1
|
Franco R, Garrigós C, Capó T, Serrano-Marín J, Rivas-Santisteban R, Lillo J. Olfactory receptors in neural regeneration in the central nervous system. Neural Regen Res 2025; 20:2480-2494. [PMID: 39503417 PMCID: PMC11801295 DOI: 10.4103/nrr.nrr-d-24-00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Abstract
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Phelps PE, Ha SM, Khankan RR, Mekonnen MA, Juarez G, Ingraham Dixie KL, Chen YW, Yang X. Olfactory ensheathing cells from adult female rats are hybrid glia that promote neural repair. eLife 2025; 13:RP95629. [PMID: 40297980 PMCID: PMC12040321 DOI: 10.7554/elife.95629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Rana R Khankan
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Mahlet A Mekonnen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Giovanni Juarez
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | | | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLALos AngelesUnited States
| |
Collapse
|
3
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
4
|
Pellitteri R, La Cognata V, Russo C, Patti A, Sanfilippo C. Protective Role of Eicosapentaenoic and Docosahexaenoic and Their N-Ethanolamide Derivatives in Olfactory Glial Cells Affected by Lipopolysaccharide-Induced Neuroinflammation. Molecules 2024; 29:4821. [PMID: 39459191 PMCID: PMC11510059 DOI: 10.3390/molecules29204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding N-ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation. To verify their anti-inflammatory effect and cell morphological features on OECs, the expression of IL-10 cytokine, and cytoskeletal proteins (vimentin and GFAP) was evaluated by immunocytochemical procedures. In addition, MTT assays, TUNEL, and mitochondrial health tests were carried out to assess their protective effects on OEC viability. Our results highlight a reduction in GFAP and vimentin expression in OECs exposed to LPS and treated with EPA or DHA or EPA-EA or DHA-EA in comparison with OECs exposed to LPS alone. We observed a protective role of EPA and DHA on cell morphology, while the amides EPA-EA and DHA-EA mainly exerted a superior anti-inflammatory effect compared to free acids.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy;
| | - Angela Patti
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| | - Claudia Sanfilippo
- Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy;
| |
Collapse
|
5
|
Hayoz S, Jia C, Hegg CC. Constitutive and evoked release of ATP in adult mouse olfactory epithelium. Open Life Sci 2024; 19:20220811. [PMID: 38250473 PMCID: PMC10795008 DOI: 10.1515/biol-2022-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
In adult olfactory epithelium (OE), ATP plays a role in constant cell turnover and post-injury neuroregeneration. We previously demonstrated that constitutive and ATP-evoked ATP release are present in neonatal mouse OE and underlie continuous cell turn-over and post-injury neuroregeneration, and that activation of purinergic P2X7 receptors is involved in the evoked release. We hypothesized that both releases are present in adult mouse OE. To study the putative contribution of olfactory sensory neurons to ATP release, we used olfactory sensory neuronal-like OP6 cells derived from the embryonic olfactory placode cells. Calcium imaging showed that OP6 cells and primary adult OE cell cultures express functional purinergic receptors. We monitored ATP release from OP6 cells and whole adult OE turbinates using HEK cells as biosensors and luciferin-luciferase assays. Constitutive ATP release occurs in OP6 cells and whole adult mouse OE turbinates, and P2X7 receptors mediated evoked ATP release occurs only in turbinates. The mechanisms of ATP release described in the present study might underlie the constant cell turn-over and post-injury neuroregeneration present in adult OE and thus, further studies of these mechanisms are warranted as it will improve our knowledge of OE tissue homeostasis and post-injury regeneration.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | - Colleen Cosgrove Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Santonocito D, Campisi A, Pellitteri R, Sposito G, Basilicata MG, Aquino G, Pepe G, Sarpietro MG, Pittalà MGG, Schoubben A, Pignatello R, Puglia C. Lipid Nanoparticles Loading Steroidal Alkaloids of Tomatoes Affect Neuroblastoma Cell Viability in an In Vitro Model. Pharmaceutics 2023; 15:2573. [PMID: 38004552 PMCID: PMC10675799 DOI: 10.3390/pharmaceutics15112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Manuela Giovanna Basilicata
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | | | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Paronett EM, Bryan CA, Maynard TM, LaMantia AS. Identity, lineage and fates of a temporally distinct progenitor population in the embryonic olfactory epithelium. Dev Biol 2023; 495:76-91. [PMID: 36627077 PMCID: PMC9926479 DOI: 10.1016/j.ydbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
We defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs. Instead, they first generate additional proliferative precursors as well as a distinct population of frontonasal mesenchymal cells associated with the migratory mass that surrounds the nascent olfactory nerve. Parallel to these in vivo distinctions, isolated medial versus lateral OE precursors in vitro retain distinct proliferative capacities and modes of division that reflect their in vivo identities. At later fetal stages, these early dorsomedial Ascl1+ precursors cells generate spatially restricted subsets of ORNs as well as other non-neuronal cell classes. Accordingly, the initial compliment of ORNs and other OE cell types is derived from at least two distinct early precursor populations: lateral Meis1/Pax7+ precursors that generate primarily early ORNs, and a temporally, spatially, and transcriptionally distinct subset of medial Ascl1+ precursors that initially generate additional OE progenitors and apparent migratory mass cells before yielding a subset of ORNs and likely supporting cell classes.
Collapse
Affiliation(s)
- Elizabeth M Paronett
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Corey A Bryan
- Laboratory of Developmental Disorders and Genetics, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Thomas M Maynard
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Anthony-S LaMantia
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA; Department of Biological Sciences Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Paes-Colli Y, Trindade PMP, Vitorino LC, Piscitelli F, Iannotti FA, Campos RMP, Isaac AR, de Aguiar AFL, Allodi S, de Mello FG, Einicker-Lamas M, de Siqueira-Santos R, Di Marzo V, Tannous BA, Carvalho LA, De Melo Reis RA, Sampaio LS. Activation of cannabinoid type 1 receptor (CB1) modulates oligodendroglial process branching complexity in rat hippocampal cultures stimulated by olfactory ensheathing glia-conditioned medium. Front Cell Neurosci 2023; 17:1134130. [PMID: 37138770 PMCID: PMC10150319 DOI: 10.3389/fncel.2023.1134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M. P. Trindade
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louise C. Vitorino
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
| | - Raquel M. P. Campos
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny R. Isaac
- Laboratório de Doenças Neurodegenerativas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey Fabiano Lourenço de Aguiar
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando G. de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raphael de Siqueira-Santos
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis, Laval University, Quebec, QC, Canada
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, MA, United States
- Neuroscience Program, Harvard Medical School, Boston, MA, United States
| | - Ricardo A. De Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
9
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Fiorentino J, Payne M, Cancian E, Plonka A, Dumas LÉ, Chirio D, Demonchy É, Risso K, Askenazy-Gittard F, Guevara N, Castillo L, Robert P, Manera V, Vandersteen C, Gros A. Correlations between Persistent Olfactory and Semantic Memory Disorders after SARS-CoV-2 Infection. Brain Sci 2022; 12:brainsci12060714. [PMID: 35741601 PMCID: PMC9221020 DOI: 10.3390/brainsci12060714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Background: One of the main symptoms of COVID-19 is hyposmia or even anosmia. Olfactory identification is most often affected. In addition, some cognitive disorders tend to appear following the infection, particularly regarding executive functions, attention, and memory. Olfaction, and especially olfactory identification, is related to semantic memory which manages general knowledge about the world. The main objective of this study was to determine whether semantic memory is impaired in case of persistent post COVID-19 olfactory disorders. Methods: 84 patients (average age of 42.8 ± 13.6 years) with post COVID-19 olfactory loss were included after consulting to the ENT department. The clinical evaluation was carried out with the Pyramid and Palm Tree Test, the word-retrieval task from the Grémots, the Sniffin’ Sticks Test and the Computerised Olfactory Test for the Diagnosis of Alzheimer’s Disease. Results: Semantic memory was impaired in 20% (n = 17) of patients, especially in the 19–39 age-group. The olfactory threshold was only significantly correlated with the semantic memory scores. Conclusions: Similar to all cognitive disorders, semantic disorders can have a negative impact on quality of life if left untreated. It is essential to carry out specific assessments of post COVID-19 patients to accurately determine their disorders and to put in place the best possible rehabilitation, such as speech and language therapy, to avoid quality-of-life impairment.
