1
|
Chia WT, Chen KY, Yang CY, Hsieh CC, Tsao CH, Lin CK, Peng B, Ho SL, Chen YL, Chang SC, Chen YW. Okanin Inhibits Cell Growth and Induces Apoptosis and Pyroptosis in Oral Cancer. Cancers (Basel) 2024; 16:3195. [PMID: 39335166 PMCID: PMC11429813 DOI: 10.3390/cancers16183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Okanin, a flavonoid compound derived from Bidens pilosa L., has garnered attention for its anti-inflammatory properties. Although Bidens pilosa is commonly used in healthcare products and functional foods, the anticancer potential of okanin, particularly in oral cancer, remains underexplored. This study aims to investigate the effects of okanin on oral cancer cell lines and its potential as a therapeutic agent. METHODS The study involved assessing the cytotoxic effects of okanin on oral cancer cell lines SAS, SCC25, HSC3, and OEC-M1. The IC50 values were determined using methylene blue assays, and the clonogenic capacity was evaluated through colony formation assays. Flow cytometry was used to analyze cell cycle progression and apoptosis. Caspase-3/7 activity assays and annexin V/7-AAD staining confirmed the induction of apoptosis and pyroptosis. In vivo efficacy was assessed using a SAS xenograft model, and immunohistochemical analysis of xenograft tissue was performed to examine pyroptosis-related markers. RESULTS Okanin exhibited potent cytotoxic effects with IC50 values of 12.0 ± 0.8, 58.9 ± 18.7, 18.1 ± 5.3, and 43.2 ± 6.2 μM in SAS, SCC25, HSC3, and OEC-M1 cells, respectively. It caused dose- and time-dependent reductions in cell viability and significantly impaired clonogenic capacity. Flow cytometry revealed G2/M cell cycle arrest and increased sub-G1 population, indicating cell cycle disruption and death. Okanin induced both apoptosis and pyroptosis, as confirmed by caspase-3/7 activity and annexin V/7-AAD staining. In vivo, okanin reduced tumor growth and involved pyroptosis-related markers such as CASP1, GSDMC, GSDMD, and GSDME. CONCLUSIONS Okanin demonstrates significant anticancer potential, particularly in oral cancer, by inducing both apoptosis and pyroptosis. Its efficacy in reducing tumor growth in vivo further supports its potential as a novel therapeutic option. Further mechanistic studies are needed to elucidate the pathways involved in okanin-mediated cell death and to explore its clinical applications.
Collapse
Grants
- TSGH-C01-109017 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C05-110035 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C04-111037 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-109160 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-110148 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-110149 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-110151 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-110152 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-112148 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-113066 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-D-110154 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C03-113040 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C02-112032 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-E-109003 Ministry of National Defense, Taiwan, Republic of China
- MAB-D-110003 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-110-043 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-110-076 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-C-111036 Ministry of National Defense, Taiwan, Republic of China
- MAB-E-111002 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-D-111149 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-D-112176 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-C08-112033 Ministry of National Defense, Taiwan, Republic of China
- MND-MAB-D-113117 Ministry of National Defense, Taiwan, Republic of China
- KAFGH_E_111047 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KAFGH_E_112061 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KAFGH_E_113058 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- HAFGH_E_112018 Hualien Armed Forces General Hospital, Taiwan, Republic of China
- KSVGH112-135 Kaohsiung Veterans General Hospital, Taiwan, Republic of China
Collapse
Affiliation(s)
- Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Nursing, Yuan Pie University of Medical Technology, Hsinchu 302, Taiwan
- Tri-Service General Hospital, Taipei 114, Taiwan
| | - Kuei-Yuan Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Sien-Lin Ho
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yi-Ling Chen
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Szu-Chien Chang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
2
|
Datta S, Ghosh S, Bishayee A, Sinha D. Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Pharmacol Res 2022; 182:106319. [PMID: 35732198 DOI: 10.1016/j.phrs.2022.106319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2), the redox-sensitive transcription factor, plays a key role in stress-defense and detoxification. Nrf2 is tightly controlled by its negative regulator cum sensor Kelch-[ECH]-associated protein 1 (Keap1). Nrf2 is well known for its dual nature owing to its cancer preventive and cancer promoting abilities. Modulation of this biphasic nature of Nrf2 signaling by phytochemicals may be a potential cancer preventive and anticancer therapeutic strategy. Phytocompounds may either act as Nrf2-activator or Nrf2-inhibitor depending on their differential concentration and varied cellular environment. Tea is not just the most popular global beverage with innumerable health-benefits but has well-established chemopreventive and chemotherapeutic effects. Various types of tea infusions contain a wide range of bioactive compounds, such as polyphenolic catechins and flavonols, which are endowed with potent antioxidant properties. Despite of their rapid biotransformation and poor bioavailability, regular tea consumption is risk-reductive for several cancer forms. Tea catechins show their dual Nrf2-modulatory effect by directly acting on Nrf2-Keap1 or their upstream regulators and downstream effectors in a highly case-specific manner. In this review, we have tried to present a comprehensive evaluation of the Nrf2-mediated chemopreventive and chemotherapeutic applications of tea in various preclinical cancer models, the Nrf2-modulatory mechanisms, and the limitations which need to be addressed in future research.
Collapse
Affiliation(s)
- Suchisnigdha Datta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India.
| |
Collapse
|
3
|
Chun KS, Raut PK, Kim DH, Surh YJ. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans. Free Radic Biol Med 2021; 172:699-715. [PMID: 34214633 DOI: 10.1016/j.freeradbiomed.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
While functioning as a second messenger in the intracellular signaling, ROS can cause oxidative stress when produced in excess or not neutralized/eliminated properly. Excessive ROS production is implicated in multi-stage carcinogenesis. Our body is equipped with a defense system to cope with constant oxidative stress caused by the external insults, including redox-cycling chemicals, radiation, and microbial infection as well as endogenously generated ROS. The transcription factor, nuclear transcription factor erythroid 2-related factor 2 (NRF2) is a master switch in the cellular antioxidant signaling and plays a vital role in adaptive survival response to ROS-induced oxidative stress. Although NRF2 is transiently activated when cellular redox balance is challenged, this can be overwhelmed by massive oxidative stress. Therefore, it is necessary to maintain the NRF2-mediated antioxidant defense capacity at an optimal level. This review summarizes the natural NRF2 inducers/activators, especially those present in the plant-based diet, in relation to their cancer chemopreventive potential in humans. The molecular mechanisms underlying their stabilization or activation of NRF2 are also discussed.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
4
|
Anti-Neuroinflammatory and Anti-Inflammatory Activities of Phenylheptatriyne Isolated from the Flowers of Coreopsis lanceolata L. via NF-κB Inhibition and HO-1 Expression in BV2 and RAW264.7 Cells. Int J Mol Sci 2021; 22:ijms22147482. [PMID: 34299102 PMCID: PMC8303746 DOI: 10.3390/ijms22147482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2′-hydroxy-3,4,4′-trimethoxychalcone (2), and 4′,7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4′,7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.
