1
|
Uotani K, Tazawa H, Hasei J, Fujiwara T, Yoshida A, Yamakawa Y, Omori T, Sugiu K, Komatsubara T, Kondo H, Morita T, Kiyono M, Yokoo S, Hata T, Kunisada T, Takeda K, Urata Y, Fujiwara T, Ozaki T. Fluorescence-guided assessment of bone and soft-tissue sarcomas for predicting the efficacy of telomerase-specific oncolytic adenovirus. PLoS One 2024; 19:e0298292. [PMID: 38377118 PMCID: PMC10878518 DOI: 10.1371/journal.pone.0298292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Bone and soft-tissue sarcomas are rare malignancies with histological diversity and tumor heterogeneity, leading to the lack of a common molecular target. Telomerase is a key enzyme for keeping the telomere length and human telomerase reverse transcriptase (hTERT) expression is often activated in most human cancers, including bone and soft-tissue sarcomas. For targeting of telomerase-positive tumor cells, we developed OBP-301, a telomerase-specific replication-competent oncolytic adenovirus, in which the hTERT promoter regulates adenoviral E1 gene for tumor-specific viral replication. In this study, we present the diagnostic potential of green fluorescent protein (GFP)-expressing oncolytic adenovirus OBP-401 for assessing virotherapy sensitivity using bone and soft-tissue sarcomas. OBP-401-mediated GFP expression was significantly associated with the therapeutic efficacy of OBP-401 in human bone and soft-tissue sarcomas. In the tumor specimens from 68 patients, malignant and intermediate tumors demonstrated significantly higher expression levels of coxsackie and adenovirus receptor (CAR) and hTERT than benign tumors. OBP-401-mediated GFP expression was significantly increased in malignant and intermediate tumors with high expression levels of CAR and hTERT between 24 and 48 h after infection. Our results suggest that the OBP-401-based GFP expression system is a useful tool for predicting the therapeutic efficacy of oncolytic virotherapy on bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Koji Uotani
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuaki Yamakawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroya Kondo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Kiyono
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Suguru Yokoo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Hata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Sudo H, Tsuji AB, Sugyo A, Harada Y, Nagayama S, Katagiri T, Nakamura Y, Higashi T. Head-to-head comparison of three chelates reveals DOTAGA promising for 225 Ac labeling of anti-FZD10 antibody OTSA101. Cancer Sci 2023; 114:4677-4690. [PMID: 37781962 PMCID: PMC10728013 DOI: 10.1111/cas.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
To select the most suitable chelate for 225 Ac radiolabeling of the anti-FZD10 antibody OTSA101, we directly compared three chelates: S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2,2',2″-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (p-SCN-Bn-DOTAGA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DO3A-NHS-ester). We evaluated the binding affinity of the chelate-conjugated OTSA101 antibodies, as well as the labeling efficiency and stability in murine serum of 225 Ac-labeled OTSA101 as in vitro properties. The biodistribution, intratumoral distribution, absorbed doses, and therapeutic effects of the chelate-conjugated OTSA101 antibodies were assessed in the synovial sarcoma mouse model SYO-1. Of the three conjugates, DOTAGA conjugation had the smallest impact on the binding affinity (p < 0.01). The labeling efficiencies of DOTAGA-OTSA101 and DO3A-OTSA101 were 1.8-fold higher than that of DOTA-OTSA101 (p < 0.01). The stabilities were similar between 225 Ac-labeled DOTA-OTSA101, DOTAGA-OTSA101, and DO3A-OTSA101in serum at 37 and 4°C. The dosimetric analysis based on the biodistribution revealed significantly higher tumor-absorbed doses by 225 Ac-labeled DOTA-OTSA101 and DOTAGA-OTSA101 compared with 225 Ac-DO3A-OTSA101 (p < 0.05). 225 Ac-DOTAGA-OTSA101 exhibited the highest tumor-to-bone marrow ratio, with bone marrow being the dose-limiting tissue. The therapeutic and adverse effects were not significantly different between the three conjugates. Our findings indicate that among the three evaluated chelates, DOTAGA appears to be the most promising chelate to produce 225 Ac-labeled OTSA101 with high binding affinity and high radiochemical yields while providing high absorbed doses to tumors and limited absorbed doses to bone marrow.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | - Aya Sugyo
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | | | | | - Toyomasa Katagiri
- Division of Genome MedicineInstitute of Advanced Medical Sciences, Tokushima UniversityTokushimaJapan
- National Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Yusuke Nakamura
- National Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Tatsuya Higashi
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| |
Collapse
|
3
|
Morgan MA, Mohammad Parast S, Iwanaszko M, Aoi Y, Yoo D, Dumar ZJ, Howard BC, Helmin KA, Liu Q, Thakur WR, Zeidner JM, Singer BD, Eichler EE, Shilatifard A. ELOA3: A primate-specific RNA polymerase II elongation factor encoded by a tandem repeat gene cluster. SCIENCE ADVANCES 2023; 9:eadj1261. [PMID: 37992162 PMCID: PMC10664989 DOI: 10.1126/sciadv.adj1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.