Collapse
Affiliation(s)
- Julie Fiorentino
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
- Correspondence: ; Tel.: +33-674217791
| | - Magali Payne
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
| | - Elisa Cancian
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 06100 Nice, France;
| | - Alexandra Plonka
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
- Institut NeuroMod, Université Côté d’Azur, 06902 Sophia-Antipolis, France; (N.G.); (L.C.)
| | - Louise-Émilie Dumas
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
- Hôpitaux Pédiatriques de Nice CHU-LENVAL, 57 Avenue de la Californie, Centre Hospitalier Universitaire, Université Côte d’Azur, 06200 Nice, France
| | - David Chirio
- Département de Médecine Infectiologique, Hôpital de l’Archet, 151 Route de Saint-Antoine, Centre Hospitalier Universitaire, Université Côte d’Azur, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Élisa Demonchy
- Département de Médecine Infectiologique, Hôpital de l’Archet, 151 Route de Saint-Antoine, Centre Hospitalier Universitaire, Université Côte d’Azur, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Karine Risso
- Département de Médecine Infectiologique, Hôpital de l’Archet, 151 Route de Saint-Antoine, Centre Hospitalier Universitaire, Université Côte d’Azur, 06200 Nice, France; (D.C.); (É.D.); (K.R.)
| | - Florence Askenazy-Gittard
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
- Hôpitaux Pédiatriques de Nice CHU-LENVAL, 57 Avenue de la Californie, Centre Hospitalier Universitaire, Université Côte d’Azur, 06200 Nice, France
| | - Nicolas Guevara
- Institut NeuroMod, Université Côté d’Azur, 06902 Sophia-Antipolis, France; (N.G.); (L.C.)
| | - Laurent Castillo
- Institut NeuroMod, Université Côté d’Azur, 06902 Sophia-Antipolis, France; (N.G.); (L.C.)
| | - Philippe Robert
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
| | - Valeria Manera
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
| | - Clair Vandersteen
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
- Institut Universitaire de la Face et du Cou, Centre Hospitalier Universitaire, Université Côte d’Azur, 06100 Nice, France;
| | - Auriane Gros
- Département d’Orthophonie de Nice, Faculté de Médecine de Nice, 06107 Nice, France; (M.P.); (A.P.); (P.R.); (V.M.); (A.G.)
- Laboratoire CoBTeK, Institut Claude Pompidou, Université Côte d’Azur, 06100 Nice, France; (L.-É.D.); (F.A.-G.); (C.V.)
| |
Collapse
|
11
|
Lan YX, Yang P, Zeng Z, Yadav N, Zhang LJ, Wang LB, Xia HC. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen Res 2022; 17:440-449. [PMID: 34269221 PMCID: PMC8463967 DOI: 10.4103/1673-5374.317986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques. The results revealed that both OB-derived OECs and OM-derived OECs highly expressed genes and proteins that regulate cell growth, proliferation, apoptosis and vascular endothelial cell regeneration. The differentially expressed genes and proteins of OB-derived OECs play a key role in regulation of nerve regeneration and axon regeneration and extension, transmission of nerve impulses and response to axon injury. The differentially expressed genes and proteins of OM-derived OECs mainly participate in the positive regulation of inflammatory response, defense response, cytokine binding, cell migration and wound healing. These findings suggest that differentially expressed genes and proteins may explain why OB-derived OECs and OM-derived OECs exhibit different therapeutic roles. This study was approved by the Animal Ethics Committee of the General Hospital of Ningxia Medical University (approval No. 2017-073) on February 13, 2017.
Collapse
Affiliation(s)
- Yuan-Xiang Lan
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ping Yang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Neeraj Yadav
- Department of Neurosurgery, General Hospital of Ningxia Medical University; School of International Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Jian Zhang
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Bin Wang
- Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - He-Chun Xia
- Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
12
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
13
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
14
|
Amyloid-Beta Induces Different Expression Pattern of Tissue Transglutaminase and Its Isoforms on Olfactory Ensheathing Cells: Modulatory Effect of Indicaxanthin. Int J Mol Sci 2021; 22:ijms22073388. [PMID: 33806203 PMCID: PMC8037686 DOI: 10.3390/ijms22073388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
Herein, we assessed the effect of full native peptide of amyloid-beta (Aβ) (1-42) and its fragments (25-35 and 35-25) on tissue transglutaminase (TG2) and its isoforms (TG2-Long and TG2-Short) expression levels on olfactory ensheathing cells (OECs). Vimentin and glial fibrillary acid protein (GFAP) were also studied. The effect of the pre-treatment with indicaxanthin from Opuntia ficus-indica fruit on TG2 expression levels and its isoforms, cell viability, total reactive oxygen species (ROS), superoxide anion (O2−), and apoptotic pathway activation was assessed. The levels of Nestin and cyclin D1 were also evaluated. Our findings highlight that OECs exposure to Aβ(1-42) and its fragments induced an increase in TG2 expression levels and a different expression pattern of its isoforms. Indicaxanthin pre-treatment reduced TG2 overexpression, modulating the expression of TG2 isoforms. It reduced total ROS and O2− production, GFAP and Vimentin levels, inhibiting apoptotic pathway activation. It also induced an increase in the Nestin and cyclin D1 expression levels. Our data demonstrated that indicaxanthin pre-treatment stimulated OECs self-renewal through the reparative activity played by TG2. They also suggest that Aβ might modify TG2 conformation in OECs and that indicaxanthin pre-treatment might modulate TG2 conformation, stimulating neural regeneration in Alzheimer’s disease.