Collapse
|
5
|
Cuellar-Núñez ML, Gonzalez de Mejia E, Loarca-Piña G. Moringa oleifera leaves alleviated inflammation through downregulation of IL-2, IL-6, and TNF-α in a colitis-associated colorectal cancer model. Food Res Int 2021; 144:110318. [PMID: 34053523 DOI: 10.1016/j.foodres.2021.110318] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
New chemopreventive alternatives are needed due to the rising worldwide incidence of colorectal cancer. The objective was to evaluate the chemopreventive activity of Moringa oleifera leaves (MO) in a colitis-associated colon carcinogenesis model. We hypothesized that MO contain bioactive compounds capable of modulating the expression of genes involved in the inflammatory response and carcinogenesis. Forty-eight male mice (CD-1) were divided into six groups; 1: Healthy control; 2: Positive control induced with azoxymethane (AOM, 10 mg/Kg body weight, intraperitoneal injection) and three cycles of dextran sodium sulfate (DSS, 1.5% in drinking water); groups 3, 4, and 5 were induced with AOM/DSS and supplemented with 5%, 10%, and 20% of MO, respectively; group 6: had no disease induction and supplemented with 20% of MO. Mice were treated for 12 weeks and euthanized. Significant differences (p < 0.05) were found for the moringa-administered groups in morphological and histopathological parameters compared to the AOM/DSS control. A decrease in myeloperoxidase activity (~50%) and lipid peroxidation (1.9-3.1 times) were found in groups with 10% and 20% of MO compared to the AOM/DSS control (p < 0.05). The group supplemented with 10% MO showed a significant increase (~3 times) in butyrate and propionate in fecal and cecal content. Groups supplemented with 10%, and 20% MO showed a reduction in proinflammatory cytokines in serum (MCP-1, IL-6, TNF-α) compared to the AOM/DSS control. Treatment with 10% MO induced differential expression of 65 genes in colon tissue such as IL-2, IL-6, TNF, IL-1ß, and INF-γ. MO downregulated proinflammatory mediators showing chemopreventive properties against inflammatory response and colon carcinogenesis.
Collapse
Affiliation(s)
- M L Cuellar-Núñez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - E Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico.
| |
Collapse
|
6
|
Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory Role of Nrf2 Signaling Pathway in Wound Healing Process. Molecules 2021; 26:molecules26092424. [PMID: 33919399 PMCID: PMC8122529 DOI: 10.3390/molecules26092424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: ; Tel.: +90-31-2202-3176
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara 06330, Turkey;
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Sarmistha Saha
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (S.S.); (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
7
|
Choe H, Lee H, Lee J, Kim Y. Protective effect of gamma-aminobutyric acid against oxidative stress by inducing phase II enzymes in C2C12 myoblast cells. J Food Biochem 2021; 45:e13639. [PMID: 33533516 DOI: 10.1111/jfbc.13639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/16/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
In this study, the cytoprotective effect of gamma-aminobutyric acid (GABA) via inducing phase II enzymes in C2C12 myoblasts was evaluated. The highest concentration of GABA (100 μM) significantly increased the cell viability by approximately 90% in hydrogen peroxide-induced C2C12 cells. The treatment with GABA (100 μM) effectively decreased the glutathione (GSH) depletion and the activities of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD). And, reactive oxygen species (ROS) levels were effectively reduced by about 50% in GABA-treated cells. In addition, the protein expression of phase II enzymes, such as NADPH:quinone oxidoreductase 1 and heme oxygenase-1 was significantly increased by GABA treatment. Moreover, GABA treatment increased the nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression in the nucleus of C2C12 myoblasts. Altogether, the results in this study indicate that GABA possesses the cytoprotective effects against oxidative insults by regulating the GSH levels, CAT and SOD activities, ROS scavenging activities, and expression of phase II enzymes through the activation of Nrf2 in C2C12 cells. Hence, this study suggests that the GABA supplementation could be effective in alleviating oxidative stress-induced muscle damage. PRACTICAL APPLICATIONS: GABA exists in the germ and bran layers of rice and is well-known as the inhibitory neurotransmitter in the central nervous system. GABA also has various health beneficial effects, such as preventing chronic alcohol-related diseases and lowering blood pressure. The present study shows the cytoprotective effect of GABA against oxidative stress in C2C12 myoblasts, and suggests that GABA has great potential as a functional food ingredient for attenuating oxidative stress-induced muscle damage.
Collapse
Affiliation(s)
- Hyeonjeong Choe
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Younghwa Kim
- School of Food Biotechnology and Nutrition, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
8
|
Ibrahim EH, Ghramh HA, Alshehri A, Kilany M, Khalofah A, El-Mekkawy HI, Sayed MA, Alothaid H, Taha R. Lepidium sativum and Its Biogenic Silver Nanoparticles Activate Immune Cells and Induce Apoptosis and Cell Cycle Arrest in HT-29 Colon Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is an increased demand for plants with antioxidants and anticancer properties. Lepidium sativum L. is an edible plant with medical importance. In this study, we aimed to investigate the anticancer activity; antioxidant capacity and antibacterial impact of Lepidium sativum
L. seed acetone extract (LSSAExt), alone and with its biogenic silver nanoparticles (AgNPs). LSSAExt-produced AgNPs were characterized using SEM, XRD and Vis/UV analysis. Biomolecules in LSSAExt and LSSAExt + AgNPs were explored utilizing FTIR. The ability of LSSAExt and LSSAExt + AgNPs to
induce apoptosis and mitotic cell arrest in the HT-29 colon cancer cells, compared to normal and repeated cell division activated splenic cells was determined by florescent stains and flow cytometry. Antibacterial power was tested using well diffusion technique. LSSAExt and LSSAExt + AgNPs
showed a good antibacterial impact. LSSAExt contains ROS, which could help in cancer cells apoptosis. LSSAExt and LSSAExt+AgNPs were not toxic to splenic cells and increased the rate of their cell division. LSSAExt and LSSAExt+AgNPs increased p53 expression and could arrest cell division of
HT-29 colon cancer cells but not of normal fast dividing cells. LSSAExt and LSSAExt+AgNPs caused apoptosis in cancer cells rather than necrosis. In conclusion, acetone preparation of the edible plant L. sativum is a good antibacterial agent, good anticancer preparation at least against
colon cancer as it is shown to be targeted, effective and can boost immune cells.
