1
|
Gonçalves RIDS, Neto JDAF, Pereira JDS, Nonaka CFW, Catão MHCDV. Photobiological response of mast cells to green and red light-emitting diodes (LEDs) in cutaneous burns. Photochem Photobiol 2025; 101:627-635. [PMID: 39319592 DOI: 10.1111/php.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
This study assessed the effects of red and green LEDs on mast cells (MCs) in third-degree burns in 75 Wistar rats, divided into control, red LED (RED), and green LED (GREEN) groups. Animals were irradiated daily with RED (630 nm, 300 mW, 0.779 W/cm2, 9 J/cm2, 30 s) and GREEN (520 nm, 180 mW, 0.467 W/cm2, 60 J/cm2, 30 s). Histological sections stained with toluidine blue were analyzed for total and subtype MCs. Standardized MC counting was performed across the viable lesion area, considering lesion margins, through intact connective tissue and the integrity of skin appendages. No statistically significant differences in MCs 2 (with released granules and intact cell border) were found between groups. Irradiated groups showed increased total MCs at 7, 14, and 21 days (p < 0.05), with a decrease in MCs 1 (intact MCs) at all time points compared to control (p < 0.05). Significant changes in MCs 3 (with massive degranulation and partial or complete disintegration of the cell border) degranulation were noted in RED at 7, 14, and 21 days (p < 0.009) and in GREEN at 14 (p < 0.009) and 32 days (p < 0.028). Results suggest red and green LEDs modulate MC recruitment and degranulation in third-degree burns.
Collapse
|
2
|
Pradal LDA, de Freitas E, Azevedo MRB, Costa R, Bertolini GRF. Photobiomodulation in Burn Wounds: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Photobiomodul Photomed Laser Surg 2025; 43:8-23. [PMID: 39172550 DOI: 10.1089/photob.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Objective: This systematic review and meta-analysis main goal was to evaluate the efficacy of photobiomodulation as burn wounds treatment. Methods: Systematic review of literature available in databases such as PubMed, Web of Science, Embase, Latin American and Caribbean Health Sciences Literature (LILACS), and The Cumulative Index to Nursing and Allied Health Literature (CINAHL) and gray literature in Google Scholar, Livivi, and Open Gray. SYRCLE's RoB tool was applied to determine methodological quality and risk of bias, and meta-analysis was performed using the software Review Manager. Results: Fifty-one studies, gathering more than three thousand animals were included in this systematic review, and four studies were selected to the meta-analysis due to their suitability. The results indicated that photobiomodulation was not effective to improve, statistical significantly, wound retraction (SMD = -0.22; 95% CI = -4.19, 3.75; p = 0.91; I2 = 92%) or collagen deposition (SMD = -0.02; 95% CI = -2.17, 2.13; p = 0.99; I2 = 78%). Conclusion: This meta-analysis suggests that photobiomodulation, applied in burn wounds, accordingly to the protocols presented by the selected studies, was not effective over analyzed outcomes. However, this conclusion could be further discussed and verified in more homogeneous animal models and human clinical trials.
Collapse
Affiliation(s)
- Lilian de Araujo Pradal
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | - Edicleia de Freitas
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | | - Rosemeire Costa
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | |
Collapse
|
3
|
Vieceli AS, Silveira PCL, Zaccaron RP, Fonseca MDCR, Aguiar-Junior AS, Neves LMSD, Kuriki HU, Barbosa RI, Marcolino AM. Influence of photobiomodulation and radiofrequency on the healing of pressure lesions in mice. Lasers Med Sci 2024; 39:280. [PMID: 39542938 DOI: 10.1007/s10103-024-04226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The objective of this study was to ascertain the impact of photobiomodulation and radiofrequency on the healing of pressure injuries in mice. A total of 70 animals were randomly assigned to seven experimental groups. A pressure injury was induced in the dorsal region of the mice by the application of two magnets. The photobiomodulation treatment was administered at a dosage of 3.6 J per session. In the radiofrequency group, the treatment time was four minutes and the power was 22 watts. The analyses included the lesion area, infrared thermography, and the collection of material for cytokine, histological, and histochemical analyses following euthanasia. In the macroscopic analyses, the 660 nm photobiomodulation group demonstrated superior outcomes in comparison to the control group. With regard to the microscopic analyses, the greatest difference between the groups was observed when TNF-α was evaluated in the photobiomodulation group. It can be observed that the groups irradiated by electrophysical means (i.e., a combination of radiofrequency with PBM 830 nm-660 nm) exhibited a positive influence on the repair process, with the greatest impact observed in the group irradiated by a combination of radiofrequency and 660 nm photobiomodulation.