Collapse
|
15
|
Bonaccorso A, Pellitteri R, Ruozi B, Puglia C, Santonocito D, Pignatello R, Musumeci T. Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. NANOMATERIALS 2021; 11:nano11010159. [PMID: 33435146 PMCID: PMC7827715 DOI: 10.3390/nano11010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Background: Curcumin (Cur) shows anti-inflammatory and antioxidant effects on central nervous system diseases. The aim of this study was to develop Cur-loaded polymeric and lipid nanoparticles for intranasal delivery to enhance its stability and increase antioxidant effect on olfactory ensheathing cells (OECs). Methods: The nanosuspensions were subjected to physico-chemical and technological evaluation through photon correlation spectroscopy (PCS), differential scanning calorimetry (DSC) and UV-spectrophotometry. The cytotoxicity studies of nanosuspensions were carried out on OECs. A viability test was performed after 24 h of exposure of OECs to unloaded and curcumin-loaded nanosuspensions. The potential protective effect of Cur was assessed on hypoxic OECs cells. Uptake studies were performed on the same cell cultures. Thermal analysis was performed to evaluate potential interaction of Cur with a 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) biomembrane model. Results: PCS analysis indicated that lipid and polymeric nanosuspensions showed a mean size of 127.10 and 338.20 nm, respectively, high homogeneity and negative zeta potential. Incorporation of Cur into both nanocarriers increased drug stability up to 135 days in cryoprotected freeze-dried nanosuspensions. Cell viability was improved when hypoxic OECs were treated with Cur-loaded polymeric and lipid nanosuspensions compared with the control. Conclusions: Both nanocarriers could improve the stability of Cur as demonstrated by technological studies. Biological studies revealed that both nanocarriers could be used to deliver Cur by intranasal administration for brain targeting.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Debora Santonocito
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| |
Collapse
|
16
|
Russo C, Patanè M, Russo A, Stanzani S, Pellitteri R. Effects of Ghrelin on Olfactory Ensheathing Cell Viability and Neural Marker Expression. J Mol Neurosci 2020; 71:963-971. [PMID: 32978692 DOI: 10.1007/s12031-020-01716-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023]
Abstract
Ghrelin (Ghre), a gut-brain peptide hormone, plays an important role in the entire olfactory system and in food behavior regulation. In the last years, it has aroused particular interest for its antioxidant, anti-inflammatory, and anti-apoptotic properties. Our previous research showed that Ghre and its receptor are expressed by peculiar glial cells of the olfactory system: Olfactory Ensheathing Cells (OECs). These cells are able to secrete different neurotrophic factors, promote axonal growth, and show stem cell characteristics. The aim of this work was to study, in an in vitro model, the effect of Ghre on both cell viability and the expression of some neural markers, such as Nestin (Ne), Glial Fibrillary Acid Protein (GFAP), Neuregulin (Neu), and β-III-tubulin (Tuj1), in primary mouse OEC cultures. The MTT test and immunocytochemical procedures were used to highlight cell viability and marker expression, respectively. Our results demonstrate that Ghre, after 7 days of treatment, exerted a positive effect, stimulating OEC viability compared with cells without Ghre treatment. In addition, Ghre was able to modify the expression of some biomarkers, increasing Neu and Tuj1 expression, while GFAP was constant; on the contrary, the presence of positive Ne cells was drastically reduced after 7 days, and this showed a loss of stem cell characteristic and therefore the possible orientation towards an adult neural phenotype.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Martina Patanè
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Antonella Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Stefania Stanzani
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| |
Collapse
|
17
|
Dumont B, Lemelle L, Cordero C, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Fréneaux P, Helfre S, Rouffiange L, Réguerre Y, Orbach D. Esthesioneuroblastoma in children, adolescents and young adults. Bull Cancer 2020; 107:934-945. [PMID: 32896369 DOI: 10.1016/j.bulcan.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
The esthesioneuroblastoma (ENB) is characterized as a rare malignant sinonasal tumor of neuroectodermal origin. Its starting point is the olfactory epithelium located in the upper part of the nasal cavities. Different nomenclatures have been proposed, but the most common are "esthesioneuroblastoma" and "olfactory neuroblastoma". ENBs have a bimodal distribution and mainly occur in teenagers, young adults and people aged 50-60. It is a very rare tumor in pediatrics since only around 100 cases have been reported so far. Within ENBs, we can distinguish tumors with different biological behavior ranging from localized forms with slow evolution to aggressive and metastatic forms at onset. In addition, precisely diagnosing undifferentiated tumors and distinguishing them from other etiologies of sinonasal tumors are sometime difficult. Added to its very low incidence, these characteristics make the study of ENB complicated. The standard treatment currently includes broad surgery followed by radiation therapy in localized resectable tumors. Neoadjuvant chemotherapy is indicated in large unresectable tumors and in metastatic forms. However, in certain indications, such as high-grade operable tumors, the role of perioperative chemotherapy remains to be defined. The objective of this analysis is to detail current knowledge regarding ENBs' epidemiological, biological, clinical and radiological characteristics as well as how to manage ENB in young patients.
Collapse
Affiliation(s)
- Benoit Dumont
- PSL research university, Institut Curie, SIREDO oncology center (care, innovation and research for children and AYA with cancer), Paris, France.
| | - Lauriane Lemelle
- PSL research university, Institut Curie, SIREDO oncology center (care, innovation and research for children and AYA with cancer), Paris, France
| | - Camille Cordero
- PSL research university, Institut Curie, SIREDO oncology center (care, innovation and research for children and AYA with cancer), Paris, France
| | - Vincent Couloigner
- Assistance publique-Hôpitaux de Paris, hôpital Necker-Enfants malades, department of head and neck surgery, Paris, France
| | - Sophie Bernard
- Assistance publique-Hôpitaux de Paris, hôpital Robert-Debré, department of head and neck surgery, Paris, France
| | | | - Hervé J Brisse
- Institut Curie, department of medical imaging, Paris, France
| | - Nina Jehanno
- Institut Curie, department of nuclear medicine, Paris, France
| | - Paul Fréneaux
- Institut Curie, department of diagnostic and theranostic medicine, Paris, France
| | - Sylvie Helfre
- Institut Curie, department of radiotherapy, Paris, France
| | - Lucie Rouffiange
- PSL research university, Institut Curie, SIREDO oncology center (care, innovation and research for children and AYA with cancer), Paris, France
| | - Yves Réguerre
- CHU de Saint-Denis, pediatric oncology and hematology unit, Saint-Denis, La Reunion, France
| | - Daniel Orbach
- PSL research university, Institut Curie, SIREDO oncology center (care, innovation and research for children and AYA with cancer), Paris, France
| |
Collapse
|
18
|
Cassano R, Trapani A, Di Gioia ML, Mandracchia D, Pellitteri R, Tripodo G, Trombino S, Di Gioia S, Conese M. Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery. Int J Pharm 2020; 589:119829. [PMID: 32877724 DOI: 10.1016/j.ijpharm.2020.119829] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