Collapse
Affiliation(s)
- Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Alshehri
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Haitham I. El-Mekkawy
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mahmoud A. Sayed
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 4781, Saudi Arabia
| | - Ramadan Taha
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
9
|
Mansour SZ, Moawed FSM, Badawy MMM, Mohamed HE. Boswellic Acid Synergizes With Low-Level Ionizing Radiation to Modulate Bisphenol Induced-Lung Toxicity in Rats by Inhibiting JNK/ERK/c-Fos Pathway. Dose Response 2020; 18:1559325820969597. [PMID: 33192203 PMCID: PMC7607778 DOI: 10.1177/1559325820969597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is a low molecular weight chemical compound that has a deleterious effect on the endocrine system. It was used in plastics manufacturing with injurious effects on different body systems. Occupational exposure to low-level ionizing radiation (<1 Gy) is shown to attenuate an established inflammatory process and therefore enhance cell protection. Therefore, the objective of this study was to investigate the protective effect of boswellic acid (BA) accompanied by whole-body low-dose gamma radiation (γ-R) against BPA-induced lung toxicity in male albino rats. BPA intoxication induced with 500 mg/kg BW. Rats received 50 mg BA/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. The immunoblotting and biochemical results revealed that BA and/or γ-R inhibited BPA-induced lung toxicity by reducing oxidative damage biomolecules; (MDA and NADPH oxidase gene expression), inflammatory indices (MPO, TNF-α, IL-6, and gene expression of CXCR-4). Moreover, BA and or/γ-R ameliorated the lung inflammation via regulation of the JNK/ERK/c-Fos and Nrf2/ HO-1 signaling pathways. Interestingly, our data demonstrated that BA in synergistic interaction with γ-R is efficacious control against BPA-induced lung injury via anti-oxidant mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Somya Z Mansour
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Monda M M Badawy
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hebatallah E Mohamed
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| |
Collapse
|
10
|
Nrf-2 activator sulforaphane protects retinal cells from oxidative stress-induced retinal injury. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Lin CW, Yang CM, Yang CH. Protective Effect of Astaxanthin on Blue Light Light-Emitting Diode-Induced Retinal Cell Damage via Free Radical Scavenging and Activation of PI3K/Akt/Nrf2 Pathway in 661W Cell Model. Mar Drugs 2020; 18:md18080387. [PMID: 32722441 PMCID: PMC7459684 DOI: 10.3390/md18080387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Light-emitting diodes (LEDs) are widely used and energy-efficient light sources in modern life that emit higher levels of short-wavelength blue light. Excessive blue light exposure may damage the photoreceptor cells in our eyes. Astaxanthin, a xanthophyll that is abundantly available in seafood, is a potent free radical scavenger and anti-inflammatory agent. We used a 661W photoreceptor cell line to investigate the protective effect of astaxanthin on blue light LED-induced retinal injury. The cells were treated with various concentrations of astaxanthin and then exposed to blue light LED. Our results showed that pretreatment with astaxanthin inhibited blue light LED-induced cell apoptosis and prevented cell death. Moreover, the protective effect was concentration dependent. Astaxanthin suppressed the production of reactive oxygen species and oxidative stress biomarkers and diminished mitochondrial damage induced by blue light exposure. Western blot analysis confirmed that astaxanthin activated the PI3K/Akt pathway, induced the nuclear translocation of Nrf2, and increased the expression of phase II antioxidant enzymes. The expression of antioxidant enzymes and the suppression of apoptosis-related proteins eventually protected the 661W cells against blue light LED-induced cell damage. Thus, our results demonstrated that astaxanthin exerted a dose-dependent protective effect on photoreceptor cells against damage mediated by blue light LED exposure.
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-M.Y.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-M.Y.)
- College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-M.Y.)
- College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 63193)
| |
Collapse
|
12
|
Clementi ME, Sampaolese B, Sciandra F, Tringali G. Punicalagin Protects Human Retinal Pigment Epithelium Cells from Ultraviolet Radiation-Induced Oxidative Damage by Activating Nrf2/HO-1 Signaling Pathway and Reducing Apoptosis. Antioxidants (Basel) 2020; 9:antiox9060473. [PMID: 32498245 PMCID: PMC7346122 DOI: 10.3390/antiox9060473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
The oxidative damage of the retinal pigment epithelium (RPE) is the early event that underlies the pathogenesis of maculopathies. Numerous studies have shown that punicalagin (PUN), a polyphenol present in pomegranate, can protect several cell types from oxidative stress. Our study aims to establish if PUN protects RPE from UV radiation-induced oxidative damage. We used an experimental model which involves the use of a human-RPE cell line (ARPE-19) exposed to UV-A radiation for 1, 3, and 5 h. ARPE-19 cells were pre-treated with PUN (24 h) followed by UV-A irradiation; controls were treated identically, except for UV-A. Effects of pre-treatment with PUN on cell viability, intracellular reactive oxygen species ROS levels, modulation of Nrf2 and its antioxidant target genes, and finally apoptosis were examined. We found that pre-treatment with PUN: (1) antagonized the decrease in cell viability and reduced high levels of ROS associated with UV-A-induced oxidative stress; (2) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation and upregulating its downstream antioxidant target genes (HO-1 and NQO1); (3) induced an anti-apoptotic effect by decreasing Bax/Bcl-2 ratio. These findings provide the first evidence that PUN can prevent UV-A-induced oxidative damage in RPE, offering itself as a possible antioxidant agent capable of contrasting degenerative eye diseases.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- National Research Council (CNR), Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.E.C.); (B.S.); (F.S.)
| | - Beatrice Sampaolese
- National Research Council (CNR), Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.E.C.); (B.S.); (F.S.)
| | - Francesca Sciandra
- National Research Council (CNR), Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—c/o Istituto di Biochimica e Biochimica Clinica Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.E.C.); (B.S.); (F.S.)
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma—Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-063-015-4367
| |
Collapse
|
13
|
Gebicka L. Redox reactions of heme proteins with flavonoids. J Inorg Biochem 2020; 208:111095. [PMID: 32442763 DOI: 10.1016/j.jinorgbio.2020.111095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins containing heme groups perform a variety of important functions in living organisms. The heme groups are involved in catalyzing oxidation/reduction reactions, in electron transfer, and in binding small molecules, like oxygen or nitric oxide. Flavonoids, low molecular weight plant polyphenols, are ubiquitous components of human diet. They are also components of many plant extracts used in herbal medicine as well as of food supplements. Due to their relatively low reduction potential, flavonoids are prone to oxidation. This paper provides a review of redox reactions of various heme proteins, including catalase, some peroxidases, cytochrome P450, cytochrome c, myoglobin, and hemoglobin with flavonoids. Potential biological significance of these reactions is discussed, in particular when flavonoids are delivered to the body at pharmacological doses.
Collapse
Affiliation(s)
- Lidia Gebicka
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology (TUL), Lodz, Poland.
| |
Collapse
|
14
|
Aussem A, Ludwig K. The Potential for Reducing Lynch Syndrome Cancer Risk with Nutritional Nrf2 Activators. Nutr Cancer 2020; 73:404-419. [PMID: 32281399 DOI: 10.1080/01635581.2020.1751215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lynch syndrome (LS), is an autosomal dominant disorder predisposing patients to multiple cancers, predominantly colorectal (CRC) and endometrial, and is implicated in 2-4% of all CRC cases. LS is characterized by mutations of four mismatch repair (MMR) genes which code for proteins responsible for recognizing and repairing DNA lesions occurring through multiple mechanisms including oxidative stress (OS). Increased OS can cause DNA mutations and is considered carcinogenic. Due to reduced MMR activity, LS patients have an increased risk of cancer as a result of a decreased ability to recognize and repair DNA lesions caused by OS. Due to its carcinogenic properties, reducing the level of OS may reduce the risk of cancer. Nutritional Nrf2 activators have been shown to reduce the risk of carcinogenesis in the general population through activation of the endogenous antioxidant system. Common nutritional Nrf2 activators include sulforaphane, curcumin, DATS, quercetin, resveratrol, and EGCG. Since LS patients are more susceptible to carcinogenesis caused by OS, it is hypothesized that nutritional Nrf2 activators may have the potential to reduce the risk of cancer in those with LS by modulating OS and inflammation. The purpose of this paper is to review the available evidence in support of this statement.