Collapse
Affiliation(s)
- Aline Santo Vieceli
- Laboratory of Assessment and Rehabilitation of the Locomotor Apparatus (LARAL), Department of Health Sciences, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, room 111, Mato Alto, Araranguá, Santa Catarin, CEP 88905-120, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Marisa de Cássia Registro Fonseca
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Aderbal Silva Aguiar-Junior
- Federal University of Santa Catarina, Laboratório Biologia do Exercício Físico (LaBioEx), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Lais Mara Siqueira das Neves
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Heloyse Uliam Kuriki
- Laboratory of Assessment and Rehabilitation of the Locomotor Apparatus (LARAL), Department of Health Sciences, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, room 111, Mato Alto, Araranguá, Santa Catarin, CEP 88905-120, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Rafael Inacio Barbosa
- Laboratory of Assessment and Rehabilitation of the Locomotor Apparatus (LARAL), Department of Health Sciences, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, room 111, Mato Alto, Araranguá, Santa Catarin, CEP 88905-120, Brazil
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Alexandre Marcio Marcolino
- Laboratory of Assessment and Rehabilitation of the Locomotor Apparatus (LARAL), Department of Health Sciences, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, room 111, Mato Alto, Araranguá, Santa Catarin, CEP 88905-120, Brazil.
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil.
| |
Collapse
|
4
|
Pasternak-Mnich K, Kujawa J, Agier J, Kozłowska E. Impact of photobiomodulation therapy on pro-inflammation functionality of human peripheral blood mononuclear cells - a preliminary study. Sci Rep 2024; 14:23111. [PMID: 39367102 PMCID: PMC11452683 DOI: 10.1038/s41598-024-74533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Research into the efficacy of photobiomodulation therapy (PBMT) in reducing inflammation has been ongoing for years, but standards for irradiation methodology still need to be developed. This study aimed to test whether PBMT stimulates in vitro human peripheral blood mononuclear cells (PBMCs) to synthesize pro-inflammatory cytokines, including chemokines. PBMCs were irradiated with laser radiation at two wavelengths simultaneously (λ = 808 nm in continuous emission and λ = 905 nm in pulsed emission). The laser radiation energy was dosed in one dose as a whole (5 J, 15 J, 20 J) or in a fractionated way (5 J + 15 J and 15 J + 5 J) with a frequency of 500, 1,500 and 2,000 Hz. The surface power densities were 177, 214 and 230 mW/cm2, respectively. A pro-inflammatory effect was observed at both the transcript and protein levels for IL-1β after PBMT at the energy doses 5 J and 20 J (ƒ=500 Hz) and only at the transcript level after application of PBMT at energy doses of 20 J (ƒ= 1,500; ƒ=2,000 Hz) and 5 + 15 J (ƒ=500 Hz). An increase in CCL2 and CCL3 mRNA expression was observed after PBMT at 5 + 15 J (ƒ=1,500 Hz) and 15 + 5 J (ƒ=2,000 Hz) and CCL3 concentration after application of an energy dose of 15 J (frequency of 500 Hz). Even though PBMT can induce mRNA synthesis and stimulate PBMCs to produce selected pro-inflammatory cytokines and chemokines, it is necessary to elucidate the impact of the simultaneous emission of two wavelengths on the inflammatory response mechanisms.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland.