This work aims to the synthesis of novel carboxylated chitosan-dopamine (DA) and -tyrosine (Tyr) conjugates as systems for improving the brain delivery of the neurotransmitter DA following nasal administration. For this purpose, ester or amide conjugates were synthesized by N,N-dicyclohexylcarbodiimide (DCC) mediated coupling reactions between the appropriate N-tert-butyloxycarbonyl (Boc) protected starting polymers N,O-carboxymethyl chitosan and 6-carboxy chitosan and DA or O-tert-Butyl-L-tyrosine-tert-butyl ester hydrochloride. The resulting conjugates were characterized by FT-IR and 1H- and 13C NMR spectroscopies and their in vitro mucoadhesive properties in simulated nasal fluid (SNF), toxicity and uptake from Olfactory Ensheathing Cells (OECs) were assessed. Results demonstrated that N,O-carboxymethyl chitosan-DA conjugate was the most mucoadhesive polymer in the series examined and, together with the 6-carboxy chitosan-DA-conjugate were able to release the neurotransmitter in SNF. The MTT assay showed that the starting polymers as well as all the prepared conjugates in OECs resulted not toxic at any concentration tested. Likewise, the three synthesized conjugates were not cytotoxic as well. Cytofluorimetric analysis revealed that the N,O-carboxymethyl chitosan DA conjugate was internalized by OECs in a superior manner at 24 h as compared with the starting polymer. Overall, the N,O-CMCS-DA conjugate seems promising for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Delia Mandracchia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), 95126 Catania, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
19
|
Mutso M, St John JA, Ling ZL, Burt FJ, Poo YS, Liu X, Žusinaite E, Grau GE, Hueston L, Merits A, King NJ, Ekberg JA, Mahalingam S. Basic insights into Zika virus infection of neuroglial and brain endothelial cells. J Gen Virol 2020; 101:622-634. [PMID: 32375993 PMCID: PMC7414445 DOI: 10.1099/jgv.0.001416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) has recently emerged as an important human pathogen due to the strong evidence that it causes disease of the central nervous system, particularly microcephaly and Guillain-Barré syndrome. The pathogenesis of disease, including mechanisms of neuroinvasion, may include both invasion via the blood-brain barrier and via peripheral (including cranial) nerves. Cellular responses to infection are also poorly understood. This study characterizes the in vitro infection of laboratory-adapted ZIKV African MR766 and two Asian strains of (1) brain endothelial cells (hCMEC/D3 cell line) and (2) olfactory ensheathing cells (OECs) (the neuroglia populating cranial nerve I and the olfactory bulb; both human and mouse OEC lines) in comparison to kidney epithelial cells (Vero cells, in which ZIKV infection is well characterized). Readouts included infection kinetics, intracellular virus localization, viral persistence and cytokine responses. Although not as high as in Vero cells, viral titres exceeded 104 plaque-forming units (p.f.u.) ml-1 in the endothelial/neuroglial cell types, except hOECs. Despite these substantial titres, a relatively small proportion of neuroglial cells were primarily infected. Immunolabelling of infected cells revealed localization of the ZIKV envelope and NS3 proteins in the cytoplasm; NS3 staining overlapped with that of dsRNA replication intermediate and the endoplasmic reticulum (ER). Infected OECs and endothelial cells produced high levels of pro-inflammatory chemokines. Nevertheless, ZIKV was also able to establish persistent infection in hOEC and hCMEC/D3 cells. Taken together, these results provide basic insights into ZIKV infection of endothelial and neuroglial cells and will form the basis for further study of ZIKV disease mechanisms.
Collapse
Affiliation(s)
- Margit Mutso
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - James A. St John
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Zheng Lung Ling
- Discipline of Pathology, Bosch Institute, Marie Bashir Institute for Infectious diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Felicity J. Burt
- National Health Laboratory Services, University of the Free State, Bloemfontein, South Africa
| | - Yee Suan Poo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Xiang Liu
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Georges E. Grau
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, New South Wales 2050, Australia
| | - Linda Hueston
- Arbovirus Emerging Disease Unit, CIDMLS-ICPMR, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nicholas J.C. King
- Discipline of Pathology, Bosch Institute, Marie Bashir Institute for Infectious diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jenny A.K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| |
Collapse
|
20
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
21
|
Grasso R, Pellitteri R, Caravella SA, Musumeci F, Raciti G, Scordino A, Sposito G, Triglia A, Campisi A. Dynamic changes in cytoskeleton proteins of olfactory ensheathing cells induced by radiofrequency electromagnetic fields. J Exp Biol 2020; 223:jeb217190. [PMID: 32041804 DOI: 10.1242/jeb.217190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/02/2020] [Indexed: 01/13/2023]
Abstract
Several evidences have suggested the ability of radiofrequency electromagnetic fields to influence biological systems, even if the action mechanisms are not well understood. There are few data on the effect of radiofrequency electromagnetic fields on self-renewal of neural progenitor cells. A particular glial type that shows characteristics of stem cells is olfactory ensheathing cells (OECs). Herein, we assessed the non-thermal effects induced on OECs through radiofrequency electromagnetic fields changing the envelope of the electromagnetic wave. Primary OEC cultures were exposed to continuous or amplitude-modulated 900 MHz electromagnetic fields, in the far-field condition and at different exposure times (10, 15, 20 min). The expression of OEC markers (S-100 and nestin), cytoskeletal proteins (GFAP and vimentin), apoptotic pathway activation by caspase-3 cleavage and cell viability were evaluated. Our results highlight that 20 min of exposure to continuous or amplitude-modulated 900 MHz electromagnetic fields induced a different and significant decrease in cell viability. In addition, according to the electromagnetic field waveform, diverse dynamic changes in the expression of the analysed markers in OECs and activation of the apoptotic pathway were observed. The data suggest that radiofrequency electromagnetic fields might play different and important roles in the self-renewal of OEC stem cells, which are involved in nervous system repair.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126 Catania, Italy
| | | | - Francesco Musumeci
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Antonio Triglia
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| |
Collapse
|
22
|
Chen M, Vial ML, Gee L, Davis RA, St John JA, Ekberg JAK. The plant natural product 2-methoxy-1,4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells. Sci Rep 2020; 10:951. [PMID: 31969642 PMCID: PMC6976649 DOI: 10.1038/s41598-020-57793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are crucial for promoting the regeneration of the primary olfactory nervous system that occurs throughout life. Transplantation of OECs has emerged as a promising therapy for nervous system injuries, in particular for spinal cord injury repair. Functional outcomes in both animals and humans are, however, highly variable, primarily because it is difficult to rapidly obtain enough OECs for transplantation. Compounds which can stimulate OEC proliferation without changing the phenotype of the cells are therefore highly sought after. Additionally, compounds which can stimulate favourable cell behaviours such as migration and phagocytic activity are desirable. We conducted a medium-throughput screen testing the Davis open access natural product-based library (472 compounds) and subsequently identified the known plant natural product 2-methoxy-1,4-naphthoquinone as a stimulant of OEC viability. We showed that 2-methoxy-1,4-naphthoquinone: (i) strongly stimulates proliferation over several weeks in culture whilst maintaining the OEC phenotype; (ii) stimulates the phagocytic activity of OECs, and (iii) modulates the cell cycle. We also identified the transcription factor Nrf2 as the compound’s potential molecular target. From these extensive investigations we conclude that 2-methoxy-1,4-naphthoquinone may enhance the therapeutic potential of OECs by stimulating proliferation prior to transplantation.