Collapse
Affiliation(s)
- Andrew Aussem
- Hawthorn University, Whitethorn, California, USA.,McMaster University, Hamilton, Canada
| | - Kirsten Ludwig
- Hawthorn University, Whitethorn, California, USA.,Semel Institute for Neuroscience and Behaviour, University of California, Los Angeles, California, USA
| |
Collapse
|
15
|
Tsai TF, Chen PC, Lin YC, Chou KY, Chen HE, Ho CY, Lin JF, Hwang TIS. Miconazole Contributes to NRF2 Activation by Noncanonical P62-KEAP1 Pathway in Bladder Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1209-1218. [PMID: 32273683 PMCID: PMC7102888 DOI: 10.2147/dddt.s227892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/18/2020] [Indexed: 11/23/2022]
Abstract
Purpose Nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, a transcription factor capable of upregulating antioxidant response element (ARE)-mediated expression and cytoprotective proteins, plays critical roles in chemoprevention, inflammation and aging. NRF2 has recently been proposed as a novel target for cancer chemoprevention. The fungicide miconazole has shown promising antiproliferative effects in cancer cells. Materials and Methods After miconazole treatment, the p62-KEAP1-NRF2 activation was analyzed by qPCR and Western blot. The nuclear translocation indicating NRF2 activation was further confirmed by immunofluorescence. Finally, the ROS production was detected by CM-H2DCFDA staining. Results We demonstrate in this study that miconazole dramatically increases NRF2 activation in bladder cancer cells, in a dose- and time-dependent manner. Interestingly, levels of expression of p62, a noncanonical pathway that mediates NRF2 activation, appeared to increase in accordance with NRF2. We also investigated levels of the negative regulator kelch-like ECH-associated protein 1 (KEAP1), which is involved in NRF2 activation. As expected, a decrease in KEAP1 expression was found after miconazole exposure. Confirmation of NRF2 nuclear translocation was monitored by immunofluorescence. Miconazole-induced generation of reactive oxygen species (ROS) promoted NRF2 activation. Pretreatment of bladder cancer cells with ROS scavengers abolished NRF2 expression and nuclear translocation, indicating that miconazole activates the noncanonical p62-KEAP1-NRF2 pathway, which is regulated by ROS production. Conclusion Our study elucidates the mechanisms through which miconazole stimulates NRF2 which may contribute to cancer chemopreventive effects.
Collapse
Affiliation(s)
- Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Po-Chun Chen
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chia Lin
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chao-Yen Ho
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan.,Department of Urology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, Pichika MR. Construction of a novel quinoxaline as a new class of Nrf2 activator. BMC Chem 2019; 13:117. [PMID: 31572984 PMCID: PMC6760105 DOI: 10.1186/s13065-019-0633-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N′-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature. Methods NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. Results NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human. Conclusion NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.
Collapse
Affiliation(s)
- Murugesh Kandasamy
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,2School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Thangaraj Devadoss
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh India
| | | | | | - Hira Choudhury
- 3Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
18
|
Cheng Y, Liu C, Cui Y, Lv T, Guo Y, Liang J, Qian H. Sporidiobolus pararoseuswall-broken powder ameliorates oxidative stress in diabetic nephropathy in type-2 diabetic mice by activating the Nrf2/ARE pathway. RSC Adv 2019; 9:8394-8403. [PMID: 35518685 PMCID: PMC9061701 DOI: 10.1039/c8ra10484k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
STZ-induced diabetic mice are given a high-fat diet and SPP, which is a rich source of β-carotene, γ-carotene, torulene and torularhodin. The result indicated SPP can ameliorate diabetic nephropathyviaactivating Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Yuliang Cheng
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- Synergetic Innovation Center for Food Safety and Nutrition
| | - Chang Liu
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- Synergetic Innovation Center for Food Safety and Nutrition
| | - Yan Cui
- Institute of Agricultural Products Processing
- Key Laboratory of Preservation Engineering of Agricultural Products
- Ningbo Academy of Agricultural Sciences
- Ningbo 315040
- China
| | - Tianqi Lv
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- Synergetic Innovation Center for Food Safety and Nutrition
| | - Yahui Guo
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- Synergetic Innovation Center for Food Safety and Nutrition
| | - Jun Liang
- Guangzhou GRE Metrology & Test Co., Ltd
- Guangzhou
- PR China
| | - He Qian
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- Synergetic Innovation Center for Food Safety and Nutrition
| |
Collapse
|
19
|
Ko K, Wahyudi LD, Kwon YS, Kim JH, Yang H. Nuclear Factor Erythroid 2-Related Factor 2 Activating Triterpenoid Saponins from Camellia japonica Roots. JOURNAL OF NATURAL PRODUCTS 2018; 81:2399-2409. [PMID: 30395460 DOI: 10.1021/acs.jnatprod.8b00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oxidative stress due to the presence of excess reactive oxygen species may cause cancers, aging, and many other conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) may control abnormal oxidative stress as a transcription factor by inducing antioxidant-related genes via antioxidant response elements (AREs) in the gene promoters. The 11 triterpenoid saponins (1-11) isolated from Camellia japonica roots were tested for ARE-luciferase activity and Nrf2 accumulation in human keratinocytes (HaCaT cells). The ARE-luciferase activity was significantly increased by compounds 1-11 (25 μM) as a result of nuclear Nrf2 accumulation in the cells. Thus, these compounds may contribute to the induction of Nrf2 activity against oxidative damage in cells.
Collapse
Affiliation(s)
- Kiwon Ko
- College of Pharmacy , Kangwon National University , Chuncheon 24341 , Korea
| | - Lilik D Wahyudi
- Department of Convergence Medical Science (BK21 Plus) , Gyeongsang National University , Jinju , 52727 , Korea
- Department of Pharmacology, School of Medicine, Institute of Health Sciences , Gyeongsang National University , Jinju 52727 , Korea
| | - Yong-Soo Kwon
- College of Pharmacy , Kangwon National University , Chuncheon 24341 , Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences , Gyeongsang National University , Jinju 52727 , Korea
| | - Heejung Yang
- College of Pharmacy , Kangwon National University , Chuncheon 24341 , Korea
| |
Collapse
|
20
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Bi W, He CN, Li XX, Zhou LY, Liu RJ, Zhang S, Li GQ, Chen ZC, Zhang PF. Ginnalin A from Kujin tea (Acer tataricum subsp. ginnala) exhibits a colorectal cancer chemoprevention effect via activation of the Nrf2/HO-1 signaling pathway. Food Funct 2018; 9:2809-2819. [PMID: 29693091 DOI: 10.1039/c8fo00054a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ginnalin A (also known as acertannin) is one of the most important phenolic compounds of several beverage Acer plants. In this study, it is reported for the first time that ginnalin A is an activator of the Nrf2 signaling pathway in human colon cancer cells. Ginnalin A, isolated from the leaves of Acer tataricum subsp. ginnala, exhibited promising preventive activity against colon cancer cells (HCT116, SW480 and SW620) with IC50 values of 24.8 μM, 22.0 μM and 39.7 μM, respectively. In addition, it significantly reduced the colony formation of these cells. Flow cytometry analysis indicated that ginnalin A suppressed cancer proliferation via the induction of cell cycle arrest at the S-phase. Real time PCR analysis demonstrated that ginnalin A can upregulate the mRNA expression levels of Nrf2-related antioxidant genes Nrf2, HO-1 and NQO1. Western blotting analysis revealed that ginnalin A promoted the Nrf2 nuclear translocation and upregulated the proteins Nrf2, HO-1 and NQO1. Moreover, the upregulation of p62 and the inhibition of Keap1 were also found by Western blotting analysis. Therefore, the activation of the Nrf2 signaling pathway was probably induced through the upregulation of p62 and the inhibition of Keap1.
