collapse
Affiliation(s)
- Ansgar Büschges
- Zoological Institute, Department of Animal Physiology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | | | | |
Collapse
|
48
|
Anastasiades PG, Butt SJB. Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex. Eur J Neurosci 2011; 34:1542-52. [DOI: 10.1111/j.1460-9568.2011.07904.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:11-24. [DOI: 10.1007/s00359-011-0682-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/11/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
50
|
Jankowska E, Nilsson E, Hammar I. Processing information related to centrally initiated locomotor and voluntary movements by feline spinocerebellar neurones. J Physiol 2011; 589:5709-25. [PMID: 21930605 DOI: 10.1113/jphysiol.2011.213678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Feed-back information on centrally initiated movements is processed at both supraspinal and spinal levels and is forwarded by a variety of neurones. The aim of the present study was to examine how descending commands relayed by reticulospinal neurones are monitored by a population of spinocerebellar tract neurones. Our main question was whether a spinal border (SB) subpopulation of ventral spinocerebellar tract (VSCT) neurones monitor actions of reticulospinal neurones with input from the mesencephalic locomotor region (MLR) as well as from pyramidal tract (PT) neurones. In the majority of intracellularly recorded SB neurons, stimuli applied in the MLR and in the medullary pyramids evoked EPSPs in parallel with EPSPs evoked by stimulation of axons of reticulospinal neurones in the medial longitudinal fascicle (MLF). In extracellularly recorded neurones short trains of stimuli applied in the ipsilateral and contralateral pyramids potently facilitated discharges evoked from the MLF, as well as EPSPs recorded intracellularly. In both cases the facilitation involved the disynaptic but not the monosynaptic actions. These results indicate that reticulospinal neurones activating SB neurones (or more generally VSCT neurones) are co-excited by axon-collaterals of other reticulospinal neurones and by fibres stimulated within the MLR and PTs. The study leads to the conclusion that these spinocerebellar neurones monitor descending commands for centrally initiated voluntary as well as locomotor movements relayed by reticulospinal neurones. Thereby they may provide the cerebellum with feed-back information on the likely outcome of these commands and any corrections needed to avoid errors in the issuing movements.
Collapse
Affiliation(s)
- E Jankowska
- Department Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|