Collapse
Affiliation(s)
- M Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - M L Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - L Gee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - R A Davis
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - J A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
23
|
Huang H, Gao W, Yan Z, Liu A, He X, Lu M, Liu Y, Shen Y, Zhao J, Zheng Z, Sun T, Rao Y, Rao Y. Standards of clinical-grade olfactory ensheathing cell culture and quality control (2020 China Version). JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently, there are many different standards for the quality control of olfactory ensheathing cell (OEC) culture prepared from human olfactory bulb and mucosa. It is challenging to compare the clinical results of OEC treatment from different hospitals. Based on various standards, the Chinese Association of Neurorestoratology (CANR; Preparatory) and China Committee of International Association of Neurorestoratology (IANR-China Committee) organized professional experts in this field to evaluate the data and develop a standard for clinical applications, including donor evaluation, sample collection, cell culture, cell testing, packaging labels, storage, transportation, and quality control of intermediate/finished cell products, as well as training and management procedures for laboratory operators, the use and management of materials and equipment, and routine maintenance of a clean environment. These standards apply to the quality and control of OEC culture using human olfactory bulb and mucosa as the sample source for the member units of the CANR (Preparatory) and IANR-China Committee. It serves as a reference for physicians around the world who perform OEC clinical applications. This standard represents the minimum required standards for quality control when performing clinical-grade OEC cultures in clinical neurorestorative treatments.
Collapse
|
24
|
Xia B, Gao J, Li S, Huang L, Ma T, Zhao L, Yang Y, Huang J, Luo Z. Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats. Front Cell Neurosci 2019; 13:548. [PMID: 31866834 PMCID: PMC6908849 DOI: 10.3389/fncel.2019.00548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence showed that extracellular vesicles (EVs) and their cargoes are important information mediators in the nervous system and have been proposed to play an important role in regulating regeneration. Moreover, many studies reported that olfactory ensheathing cells (OECs) conditioned medium is capable of promoting nerve regeneration and functional recovery. However, the role of EVs derived from OECs in axonal regeneration has not been clear. Thereby, the present study was designed to firstly isolate EVs from OECs culture supernatants, and then investigated their role in enhancing axonal regeneration after sciatic nerve injury. In vitro studies showed that OECs-EVs promoted axonal growth of dorsal root ganglion (DRG), which is dose-dependent and relies on their integrity. In vivo studies further demonstrated that nerve conduit containing OECs-EVs significantly enhanced axonal regeneration, myelination of regenerated axons and neurologically functional recovery in rats with sciatic nerve injury. In conclusion, our results, for the first time, demonstrated that OECs-EVs are capable of promoting nerve regeneration and functional recovery after peripheral nerve injuries in rats.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Bonaventura G, Iemmolo R, La Cognata V, Zimbone M, La Via F, Fragalà ME, Barcellona ML, Pellitteri R, Cavallaro S. Biocompatibility between Silicon or Silicon Carbide surface and Neural Stem Cells. Sci Rep 2019; 9:11540. [PMID: 31395932 PMCID: PMC6687690 DOI: 10.1038/s41598-019-48041-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023] Open
Abstract
Silicon has been widely used as a material for microelectronic for more than 60 years, attracting considerable scientific interest as a promising tool for the manufacture of implantable medical devices in the context of neurodegenerative diseases. However, the use of such material involves responsibilities due to its toxicity, and researchers are pushing towards the generation of new classes of composite semiconductors, including the Silicon Carbide (3C-SiC). In the present work, we tested the biocompatibility of Silicon and 3C-SiC using an in vitro model of human neuronal stem cells derived from dental pulp (DP-NSCs) and mouse Olfactory Ensheathing Cells (OECs), a particular glial cell type showing stem cell characteristics. Specifically, we investigated the effects of 3C-SiC on neural cell morphology, viability and mitochondrial membrane potential. Data showed that both DP-NSCs and OECs, cultured on 3C-SiC, did not undergo consistent oxidative stress events and did not exhibit morphological modifications or adverse reactions in mitochondrial membrane potential. Our findings highlight the possibility to use Neural Stem Cells plated on 3C-SiC substrate as clinical tool for lesioned neural areas, paving the way for future perspectives in novel cell therapies for neuro-degenerated patients.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Massimo Zimbone
- Institute for Microelectronics and Microsystems, Italian National Research Council, Catania, Italy
| | - Francesco La Via
- Institute for Microelectronics and Microsystems, Italian National Research Council, Catania, Italy
| | | | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy.
| |
Collapse
|
26
|
Caldwell NJ, Sato TS. Ectopic primary olfactory neuroblastoma of the nasopharynx: A case report and review of the literature. Radiol Case Rep 2019; 14:997-1002. [PMID: 31198483 PMCID: PMC6556859 DOI: 10.1016/j.radcr.2019.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 11/04/2022] Open
Abstract
Olfactory neuroblastoma (ONB, also called esthesioneuroblastoma) is a rare malignant tumor of neuroectodermal olfactory cells. We report a case of an undifferentiated ONB with unfavorable histology arising ectopically in the nasopharynx. The patient was a 15-year-old male who presented with a right-sided painful neck mass, nasal obstruction, and weight loss. Awareness of the ectopic ONBs, although exceedingly rare, is important when considering differential diagnoses of sinonasal tumors as treatment and prognosis may differ from other lesions.
Collapse
Affiliation(s)
- Nicholas J Caldwell
- Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - T Shawn Sato
- Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA.,Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr. Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, Beacham I, Batzloff M, Rayfield A, Todorovic M, Beagley KW, St John JA, Ekberg JAK. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol 2019; 527:1228-1244. [PMID: 30592044 DOI: 10.1002/cne.24618] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/04/2023]
Abstract
Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."
Collapse
Affiliation(s)
- Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Megha Shah
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Johana Tello Velasquez
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Heidi Walkden
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Ifor Beacham
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Andrew Rayfield
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Michael Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Kenneth W Beagley
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
28
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
29
|
Georgiou M, Reis JND, Wood R, Esteban PP, Roberton V, Mason C, Li D, Li Y, Choi D, Wall I. Bioprocessing strategies to enhance the challenging isolation of neuro-regenerative cells from olfactory mucosa. Sci Rep 2018; 8:14440. [PMID: 30262897 PMCID: PMC6160430 DOI: 10.1038/s41598-018-32748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2-8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods.
Collapse
Affiliation(s)
- Melanie Georgiou
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Cell and Gene Therapy Catapult, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana Neves Dos Reis
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Patricia Perez Esteban
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Victoria Roberton
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. .,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
30
|
Gomes ED, Mendes SS, Assunção-Silva RC, Teixeira FG, Pires AO, Anjo SI, Manadas B, Leite-Almeida H, Gimble JM, Sousa N, Lepore AC, Silva NA, Salgado AJ. Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells 2018; 36:696-708. [PMID: 29352743 DOI: 10.1002/stem.2785] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia S Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita C Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- Faculty of Sciences and Technology, Department of Life Sciences.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
32
|
Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Front Cell Neurosci 2018; 11:430. [PMID: 29375316 PMCID: PMC5768640 DOI: 10.3389/fncel.2017.00430] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI), resulting in para- and tetraplegia caused by the partial or complete disruption of descending motor and ascending sensory neurons, represents a complex neurological condition that remains incurable. Following SCI, numerous obstacles comprising of the loss of neural tissue (neurons, astrocytes, and oligodendrocytes), formation of a cavity, inflammation, loss of neuronal circuitry and function must be overcome. Given the multifaceted primary and secondary injury events that occur with SCI treatment options are likely to require combinatorial therapies. While several methods have been explored, only the intersection of two, cell transplantation and biomaterial implantation, will be addressed in detail here. Owing to the constant advance of cell culture technologies, cell-based transplantation has come to the forefront of SCI treatment in order to replace/protect damaged tissue and provide physical as well as trophic support for axonal regrowth. Biomaterial scaffolds provide cells with a protected environment from the surrounding lesion, in addition to bridging extensive damage and providing physical and directional support for axonal regrowth. Moreover, in this combinatorial approach cell transplantation improves scaffold integration and therefore regenerative growth potential. Here, we review the advances in combinatorial therapies of Schwann cells (SCs), astrocytes, olfactory ensheathing cells (OECs), mesenchymal stem cells, as well as neural stem and progenitor cells (NSPCs) with various biomaterial scaffolds.