Collapse
Affiliation(s)
- Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3181-3197. [PMID: 30288023 PMCID: PMC6161735 DOI: 10.2147/dddt.s172612] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major cell defense mechanism against oxidative and xenobiotic stress is mediated by the Nrf2/Keap1 signaling pathway. The Nrf2/Keap1 pathway regulates gene expression of many cytoprotective and detoxifying enzymes, thus playing a pivotal role in maintaining redox cellular homeostasis. Many diseases including cancer have been closely related to impaired Nrf2 activity. Targeting Nrf2 and modulating its activity represents a novel modern strategy for cancer chemoprevention and therapy. In this review, different design strategies used for the development of Nrf2 modulators are described in detail. Moreover, the main focus is on important and recently developed Nrf2 activators and inhibitors, their in vitro and in vivo studies, and their potential use as chemopreventive agents and/or cancer therapeutics.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia,
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| |
Collapse
|
23
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
24
|
Zhang JF, Bai KW, Su WP, Wang AA, Zhang LL, Huang KH, Wang T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult Sci 2018; 97:1209-1219. [PMID: 29438543 DOI: 10.3382/ps/pex408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
The object of this study was to investigate the effect of curcumin on modulating the glutathione (GSH)-related antioxidant enzymes and antioxidant responses via NF-E2-related factor 2 (Nrf2) signaling pathway in heat-stressed broiler chickens. A total of 400 one-day-old male Arbor Acres broiler chicks was reared in an environmentally controlled room. At 21 d, broiler chicks were divided into 5 treatment groups and were fed one of 4 diets under 2 temperature conditions: 22°C + a basal diet (CON treatment); 34°C for 8 h (0900-1700) + a basal diet supplemented with 0, 50, 100, or 200 mg/kg curcumin (HS, CMN1, CMN2, and CMN3 treatments, respectively). The heat treatment lasted for 20 consecutive days. The results showed that heat stress significantly increased (P < 0.05) the weekly rectal temperature and average head and feet temperature. Compared to the HS treatment, feed conversion was significantly decreased (P < 0.05) in CMN1 and CMN2 treatments. CMN1 administration significantly improved (P < 0.05) the pH24 of muscle. The abnormal changes of serum malonaldehyde and corticosterone concentrations were prevented (P < 0.05) by curcumin. Mitochondrial GSH concentration in the liver was significantly increased (P < 0.05) in CMN1 and CMN2 treatments compared with the HS treatment. The CMN1, CMN2, and CMN3 supplementations significantly increased (P < 0.05) γ-GCL, GSH-Px, and GST activities. Curcumin significantly increased (P < 0.05) the expression of Nrf2, HO-1, and γ-GCLc in the liver as compared to the CON diet. The expression of Cu/ZnSOD and CAT were increased (P < 0.05) by feeding CMN2, respectively, as compared to the HS treatment. It was concluded that curcumin supplementation enhanced the resistance of broilers to heat stress, as evidenced by reversing the FC, increasing the GSH content and GSH-related enzyme activities, and inducing the expression of Nrf2 and Nrf2-mediated phase II detoxifying enzyme genes.
Collapse
Affiliation(s)
- J F Zhang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - K W Bai
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - W P Su
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - A A Wang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - L L Zhang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - K H Huang
- College of Veterinary Medicine, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| | - T Wang
- College of Animal Science and Technology, No. 6, Tongwei Road, Xuanwu District, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
25
|
Cytotoxic Effect of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) on Liver Cancer Cell Integrated with Hepatitis B Genome, Hep3B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1549805. [PMID: 30186351 PMCID: PMC6116464 DOI: 10.1155/2018/1549805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ), a bioactive compound found in Nigella sativa, cannot be orally consumed due to its lipophilicity. In order to overcome this low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aims to determine the antiproliferative effects of TQ and TQ-NLC on liver cancer cells integrated with the hepatitis B genome, Hep3B. The Hep3B was treated with TQ or TQ-NLC for 24, 48, and 72 hours via MTT assay. The results confirm that TQ or TQ-NLC inhibited the growth of Hep3B at IC50 <16.7 μM for 72 hours. TQ was also found to induce cell cycle arrest at the G1 checkpoint while TQ-NLC induced non-phase-specific cell cycle arrest. Further analysis using Annexin V staining confirmed the apoptotic induction of TQ or TQ-NLC via activation of caspases-3/7. In ROS management, TQ acted as a prooxidant (increased the level of ROS), while TQ-NLC acted as an antioxidant (reduced the level of ROS). Molecular analysis demonstrated that the GSH system and the Nrf2/Keap1 signaling pathway in Hep3B influenced the differential responses of the cells towards TQ or TQ-NLC. Hence, this study demonstrated that TQ and TQ-NLC have in vitro anticancer effects on the Hep3B.
Collapse
|
26
|
El-Halawany AM, Abdallah HM, Hamed AR, Khalil HE, Almohammadi AM. Phenolics from Barleria cristata var. Alba as carcinogenesis blockers against menadione cytotoxicity through induction and protection of quinone reductase. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:163. [PMID: 29788962 PMCID: PMC5964735 DOI: 10.1186/s12906-018-2214-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Background There are increasing interests in natural compounds for cancer chemoprevention. Blocking agents represent an important class of chemopreventive compounds. They prevent carcinogens from undergoing metabolic activation and thereby suppressing their interaction with cellular macromolecular targets. Methods The effect of phenolic compounds isolated from Barleria cristata var. alba as chemopreventive agent was evaluated. The ethyl acetate fraction of B. cristata was subjected to different chromatographic techniques for isolation of its major phenolic compounds. The isolated compounds were evaluated for their potential to induce the cancer chemopreventive enzyme marker NAD(P)H quinonereductase 1 (NQO1) in murine Hepa-1c1c7 cell model. Results The ethyl acetate fraction of B. cristata var. alba yielded five known compounds identified as verbascoside (1), isoverbascoside (2), dimethoxyverbascoside (3), p-hydroxy benzoic acid (4), and apigenin-7-O-glucoside (5). Among the tested compounds, isoverbascoside (2) was shown to potently induce the activity of the enzyme in a dose –dependent manner. As a functional assay for detoxification, compound 2 was the strongest to protect Hepa-1c1c7 against the toxicity of menadione, a quinone substrate for NQO1. Conclusion This effect seemed to be attributed to the compound’s potential to induce both the catalytic activity and protein expression of NQO1 as revealed by enzyme assay and Western blotting, respectively. Electronic supplementary material The online version of this article (10.1186/s12906-018-2214-9) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
In vitro–fermented raw and roasted walnuts induce expression of CAT and GSTT2 genes, growth inhibition, and apoptosis in LT97 colon adenoma cells. Nutr Res 2017; 47:72-80. [DOI: 10.1016/j.nutres.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022]
|
28
|
Kim Y, Lee J. Esculetin Inhibits Adipogenesis and Increases Antioxidant Activity during Adipocyte Differentiation in 3T3-L1 Cells. Prev Nutr Food Sci 2017; 22:118-123. [PMID: 28702428 PMCID: PMC5503420 DOI: 10.3746/pnf.2017.22.2.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
This study was conducted to investigate the anti-adipogenic activity of esculetin (ECT) which is reported to be attributable to the modulation of antioxidant enzymes during adipogenesis. After six days of ECT treatment of 3T3-L1 cells, lipid accumulation was determined by Oil red O staining. The levels of glutathione (GSH) and reactive oxygen species (ROS), and the activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase (GPx), and catalase were examined. In addition, the protein expression of glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) was measured by Western blot. ECT significantly inhibited lipid accumulation by approximately 80% and ROS production in a concentration-dependent manner. GSH level and GPx activity were increased by ECT by approximately 1.3-fold and 1.7-fold compared to the control group, respectively. GCLC and HO-1 expression were elevated by ECT. These results showed that ECT treatments strongly inhibit adipogenesis, increase GSH level, and upregulate the expression of GCLC and HO-1, possibly by decreasing ROS production in 3T3-L1 cells during adipogenesis.