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
5
|
Salman S, Guermonprez C, Peno-Mazzarino L, Lati E, Rousseaud A, Declercq L, Kerdine-Römer S. Photobiomodulation Controls Keratinocytes Inflammatory Response through Nrf2 and Reduces Langerhans Cells Activation. Antioxidants (Basel) 2023; 12:antiox12030766. [PMID: 36979014 PMCID: PMC10045240 DOI: 10.3390/antiox12030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Photobiomodulation (PBM) is rapidly gaining traction as a valuable tool in dermatology for treating many inflammatory skin conditions using low levels of visible light or near-infrared radiation. However, the physiological regulatory pathways responsible for the anti-inflammatory effect of PBM have not been well defined. Since previous studies showed that nuclear factor-erythroid 2 like 2 (Nrf2) is a master regulator of the skin inflammatory response, we have addressed its role in controlling inflammation by PBM. Primary human keratinocytes (KCs) stimulated with 2,4-dinitrochlorobenzene (DNCB) to mimic pro-inflammatory stress were illuminated with two wavelengths: 660 nm or 520 nm. Both lights significantly reduced the mRNA expression of the DNCB-triggered TNF-α, IL-6, and IL-8 cytokines in KCs, while they enhanced Nrf2 pathway activation. PBM-induced Nrf2 is a key regulator of the inflammatory response in KCs since its absence abolished the regulatory effect of light on cytokines production. Further investigations of the mechanisms contributing to the immunoregulatory effect of PBM in inflamed human skin explants showed that 660 nm light prevented Langerhans cells migration into the dermis, preserving their dendricity, and decreased pro-inflammatory cytokine production compared to the DNCB-treated group. This study is the first to report that the PBM-mediated anti-inflammatory response in KCs is Nrf2-dependent and further support the role of PBM in skin immunomodulation. Therefore, PBM should be considered a promising alternative or complementary therapeutic approach for treating skin-related inflammatory diseases.
Collapse
Affiliation(s)
- Sara Salman
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Cyprien Guermonprez
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | | | - Elian Lati
- Laboratoire BIO-EC, 91160 Longjumeau, France
| | - Audrey Rousseaud
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Lieve Declercq
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Saadia Kerdine-Römer
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
6
|
Nie F, Hao S, Ji Y, Zhang Y, Sun H, Will M, Han W, Ding Y. Biphasic dose response in the anti-inflammation experiment of PBM. Lasers Med Sci 2023; 38:66. [PMID: 36749428 DOI: 10.1007/s10103-022-03664-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/22/2022] [Indexed: 02/08/2023]
Abstract
Non-invasive laser irradiation can induce photobiomodulation (PBM) effects in cells and tissues, which can help reduce inflammation and pain in several clinical scenarios. The purpose of this study is to review the current literature to verify whether PBM can produce dose effects in anti-inflammatory experiments by summarizing the clinical and experimental effects of different laser parameters of several diseases. The so-called Arndt-Schulz curve is often used to describe two-phase dose reactions, assuming small doses of therapeutic stimulation, medium doses of inhibition, and large doses of killing. In the past decade, more and more attention has been paid to the clinical application of PBM, especially in the field of anti-inflammation, because it represents a non-invasive strategy with few contraindications. Although there are different types of lasers available, their use is adjusted by different parameters. In general, the parameters involved are wavelength, energy density, power output, and radiation time. However, due to the biphasic effect, the scientific and medical communities remain puzzled by the ways in which the application of PBM must be modified depending on its clinical application. This article will discuss these parameter adjustments and will then also briefly introduce two controversial theories of the molecular and cellular mechanisms of PBM. A better understanding of the extent of dualistic dose response in low-intensity laser therapy is necessary to optimize clinical treatment. It also allows us to explore the most dependable mechanism for PBM use and, ultimately, standardize treatment for patients with various diseases.