Collapse
Affiliation(s)
- Shengwen Liu
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Thomas Schackel
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
33
|
Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P. Phenotypic Modulation and Neuroprotective Effects of Olfactory Ensheathing Cells: a Promising Tool for Cell Therapy. Stem Cell Rev Rep 2017; 12:224-34. [PMID: 26553037 DOI: 10.1007/s12015-015-9635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Olfactory Ensheathing Cells (OECs), exhibiting phenotypic characteristics of both astrocytes and Schwann Cells, show peculiar plasticity. In vitro, OECs promote axonal growth, while in vivo they promote remyelination of damaged axons. We decided to further investigate OEC potential for regeneration and functional recovery of the damaged Central Nervous System (CNS). To study OEC antigen modulation, OECs prepared from postnatal mouse olfactory bulbs were grown in different culture conditions: standard or serum-free media with/without Growth Factors (GFs) and analyzed for different neural specific markers. OEC functional characterizations were also achieved. Resistance of OECs to the neurotoxin 6-hydroxydopamine (6-OHDA) was analyzed by evaluating apoptosis and death. OEC neuroprotective properties were investigated by in vitro co-cultures or by addition of OEC conditioned medium to the neuroblastoma SH-SY5Y cells exposed to 6-OHDA. We observed: 1) modification of OEC morphology, reduced cell survival and marker expression in serum-free medium; 2) GF addition to serum-free medium condition influenced positively survival and restored basal marker expression; 3) no OEC apoptosis after a prolonged exposition to 6-OHDA; 4) a clear OEC neuroprotective tendency, albeit non statistically significant, on 6-OHDA treated SH-SY5Y cells. These peculiar properties of OECs might render them potential clinical agents able to support injured CNS.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, via Paolo Gaifami 18, 95126, Catania, Italy.
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Damiano Zaccheo
- Department of Experimental Medicine, Section of Human Anatomy, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.,Department of Pathophysiology and Transplantation - "Dino Ferrari" Center, Università degli Studi di Milano, via Francesco Sforza 35, 20122, Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| |
Collapse
|
34
|
Vicario N, Calabrese G, Zappalà A, Parenti C, Forte S, Graziano ACE, Vanella L, Pellitteri R, Cardile V, Parenti R. Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells. J Cell Mol Med 2017; 21:2563-2572. [PMID: 28488330 PMCID: PMC5618696 DOI: 10.1111/jcmm.13177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC-conditioned medium (OEC-CM) on two different human neuron-like cell lines, SH-SY5Y and SK-N-SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC-CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC-CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43-Gap junctions (GJs) and Cx43-hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non-selective GJ inhibitor), ioxynil octanoato (selective Cx43-GJ inhibitor) and Gap19 (selective Cx43-HC inhibitor). We found that Cx43-GJ and Cx43-HC inhibitors are able to protect SH-SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC-CM and the inhibition of Cx43-GJs and Cx43-HCs offer a neuroprotective effect by reducing Cx43-mediated cell-to-cell and cell-to-extracellular environment communications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Agata Zappalà
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Carmela Parenti
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | | | - Luca Vanella
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | - Venera Cardile
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| |
Collapse
|
35
|
Gu M, Gao Z, Li X, Zhao F, Guo L, Liu J, He X. Feasibility of Diffusion Tensor Imaging for Assessing Functional Recovery in Rats with Olfactory Ensheathing Cell Transplantation After Contusive Spinal Cord Injury (SCI). Med Sci Monit 2017. [PMID: 28623671 PMCID: PMC5484594 DOI: 10.12659/msm.902126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Olfactory ensheathing cell transplantation is a promising treatment for spinal cord injury. Diffusion tensor imaging has been applied to assess various kinds of spinal cord injury. However, it has rarely been used to evaluate the beneficial effects of olfactory ensheathing cell transplantation. This study aimed to explore the feasibility of diffusion tensor imaging in the evaluation of functional recovery in rats with olfactory ensheathing cell transplantation after contusive spinal cord injury. Material/Methods Immunofluorescence staining was performed to determine the purity of olfactory ensheathing cells. Rats received cell transplantation at week 1 after injury. Basso, Beattie, and Bresnahan score was used to assess the functional recovery. Magnetic resonance imaging was applied weekly, including diffusion tensor imaging. Diffusion tensor tractography was reconstructed to visualize the repair process. Results The results showed that olfactory ensheathing cell transplantation increased the functional and histological recovery and restrained the secondary injury process after the initial spinal cord injury. The fractional anisotropy values in rats with cell transplantation were significantly higher than those in the control group, while the apparent diffusion coefficient values were significantly lower. Basso, Beattie, and Bresnahan score was positively and linearly correlated with fractional anisotropy value, and it was negatively and linearly correlated with apparent diffusion coefficient value. Conclusions These findings suggest that diffusion tensor imaging parameters are sensitive biomarker indices for olfactory ensheathing cell transplantation interventions, and diffusion tensor imaging scan can reflect the functional recovery promoted by the olfactory ensheathing cell transplantation after contusive spinal cord injury.
Collapse
Affiliation(s)
- Mengchao Gu
- Department of Othopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Zhengchao Gao
- Department of Othopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xiaohui Li
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Feng Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Lei Guo
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jiantao Liu
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xijing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
36
|
Gu M, Gao Z, Li X, Guo L, Lu T, Li Y, He X. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain Res 2017; 1654:43-54. [DOI: 10.1016/j.brainres.2016.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023]
|
37
|
Bonfanti R, Musumeci T, Russo C, Pellitteri R. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. Eur J Pharmacol 2016; 796:62-68. [PMID: 27889433 DOI: 10.1016/j.ejphar.2016.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023]
Abstract
Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries.