Collapse
Affiliation(s)
- Younghwa Kim
- School of Food Biotechnology and Nutrition, Kyungsung University, Busan 48434, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
29
|
Yang S, Zhou B, Xu W, Xue F, Nisar MF, Bian C, Huang X, Yang L, Zhang Y, Bartsch JW, Zhong JL. Nrf2- and Bach1 May Play a Role in the Modulation of Ultraviolet A-Induced Oxidative Stress by Acetyl-11-Keto-β-Boswellic Acid in Skin Keratinocytes. Skin Pharmacol Physiol 2017; 30:13-23. [PMID: 28142143 DOI: 10.1159/000452744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Exposure of human skin to solar ultraviolet A (UVA) irradiation causes severe oxidative stress with damage to various cellular components and concomitant inflammation and carcinogenesis. OBJECTIVE The aim of this study is to investigate the protective effect of acetyl-11-keto-β-boswellic acid (AKBA) against UVA radiation on human skin keratinocytes. METHODS HaCaT cells were pretreated with AKBA followed by UVA irradiation. Radiation effects on cell morphology, cell viability, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymes were examined. RESULTS AKBA reduces UVA irradiation-induced cell viability loss, accompanied by a decreased production of UVA-induced ROS, decreased malondialdehyde, and increased superoxide dismutase expression. In addition, AKBA increased basal and UVA-induced levels of Nrf2 (NF-E2-related factor 2), the redox-sensitive factor, and its target genes NQO1 and heme oxygenase-1 (HO-1), whereas expression of the transcriptional repressor Bach1 (BTB and CNC homology 1) was reduced. Furthermore, the cytoprotective effects of AKBA against UVA-derived oxidative damage were accompanied by modulating expression of inflammatory mediators (i.e., cyclooxygenase-2 and nuclear factor-κB) and NOX1. CONCLUSIONS AKBA protects skin cells from UVA-induced damage by modulating inflammatory mediators and/or ROS production. Therefore, AKBA has potential in the development of skin care products.
Collapse
Affiliation(s)
- Shiying Yang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shan Y, Wei Z, Tao L, Wang S, Zhang F, Shen C, Wu H, Liu Z, Zhu P, Wang A, Chen W, Lu Y. Prophylaxis of Diallyl Disulfide on Skin Carcinogenic Model via p21-dependent Nrf2 stabilization. Sci Rep 2016; 6:35676. [PMID: 27759091 PMCID: PMC5069634 DOI: 10.1038/srep35676] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer prevention through intake of biologically active natural products appears to be an accessible way to reduce the risk of cancer. Diallyl disulfide (DADS), a major garlic derivative, has exhibited potential role in cancer therapy. The study is aimed to evaluate the prophylactic effect of DADS in chemically induced mouse skin carcinogenesis and investigate the molecular targets mediated by DADS. Two-stage chemically induced carcinogenesis model by cutaneous application of DMBA and subsequent TPA was established to study the prophylactic effect of DADS. As a result, we observed that DADS dose-dependently attenuated skin tumor incidence and multiplicity in the model mice, which was related to the up-regulation of a bunch of antioxidant enzymes activities and the nuclear accumulation of Nrf2. Furthermore, we developed skin carcinogenesis in Nrf2 knockout mice which could reverse the activity of DADS. Finally, we uncovered the underlying mechanism that DADS promoted the endogenous interaction between p21 and Nrf2, which was critical for impairing the Keap1-mediated degradation of Nrf2. Based on the results, we concluded that DADS was a promising cancer chemoprevention agent and suggested a garlic-rich diet might be beneficial to reduce the cancer risk in our daily life.
Collapse
Affiliation(s)
- Yunlong Shan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siliang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaoguo Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pingting Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
31
|
Li X, Wang H, Wang J, Chen Y, Yin X, Shi G, Li H, Hu Z, Liang X. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer 2016; 16:578. [PMID: 27485374 PMCID: PMC4971704 DOI: 10.1186/s12885-016-2640-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Methods Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Results Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. Conclusions This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2640-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China.
| | - Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Brisbane, QLD, 4012, Australia
| | - Juan Wang
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China
| | - Yuying Chen
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Xiaobin Yin
- Division of Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 S. Dongfang Road, Shanghai, 200127, China
| | - Guiying Shi
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Hui Li
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Zhiqian Hu
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China.
| | - Xiaowen Liang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Brisbane, QLD, 4012, Australia
| |
Collapse
|
32
|
Bak MJ, Truong VL, Ko SY, Nguyen XNG, Jun M, Hong SG, Lee JW, Jeong WS. Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells. J Ginseng Res 2016; 40:423-430. [PMID: 27746696 PMCID: PMC5052443 DOI: 10.1016/j.jgr.2016.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. METHODS Red ginseng oil (RGO) was extracted using a supercritical CO2 extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. RESULTS The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0]tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. CONCLUSION RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea; Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Van-Long Truong
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Se-Yeon Ko
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Xuan Ngan Giang Nguyen
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| | - Soon-Gi Hong
- Ginseng Product Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon, Korea
| | - Jong-Won Lee
- Ginseng Product Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon, Korea
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
33
|
Hamed AR, Hegazy MEF, Higgins M, Mohamed TA, Abdel-Azim NS, Pare PW, Dinkova-Kostova AT. Potency of extracts from selected Egyptian plants as inducers of the Nrf2-dependent chemopreventive enzyme NQO1. J Nat Med 2016; 70:683-8. [PMID: 27120175 DOI: 10.1007/s11418-016-0994-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 02/03/2023]
Abstract
Medicinal plants from the Egyptian Sinai Peninsula are widely used in traditional Bedouin medicine to treat a range of conditions including cancer, and as such are a promising resource for novel anti-cancer compounds. To achieve scientific justification of traditional use and/or to recommend the use of those plants as medicinal herbs for cancer chemoprevention, a group of 11 Sinai plants of different species that belong to 3 families (Asteraceae, Lamiaceae, and Euphorbiaceae) were biologically screened for cancer preventive activity using the chemoprevention marker enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). Among the fractions assayed, a solvent extract from Pulicaria incisa had potent NQO1 inducing activity. Further analysis of the mechanism of induction revealed the concentration-dependent stabilization of the transcription factor NF-E2 p45-related factor 2 (Nrf2) and a coordinate upregulation of the Nrf2-dependent enzymes NQO1, heme oxygenase 1 and glutathione S-transferase-Pi. These results establish P. incisa as a promising target for future phytochemical characterization for cancer preventive components.