Collapse
Affiliation(s)
- Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shaolong Hao
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Sun
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Will
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - YuChuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Simões TMS, de Alencar Fernandes Neto J, Nonaka CFW, de Vasconcelos Catão MHC. Effects of photobiomodulation therapy with red LED on inflammatory cells during the healing of skin burns. Lasers Med Sci 2022; 37:2817-2822. [PMID: 35237887 DOI: 10.1007/s10103-022-03537-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effects of red light emitting diode (LED) photobiomodulation therapy protocol on inflammatory cells during the healing of third-degree skin burns. Fifty Wistar rats were randomly divided into control group (CTRL) (n = 25) and red group (RED) (n = 25), with subgroups (n = 5) for each time of euthanasia (7, 14, 21, 28, and 32 days). Treatment animals were daily irradiated (630 nm ± 10 nm, 300 mW, 9 J/cm2 per point, 30 s, continuous emission mode) at the 4 angles of the wound (total: 36 J/cm2). After specimen removal, histological sections were stained with hematoxylin and eosin for quantitative analysis of the inflammatory infiltrate (neutrophils and lymphocytes) under light microscopy. Greater number of inflammatory cells was observed in irradiated groups when compared to CTRL at 7, 14, 21, and 28 days, but with statistically significant difference only at 14 days (p = 0.02). At 32 days, higher inflammatory cell value was observed in CTRL when compared to RED, but with no statistically significant difference (p = 0.91). The results suggest that red LED, according to the protocol used, modulates the number of inflammatory cells in the early stages of the healing of third-degree skin burns. Nevertheless, this low-intensity light therapy may not, be efficient in reducing the number of neutrophils and lymphocytes in advanced stages of the repair process of skin burns. Further studies with other therapy protocols are needed to assess the effects of this type of light on the inflammatory response of skin burns.
Collapse
|
8
|
Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch-Herxheimer Reactions If High Infectious Loads Are Present. Healthcare (Basel) 2021; 9:healthcare9111537. [PMID: 34828583 PMCID: PMC8623232 DOI: 10.3390/healthcare9111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-system disease with no cure and no FDA-approved treatment. Approximately 25% of patients are house or bedbound, and some are so severe in function that they require tube-feeding and are unable to tolerate light, sound, and human touch. The overall goal of this case report was to (1) describe how past events (e.g., chronic sinusitis, amenorrhea, tick bites, congenital neutropenia, psychogenic polydipsia, food intolerances, and hypothyroidism) may have contributed to the development of severe ME/CFS in a single patient, and (2) the extensive medical interventions that the patient has pursued in an attempt to recover, which enabled her to return to graduate school after becoming bedridden with ME/CFS 4.5 years prior. This paper aims to increase awareness of the harsh reality of ME/CFS and the potential complications following initiation of any level of intervention, some of which may be necessary for long-term healing. Treatments may induce severe paradoxical reactions (Jarisch–Herxheimer reaction) if high infectious loads are present. It is our hope that sharing this case will improve research and treatment options for ME/CFS.
Collapse
|
9
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Shen J, Yang P, Luo X, Li H, Xu Y, Shan J, Yang Z, Liang B. Green light extends Drosophila longevity. Exp Gerontol 2021; 147:111268. [PMID: 33539986 DOI: 10.1016/j.exger.2021.111268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
The role of visible light on longevity is incompletely understood. Here we show the effect of visible light in Drosophila melanogaster is wavelength specific. Life span was significantly extended by green light, whereas blue light reduced longevity dramatically, and minor impact was observed with red light. While oxidative stress, heat stress, or caloric restriction does not contribute to the beneficial effect of green light, our study found that the life span extension effect of green light might be mediated by microbiota or photosensitive micronutrients in food medium. In conclusion, we report that green light can extend longevity and present the potential of light as a noninvasive therapy for aging-related diseases.