Collapse
Affiliation(s)
- Roberta Bonfanti
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Cristina Russo
- Department of Biomedical and Biotechnological Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
38
|
Pellitteri R, Bonfanti R, Spatuzza M, Cambria MT, Ferrara M, Raciti G, Campisi A. Effect of Some Growth Factors on Tissue Transglutaminase Overexpression Induced by β-Amyloid in Olfactory Ensheathing Cells. Mol Neurobiol 2016; 54:6785-6794. [PMID: 27757835 DOI: 10.1007/s12035-016-0152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Herein, we assessed in a particular glial cell type, called olfactory ensheathing cells (OECs), the effect of some growth factors (GFs) on tissue transglutaminase (TG2) overexpression induced by amyloid-beta (Aβ) with native full-length peptide 1-42 or by fragments, 25-35 or 35-25, as control. Previously, we demonstrated that TG2 overexpression induced by some stressors was down-regulated by GFs exposure in OECs. To monitor cell viability, an MTT test was used, while TG2 expression was examined using immunocytochemical and Western blot analysis. We also considered the involvement of the TG2-mediated apoptotic pathway. Vimentin expression was evaluated as well. Reactive oxygen species and reduced glutathione levels were utilized to test the oxidative intracellular status. Lactate dehydrogenase released into the medium, as a marker of necrotic cell death, was evaluated. We found that in OECs exposed to Aβ(1-42) or Aβ(25-35) for 24 h, TG2 expression increased, and we observed that the protein appeared prevalently localized in the cytosol. The pre-treatment with GFs, basic fibroblast growth factor (bFGF) or glial-derived neurotrophic factor (GDNF), down-regulated the TG2 level, which was prevalently limited to the nuclear compartment. Vimentin expression and caspase cleavage showed a significant enhancement in Aβ(1-42) and Aβ(25-35) exposed cells. The pre-treatment with bFGF or GDNF was able to restore the levels of the proteins to control values, and the intracellular oxidative status modified by the exposure to Aβ(1-42) or Aβ(25-35). Our data suggest that both bFGF or GDNF could be an innovative mechanism to contrast TG2 expression, which plays a key role in Alzheimer's disease.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Roberta Bonfanti
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126, Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Mariacristina Ferrara
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
39
|
Cloutier F, Kalincik T, Lauschke J, Tuxworth G, Cavanagh B, Meedeniya A, Mackay-Sim A, Carrive P, Waite P. Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Auton Neurosci 2016; 201:17-23. [PMID: 27574816 DOI: 10.1016/j.autneu.2016.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 01/17/2023]
Abstract
Autonomic dysreflexia is a common complication after high level spinal cord injury and can be life-threatening. We have previously shown that the acute transplantation of olfactory ensheathing cells into the lesion site of rats transected at the fourth thoracic spinal cord level reduced autonomic dysreflexia up to 8weeks after spinal cord injury. This beneficial effect was correlated with changes in the morphology of sympathetic preganglionic neurons despite the olfactory cells surviving no longer than 3weeks. Thus the transitory presence of olfactory ensheathing cells at the injury site initiated long-term functional as well as morphological changes in the sympathetic preganglionic neurons. The primary aim of the present study was to evaluate whether olfactory ensheathing cells survive after transplantation within the parenchyma close to sympathetic preganglionic neurons and whether, in this position, they still reduce the duration of autonomic dysreflexia and modulate sympathetic preganglionic neuron morphology. The second aim was to quantify the density of synapses on the somata of sympathetic preganglionic neurons with the hypothesis that the reduction of autonomic dysreflexia requires synaptic changes. As a third aim, we evaluated the cell type-specificity of olfactory ensheathing cells by comparing their effects with a control group transplanted with fibroblasts. Animals transplanted with OECs had a faster recovery from hypertension induced by colorectal distension at 6 and 7weeks but not at 8weeks after T4 spinal cord transection. Olfactory ensheathing cells survived for at least 8weeks and were observed adjacent to sympathetic preganglionic neurons whose overall number of primary dendrites was reduced and the synaptic density on the somata increased, both caudal to the lesion site. Our results showed a long term cell type-specific effects of olfactory ensheathing cells on sympathetic preganglionic neurons morphology and on the synaptic density on their somata, and a transient cell type-specific reduction of autonomic dysreflexia.
Collapse
Affiliation(s)
- Frank Cloutier
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Tomas Kalincik
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jenny Lauschke
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gervase Tuxworth
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Brenton Cavanagh
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Adrian Meedeniya
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Phil Waite
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Gómez RM, Ghotme K, Botero L, Bernal JE, Pérez R, Barreto GE, Bustos RH. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats. Neurosci Res 2016; 103:10-7. [DOI: 10.1016/j.neures.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
|
41
|
Plaza N, Simón D, Sierra J, Moreno-Flores MT. Transduction of an immortalized olfactory ensheathing glia cell line with the green fluorescent protein (GFP) gene: Evaluation of its neuroregenerative capacity as a proof of concept. Neurosci Lett 2016; 612:25-31. [PMID: 26655478 DOI: 10.1016/j.neulet.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Olfactory ensheathing glia (OEG) cells are known to foster axonal regeneration of central nervous system (CNS) neurons. Several lines of reversibly immortalized human OEG (ihOEG) have been previously established that enabled to develop models for their validation in vitro and in vivo. In this work, a constitutively GFP-expressing ihOEG cell line was obtained, and named Ts14-GFP. Ts14-GFP neuroregenerative ability was similar to that found for the parental line Ts14 and it can be assayed using in vivo transplantation experimental paradigms, after spinal cord or optic nerve damage. Additionally, we have engineered a low-regenerative ihOEG line, hTL2, using lentiviral transduction of the large T antigen from SV40 virus, denominated from now on Ts12. Ts12 can be used as a low regeneration control in these experiments.
Collapse
Affiliation(s)
- N Plaza
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - D Simón
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - J Sierra
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - M T Moreno-Flores
- Neuroregeneration Group, Biotechnology Department, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Km. 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
42
|
Zhang Z, Li F, Sun T. Does repair of spinal cord injury follow the evolutionary theory? Neural Regen Res 2015; 7:849-52. [PMID: 25737713 PMCID: PMC4342713 DOI: 10.3969/j.issn.1673-5374.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/11/2012] [Indexed: 01/13/2023] Open
Abstract
Lower vertebrates, such as fish and amphibians, and higher vertebrates in embryonic development can acquire complete regeneration of complex body structures, including the spinal cord, an important part of the central nervous system. However, with species evolution and development, this regenerative capacity gradually weakens and even disappears, but the cellular and molecular mechanisms remain poorly understood. We explored the differences in mechanisms of spinal cord regeneration capability between lower and higher vertebrates, investigated differences in their cellular and molecular mechanisms and between the spinal cord structures of lower vertebrates and mammals, such as rat and monkey, to search for theoretical evidence and therapeutic targets for nerve regeneration in human spinal cord.
Collapse
Affiliation(s)
- Zhicheng Zhang
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Fang Li
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Tiansheng Sun
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| |
Collapse
|
43
|
Radtke C, Kocsis JD. Olfactory-ensheathing cell transplantation for peripheral nerve repair: update on recent developments. Cells Tissues Organs 2015; 200:48-58. [PMID: 25765445 DOI: 10.1159/000369006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
A number of important advances have been made using transplantation of olfactory-ensheathing cells (OECs) to provide therapeutic effects with regard to peripheral nerve repair. In vivo studies have focused on transplanting OECs to stimulate axonal regeneration and sprouting, increase remyelination, confer neuroprotection, enhance neovascularization and replace lost cells. OECs support axonal regeneration and remyelination with appropriate formation of axonal nodes of Ranvier with improvement of nerve conduction velocity. Current work using gene profiling and proteomics is identifying potential therapeutic differences between OECs harvested from nasal mucosa and the olfactory bulb and genes that OECs express that may be conducive to neural repair. OECs derived from nasal mucosa are of clinical interest since the cells could potentially be harvested from a patient and used for autotransplantation. Various nerve scaffolds and materials have been used for nerve repair and recent studies have examined OECs in combination with various supportive materials, including nanoparticles and scaffolds for peripheral nerve substance defects. This review will discuss the use of OECs in nerve repair and nerve defect injuries with specific emphasis on differences between OECs derived from the olfactory bulb and the olfactory mucosa.