Collapse
Affiliation(s)
- Ahmed R Hamed
- Phytochemistry Department, National Research Centre, 33 El Bohouth st., Dokki, P.O. Box 12622, Giza, Egypt.
| | - Mohamed-Elamir F Hegazy
- Phytochemistry Department, National Research Centre, 33 El Bohouth st., Dokki, P.O. Box 12622, Giza, Egypt
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Tarik A Mohamed
- Phytochemistry Department, National Research Centre, 33 El Bohouth st., Dokki, P.O. Box 12622, Giza, Egypt
| | - Nahla S Abdel-Azim
- Phytochemistry Department, National Research Centre, 33 El Bohouth st., Dokki, P.O. Box 12622, Giza, Egypt
| | - Paul W Pare
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| |
Collapse
|
34
|
Chiou YS, Huang Q, Ho CT, Wang YJ, Pan MH. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med 2016; 94:1-16. [PMID: 26878775 DOI: 10.1016/j.freeradbiomed.2016.02.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/24/2016] [Accepted: 02/10/2016] [Indexed: 12/30/2022]
Abstract
Disruption of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) interaction has emerged as a promising strategy to reduce oxidative stress-induced inflammation. However, its roles in regulating downstream events, including the cross talk between Nrf2 and nuclear factor-kappa B (NF-κB), are not well defined. The objective of this study was to elucidate the mechanistic connection between Keap1-Nrf2 signaling and the transcription factor NF-κB and to investigate the function of (-)-epicatechin-3-gallate (ECG) in the repression of multiple inflammatory mediators. ECG attenuated lipopolysaccharide (LPS)-induced inflammatory mediator expression and intracellular reactive oxygen species (ROS) generation through the induction of Nrf2/antioxidant response element (ARE)-driven glutathione (GSH) and hemeoxygenase-1 (HO-1) levels, interference with NF-κB and Nfr2/ARE transcriptional activities, and suppression of the MAPKs (JNK1/2 and p38) and PI3K/Akt signaling pathways. Importantly, anti-inflammatory effects of ECG partly require activation of ERK1/2 signaling to mediate HO-1 expression and Nrf2/ARE signaling activation. Furthermore, ECG may directly interact intracellularly with the Kelch repeat domains of Keap1 and bind to extracellular LPS, thereby promoting the nuclear accumulation of the Nrf2 protein and blockading the activation of LPS-induced downstream target signaling pathways. Consistent with in vitro studies, ECG attenuates pathological syndromes of LPS-induced sepsis and systemic inflammation. Our results identified ECG as a novel Keap1-Nrf2 interaction disruptor and LPS-induced TLR4 activation inhibitor, thereby providing an innovative strategy to prevent or treat immune, oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 704, Taiwan; Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 704, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
35
|
Robles L, Vaziri ND, Li S, Masuda Y, Takasu C, Takasu M, Vo K, Farzaneh SH, Stamos MJ, Ichii H. Synthetic Triterpenoid RTA dh404 (CDDO-dhTFEA) Ameliorates Acute Pancreatitis. Pancreas 2016; 45:720-9. [PMID: 26495793 PMCID: PMC5847282 DOI: 10.1097/mpa.0000000000000518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Nuclear factor-erythroid-2-related factor (Nrf2) is a ubiquitous transcriptional factor that regulates expression of cellular antioxidant and detoxifying molecules. This study was undertaken to test the hypothesis that administration of the Nrf2 activator (dh404) may attenuate acute pancreatitis. METHODS Rats were treated with dh404 (1 mg/kg) 24 hours before induction of pancreatitis and for 3 days thereafter. Pancreatitis was induced with L-arginine (600 mg/100 g) or cerulein (40 μg/kg). Pancreases were processed for histology and malondialdehyde, whereas serum was analyzed for amylase. Islet extracted human pancreatic tissue from organ donors were used for in vitro studies. The tissues were incubated with dh404 at 0, 250, and 500 nM for 30 minutes, 60 minutes, 12 hours, and 24 hours. Nuclear factor-erythroid-2-related factor nuclear translocation and expression of Nrf2's target genes and inflammatory mediators were determined. RESULTS The dh404-treated rat pancreases demonstrated significantly less infiltration of inflammatory cells, destruction of acinar architecture, perilobar edema, and necrosis. Serum amylase and pancreatic malondialdehyde in the dh404-treated rats were significantly lower. dh404-treated human pancreatic tissue showed a significantly higher expression of antioxidant enzymes, lower expression of inflammatory mediators, and greater viability against oxidative stress. CONCLUSION Administration of dh404 attenuates acute pancreatitis by lowering oxidative stress and reducing proinflammatory mediators.
Collapse
Affiliation(s)
- Lourdes Robles
- From the Departments of Surgery and Medicine, University of California, Irvine, Orange, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Ham H, Lee YY, Park JY, Lee C, Kwak J, Kim IH, Lee J. Protective Mechanisms of Unsaponifiable Matter from Rice Bran Against Tert
-Butyl Hydroperoxide-Induced Oxidative Damage in HepG2 Cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hyeonmi Ham
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Yu Young Lee
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Ji-Young Park
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Choonwoo Lee
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Jieun Kwak
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - In-Hwan Kim
- Department of Food and Nutrition; Korea University; 02841 Seoul Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
| |
Collapse
|
38
|
Pyo MC, Yang SY, Chun SH, Oh NS, Lee KW. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells. Biol Pharm Bull 2016; 39:1437-47. [DOI: 10.1248/bpb.b16-00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Sung-Yong Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Su-Hyun Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | | | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
39
|
Tertil M, Golda S, Skrzypek K, Florczyk U, Weglarczyk K, Kotlinowski J, Maleszewska M, Czauderna S, Pichon C, Kieda C, Jozkowicz A, Dulak J. Nrf2-heme oxygenase-1 axis in mucoepidermoid carcinoma of the lung: Antitumoral effects associated with down-regulation of matrix metalloproteinases. Free Radic Biol Med 2015; 89:147-57. [PMID: 26393425 DOI: 10.1016/j.freeradbiomed.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1β, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/pathology
- Carcinoma, Mucoepidermoid/prevention & control
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Proliferation
- Down-Regulation
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Magdalena Tertil
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France; Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Slawomir Golda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Klaudia Skrzypek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kazimierz Weglarczyk
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Jerzy Kotlinowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika Maleszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Szymon Czauderna
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Chantal Pichon
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France
| | - Claudine Kieda
- Centre de Biophysique Moleculaire, CNRS UPR 4301, Rue Charles Sadron 45071 Cedex 2 Orléans, France; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| |
Collapse
|
40
|
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1958174. [PMID: 26697129 PMCID: PMC4677237 DOI: 10.1155/2016/1958174] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.
Collapse
|
41
|
Njayou FN, Amougou AM, Fouemene Tsayem R, Njikam Manjia J, Rudraiah S, Bradley B, Manautou JE, Fewou Moundipa P. Antioxidant fractions of Khaya grandifoliola C.DC. and Entada africana Guill. et Perr. induce nuclear translocation of Nrf2 in HC-04 cells. Cell Stress Chaperones 2015; 20:991-1000. [PMID: 26272694 PMCID: PMC4595436 DOI: 10.1007/s12192-015-0628-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022] Open
Abstract
The in vitro antioxidant properties, cytoprotective activity, and ability to induce nuclear translocation of nuclear factor E2-related factor-2 (Nrf-2) of five solvent fractions of the methylene chloride/methanol (1:1 v/v) extract of Khaya grandifoliola (Meliaceae) and Entada africana (Fabaceae) were evaluated. Five antioxidant endpoints were used in the antioxidant activity investigation. The total phenolic content of the fractions was assessed as to the Folin-Ciocalteu method and the profile of interesting fractions analyzed by high-performance liquid chromatography (HPLC). The cytoprotective activity of fractions was determined by H2O2-induced oxidative stress in HC-04 cells by measuring lactate dehydrogenase (LDH) leakage into culture medium. HC-04 cells were used to investigate the ability to induce nuclear translocation of Nrf2. For both plants, the methylene chloride/methanol (90/10; v/v) fraction (F10), methylene chloride/methanol (75/25; v/v) (F25), and the methanolic fraction (F100) were found to have the highest total polyphenol content and exhibited high antioxidant activity strongly correlated with total polyphenol content. The cytoprotective activity of fraction F25 from both plants was comparable to that of quercetin (3.40 ± 0.05 μg/mL), inhibiting LDH leakage with a low half inhibition concentration (IC50) of 4.05 ± 0.03 and 3.8 ± 0.02 μg/mL for K. grandifoliola and E. africana, respectively. Lastly, fraction F25 of K. grandifoliola significantly (P < 0.05) induced nuclear Nrf2 translocation by sixfold, whereas that from E. africana and quercetin was only twofold. The results indicate for the first time that fraction F25 of the studied plants is more antioxidant and cytoprotective and induces nuclear translocation of Nrf2 in a human hepatocyte cell line.