Collapse
Affiliation(s)
- Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China..
| | - Peijing Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xusheng Luo
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Honglin Li
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yifan Xu
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jianying Shan
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhizhang Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Boying Liang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
11
|
de Jesus Guirro RR, de Carvalho G, Gobbi A, de Oliveira Assunção FF, de Souza Borges NC, Bachmann L. Measurement of Physical Parameters and Development of a Light Emitting Diodes Device for Therapeutic Use. J Med Syst 2020; 44:88. [DOI: 10.1007/s10916-020-01557-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
|
12
|
Simões TMS, Fernandes Neto JDA, de Oliveira TKB, Nonaka CFW, Catão MHCDV. Photobiomodulation of red and green lights in the repair process of third-degree skin burns. Lasers Med Sci 2019; 35:51-61. [DOI: 10.1007/s10103-019-02776-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
|
13
|
Effect of blue LED on the healing process of third-degree skin burns: clinical and histological evaluation. Lasers Med Sci 2018; 34:721-728. [PMID: 30276489 DOI: 10.1007/s10103-018-2647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to evaluate the effects of blue light-emitting diode (LED) on the healing process of third-degree skin burns in rats through clinical and histological parameters. Forty male Wistar rats were divided into two groups: control (CTR) (n = 20) and blue LED (BLUE) (n = 20), with subgroups (n = 5) for each time of euthanasia (7, 14, 21, and 28 days). LED (470 nm, 1 W, 12.5 J/cm2 per point, 28 s) was applied at four points of the wound (total, 50 J/cm2). Feed intake was measured every other day. It was observed that there were no statistically significant differences in the Wound Retention Index (WRI) of the BLUE group in relation to CTR group (p > 0.05) at the evaluation times. After 14, 21, and 28 days, it was observed that the animals in the BLUE group consumed more feed than animals in the CTR group (p < 0.05). At 7 days, there was a statistically significant increase in the angiogenic index (AI) in BLUE (median: 6.2) when compared to CTR (median: 2.4) (p = 0.01) and all animals in BLUE had already started re-epithelialization. This study suggests that blue LED, at the dosimetry used, positively contributed in important and initial stages of the healing process of third-degree skin burns.
Collapse
|
14
|
Effects and parameters of the photobiomodulation in experimental models of third-degree burn: systematic review. Lasers Med Sci 2018; 34:637-648. [DOI: 10.1007/s10103-018-2633-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
|
15
|
LED phototherapy in full-thickness burns induced by CO 2 laser in rats skin. Lasers Med Sci 2018; 33:1537-1547. [PMID: 29704068 DOI: 10.1007/s10103-018-2515-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Many studies have been conducted on the treatment of burns because they are important in morbidity and mortality. These studies are mainly focused on improving care and quality of life of patients. The aim of this study was evaluate the LED phototherapy effects in rats skin full-thickness burns induced by CO2 laser. The animals were divided in NT group that did not received any treatment and LED group that received LED irradiation at 685 nm, 220 mW, and 4.5 J/cm2 during 40 s by burned area. Biopsies were obtained after 7, 14, and 21 days of treatment and submitted to histological and immunohistochemical analysis. The LED phototherapy shows anti-inflammatory effects, improves angiogenesis, and stimulates the migration and proliferation of fibroblasts. The T CD8+ lymphocytes were more common in burned areas compared to T CD4+ lymphocytes since statistically significant differences were observed in the LED group compared to the NT group after 7 days of treatment. These results showed that LED phototherapy performs positive influence in full-thickness burns repair from the healing process modulated by cellular immune response. The obtained results allowed inferring that burns exhibit a characteristic cell immune response and this cannot be extrapolated to other wounds such as incision and wounds induced by punch, among others.
Collapse
|
16
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|