Collapse
|
44
|
Arellanes-Chávez CA, Bojórquez AM, Martínez ER. Olfactory bulb transplantation in complete spinal cord injury: axonal regeneration and locomotor recovery. COLUNA/COLUMNA 2015. [DOI: 10.1590/s1808-1851201514010r128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES: To determine whether the intervention in rats is effective in terms of spinal cord regeneration and locomotor recovery, in order to obtain sufficient evidence to apply the therapy in humans. METHODS: a randomized, controlled, experimental, prospective, randomized trial was conducted, with a sample of 15 adult female Sprague-Dawley rats weighing 250 gr. They were divided into three equal groups, and trained for 2 weeks based on Pavlov's classical conditioning method, to strengthen the muscles of the 4 legs, stimulate the rats mentally, and keep them healthy for the surgery. RESULTS: It was observed that implantation of these cells into the site of injury may be beneficial to the process of spinal cord regeneration after spinal trauma, to mediate secretion of neurotrophic and neuroprotective chemokines, and that the OECs have the ability to bridge the repair site and decrease the formation of gliosis, creating a favorable environment for axonal regeneration. CONCLUSION: It is emphasized that the olfactory ensheathing glial cells possess unique regenerative properties; however, it was not until recently that the activity of promoting central nervous system regeneration was recognized.
Collapse
|
45
|
Gladwin K, Choi D. Olfactory Ensheathing Cells: Part I—Current Concepts and Experimental Laboratory Models. World Neurosurg 2015; 83:114-9. [DOI: 10.1016/j.wneu.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/22/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
46
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae). Brain Struct Funct 2014; 221:955-67. [PMID: 25433448 DOI: 10.1007/s00429-014-0949-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/22/2014] [Indexed: 01/18/2023]
Abstract
The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
| | - Simone Bettini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Valeria Franceschini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
47
|
Abstract
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans.
Collapse
|
48
|
Leng Z, He X, Li H, Wang D, Cao K. Olfactory ensheathing cell transplantation for spinal cord injury: An 18-year bibliometric analysis based on the Web of Science. Neural Regen Res 2014; 8:1286-96. [PMID: 25206423 PMCID: PMC4107648 DOI: 10.3969/j.issn.1673-5374.2013.14.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Olfactory ensheathing cell (OEC) transplantation is a promising new approach for the treatment of spinal cord injury (SCI), and an increasing number of scientific publications are devoted to this treatment strategy. This bibliometric analysis was conducted to assess global research trends in OEC transplantation for SCI. DATA SOURCE All of the data in this study originate from the Web of Science maintained by the Institute for Scientific Information, USA, and includes SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, CCR-EXPANDED and IC. The Institute for Scientific Information's Web of Science was searched using the keywords "olfactory ensheathing cells" or "OECs" or "olfactory ensheathing glia" or "OEG" or "olfactory ensheathing glial cells" or "OEGs" and "spinal cord injury" or "SCI" or "spinal injury" or "spinal transection" for literature published from January 1898 to May 2012. DATA SELECTION Original articles, reviews, proceedings papers and meeting abstracts, book chapters and editorial materials on OEC transplantation for SCI were included. Simultaneously, unpublished literature and literature for which manual information retrieval was required were excluded. MAIN OUTCOME MEASURES ALL SELECTED LITERATURES ADDRESSING OEC TRANSPLANTATION FOR SCI WERE EVALUATED IN THE FOLLOWING ASPECTS: publication year, document type, language, author, institution, times cited, Web of Science category, core source title, countries/territories and funding agency. RESULTS In the Web of Science published by the Institute for Scientific Information, the earliest literature record was in April, 1995. Four hundred and fourteen publications addressing OEC transplantation for SCI were added to the data library in the past 18 years, with an annually increasing trend. Of 415 records, 405 publications were in English. Two hundred and fifty-nine articles ranked first in the distribution of document type, followed by 141 reviews. Thirty articles and 20 reviews, cited more than 55 times by the date the publication data were downloaded by us, can be regarded as the most classical references. The journal Experimental Neurology published the most literature (32 records), followed by Glia. The United States had the most literature, followed by China. In addition, Yale University was the most productive institution in the world, while The Second Military Medical University contributed the most in China. The journal Experimental Neurology published the most OEC transplantation literature in the United States, while Neural Regeneration Research published the most in China. CONCLUSION This analysis provides insight into the current state and trends in OEC transplantation for SCI research. Furthermore, we anticipate that this analysis will help encourage international cooperation and teamwork on OEC transplantation for SCI to facilitate the development of more effective treatments for SCI.
Collapse
Affiliation(s)
- Zikuan Leng
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Kai Cao
- Department of Orthopedics, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
49
|
Pellitteri R, Catania MV, Bonaccorso CM, Ranno E, Dell'Albani P, Zaccheo D. Viability of olfactory ensheathing cells after hypoxia and serum deprivation: Implication for therapeutic transplantation. J Neurosci Res 2014; 92:1757-66. [PMID: 24975631 DOI: 10.1002/jnr.23442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/15/2022]
Abstract
Olfactory ensheathing cells (OECs) represent glial cells supporting neuronal turnover in the olfactory system. In vitro, OECs promote axonal growth as a source of neurotrophic growth factors; in vivo, they produce myelin, promoting remyelination of damaged axons. Consequently, OEC transplantation appears to be a promising treatment for spinal cord injury, although the functional recovery is limited. This might be ascribed to the microenvironment at the lesion site, lacking growth factors (GFs), nutrients, and oxygen. To mimic this condition, we used an in vitro approach by growing primary neonatal mouse OECs under hypoxic conditions and/or serum deprivation. In addition, we compared OECs survival/proliferation with that of primary cultures of Schwann cells (SCs) and astrocytes under the same experimental conditions. Cultures were analyzed by immunocytochemistry, and cell viability was evaluated by MTT assay. Different GFs, such as NGF, bFGF, and GDNF, and their combination were used to rescue cells from serum and/or oxygen deprivation. We show that the cell types were differently sensitive to the tested stress conditions and that OECs were the most sensitive among them. Moreover, OEC viability was rescued by bFGF under serum-deprived or hypoxic condition but not under conditions of drastic serum deprivation and hypoxia. bFGF was effective also for the other cell types, whereas the effect of the other GFs was negligible. This model suggests that administration of bFGF might be considered useful to sustain cell survival/proliferation after transplantation of OECs either alone or in combination with other glial cell types.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Carvalho LA, Vitorino LC, Guimarães RPM, Allodi S, de Melo Reis RA, Cavalcante LA. Selective stimulatory action of olfactory ensheathing glia-conditioned medium on oligodendroglial differentiation, with additional reference to signaling mechanisms. Biochem Biophys Res Commun 2014; 449:338-43. [PMID: 24853803 DOI: 10.1016/j.bbrc.2014.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2'3' cyclic nucleotide 3'phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose-response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demyelination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel methods to deliver these factors and/or potentiating chemicals.
Collapse
Affiliation(s)
- Litia A Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Louise C Vitorino
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Roberta P M Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil.
| |
Collapse
|