Collapse
Affiliation(s)
- Frédéric Nico Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Atsama Marie Amougou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Romeo Fouemene Tsayem
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Jacqueline Njikam Manjia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Bolling Bradley
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José Enrique Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
| |
Collapse
|
42
|
Boušová I, Skálová L, Souček P, Matoušková P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab Rev 2015; 47:520-33. [DOI: 10.3109/03602532.2015.1089885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Synergy between sulforaphane and selenium in protection against oxidative damage in colonic CCD841 cells. Nutr Res 2015; 35:610-7. [DOI: 10.1016/j.nutres.2015.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
|
44
|
Mechanism of Dose-Dependent Regulation of UBE1L by Polyphenols in Human Bronchial Epithelial Cells. J Cell Biochem 2015; 116:1553-62. [DOI: 10.1002/jcb.25109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/23/2015] [Indexed: 11/07/2022]
|
45
|
Sengupta N, Litoff EJ, Baldwin WS. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA. CHEMOSPHERE 2015; 128:299-306. [PMID: 25747156 PMCID: PMC4380624 DOI: 10.1016/j.chemosphere.2015.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 05/20/2023]
Abstract
HR96 is a CAR/PXR/VDR ortholog in invertebrates, and a promiscuous endo- and xenobiotic nuclear receptor involved in acclimation to toxicants. Daphnia HR96 is activated by chemicals such as atrazine and linoleic acid (LA) (n-6 fatty acid), and inhibited by triclosan and docosahexaenoic acid (DHA) (n-3 fatty acid). We hypothesized that inhibitors of HR96 may block the protective responses of HR96 based on previously performed luciferase assays. Therefore, we performed acute toxicity tests with two-chemical mixtures containing a HR96 inhibitor (DHA or triclosan) and a HR96 activator (LA or atrazine). Surprisingly, results demonstrate that triclosan and DHA are less toxic when co-treated with 20-80 μM atrazine. Atrazine provides concentration-dependent protection as lower concentrations have no effect and higher concentrations cause toxicity. LA, a weaker HR96 activator, did not provide protection from triclosan or DHA. Atrazine's protective effects are presumably due to its ability to activate HR96 or other toxicologically relevant transcription factors and induce protective enzymes. Atrazine did not significantly induce glucosyltransferase, a crucial enzyme in triclosan detoxification. However, atrazine did increase antioxidant activities, crucial pathways in triclosan's toxicity, as measured through GST activity and the TROLOX equivalence assay. The increase in antioxidant capacity is consistent with atrazine providing protection from a wide range of toxicants that induce ROS, including triclosan and unsaturated fatty acids predisposed to lipid peroxidation.
Collapse
Affiliation(s)
- Namrata Sengupta
- Clemson University, Environmental Toxicology Program, United States
| | | | - William S Baldwin
- Clemson University, Environmental Toxicology Program, United States; Clemson University, Biological Sciences, United States.
| |
Collapse
|
46
|
GYEONG-JIN YU, IL-WHAN CHOI, GI-YOUNG KIM, BYUNG-WOO KIM, CHEOL PARK, SU-HYUN HONG, SUNG-KWON MOON, HEE-JAE CHA, YOUNG-CHAE CHANG, KEE YOEUP PAEK, WUN-JAE KIM, YUNG HYUN CHOI. Anti-inflammatory potential of saponins derived from cultured wild ginseng roots in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Mol Med 2015; 35:1690-8. [DOI: 10.3892/ijmm.2015.2165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/16/2015] [Indexed: 11/05/2022] Open
|
47
|
Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen AL. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res 2015; 122:281-320. [PMID: 24974185 DOI: 10.1016/b978-0-12-420117-0.00008-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one of the major signaling cascades involved in cell defense and survival against endogenous and exogenous stress. While Nrf2 and its target genes provide protection against various age-related diseases including tumorigenesis, constitutively active Nrf2 in cancer cells increases the expression of cytoprotective genes and, consequently, enhances proliferation via metabolic reprogramming and inhibition of apoptosis. Herein, we review the current understanding of the regulation of Nrf2 in normal cells as well as its dual role in cancer. Furthermore, the mechanisms of Nrf2 dysregulation in cancer, consequences of unchecked Nrf2 activity, and therapies targeting the Keap1-Nrf2 system are discussed.
Collapse
Affiliation(s)
- Hanna M Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Petri Pölönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland; Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Merja Heinäniemi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland; Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland.
| |
Collapse
|
48
|
Bao Y, Wang W, Zhou Z, Sun C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS One 2014; 9:e114764. [PMID: 25532034 PMCID: PMC4273949 DOI: 10.1371/journal.pone.0114764] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/13/2014] [Indexed: 01/16/2023] Open
Abstract
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint.
Collapse
Affiliation(s)
- Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- Department of Cardiovascular Medicine, Affiliated hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Changhao Sun
- School of Public Health, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
49
|
Ren J, Yang J, Xu Y, Huang Q, Yang M, Hu K. Lupiwighteone induces cell cycle arrest and apoptosis and activates the Nrf2/ARE pathway in human neuroblastoma cells. Biomed Pharmacother 2014; 69:153-61. [PMID: 25661352 DOI: 10.1016/j.biopha.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/09/2014] [Indexed: 12/22/2022] Open
Abstract
Lupiwighteone (Lup) is a kind of natural isoflavone, but its pharmacological effect and active mechanism are rarely reported. This study aimed to investigate the anticancer and cancer preventive effects of Lup on human neuroblastoma (SH-SY5Y) cells. We found that Lup could inhibit SH-SY5Y cells growth in a concentration- and time-dependent manner. Further studies suggested that Lup could induce G2/M phase arrest associated with an evident decrease in cyclin B1/D1 and cyclin dependent kinase (CDK) 1/2/4/6 protein expressions. Moreover, Lup could regulate the changes of mitochondrial membrane potential and increase intracellular reactive oxygen species (ROS) production. After the cells were treated with Lup, topical morphological characteristics were observed; apoptosis-related protein expressions, such as Bax, cytochrome c, cleaved caspase-9, cleaved caspase-3 and cleaved PARP-1 were increased; and protein expressions, such as Bcl-2, procaspase-9, PARP-1 and P-Akt were decreased. These changes were observed simultaneously. In addition, Nrf2 transcription factor activation was detected by an ARE-GFP reporter assay. Nrf2 nuclear localization was then investigated using a fluorescence microscope. Furthermore, Nrf2 and Keap1 protein levels were determined by western blot. Our results may provide a scientific basis for the application of the anticancer and cancer preventive effects of Lup on SH-SY5Y cells.
Collapse
Affiliation(s)
- Jie Ren
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China.
| | - Jie Yang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Yuanyuan Xu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Qianhui Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Meng Yang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, 1, Gehu Road, Changzhou, Jiangsu 213164, PR China.
| |
Collapse
|
50
|
NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival. Cell Death Differ 2014; 22:654-64. [PMID: 25323587 DOI: 10.1038/cdd.2014.152] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022] Open
Abstract
Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5' untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics.
Collapse
|