Collapse
Affiliation(s)
- Marc A. J. Morgan
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Saeid Mohammad Parast
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Zachary J. Dumar
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin C. Howard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qianli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - William R. Thakur
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D. Singer
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Benabdallah NS, Dalal V, Scott RW, Marcous F, Sotiriou A, Kommoss FKF, Pejkovska A, Gaspar L, Wagner L, Sánchez-Rivera FJ, Ta M, Thornton S, Nielsen TO, Underhill TM, Banito A. Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability. Nat Struct Mol Biol 2023; 30:1640-1652. [PMID: 37735617 PMCID: PMC10643139 DOI: 10.1038/s41594-023-01096-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.
Collapse
Affiliation(s)
- Nezha S Benabdallah
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vineet Dalal
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fady Marcous
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afroditi Sotiriou
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix K F Kommoss
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Anastasija Pejkovska
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ludmila Gaspar
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wagner
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana Banito
- Soft Tissue Sarcoma Research Group, Hopp Children's Cancer Center, Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Luk SJ, Schoppmeyer R, Ijsselsteijn ME, Somarakis A, Acem I, Remst DFG, Cox DT, van Bergen CAM, Briaire-de Bruijn I, Grönloh MLB, van der Meer WJ, Hawinkels LJAC, Koning RI, Bos E, Bovée JVMG, de Miranda NFCC, Szuhai K, van Buul JD, Falkenburg JHF, Heemskerk MHM. VISTA Expression on Cancer-Associated Endothelium Selectively Prevents T-cell Extravasation. Cancer Immunol Res 2023; 11:1480-1492. [PMID: 37695550 DOI: 10.1158/2326-6066.cir-22-0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Cancers evade T-cell immunity by several mechanisms such as secretion of anti-inflammatory cytokines, down regulation of antigen presentation machinery, upregulation of immune checkpoint molecules, and exclusion of T cells from tumor tissues. The distribution and function of immune checkpoint molecules on tumor cells and tumor-infiltrating leukocytes is well established, but less is known about their impact on intratumoral endothelial cells. Here, we demonstrated that V-domain Ig suppressor of T-cell activation (VISTA), a PD-L1 homolog, was highly expressed on endothelial cells in synovial sarcoma, subsets of different carcinomas, and immune-privileged tissues. We created an ex vivo model of the human vasculature and demonstrated that expression of VISTA on endothelial cells selectively prevented T-cell transmigration over endothelial layers under physiologic flow conditions, whereas it does not affect migration of other immune cell types. Furthermore, endothelial VISTA correlated with reduced infiltration of T cells and poor prognosis in metastatic synovial sarcoma. In endothelial cells, we detected VISTA on the plasma membrane and in recycling endosomes, and its expression was upregulated by cancer cell-secreted factors in a VEGF-A-dependent manner. Our study reveals that endothelial VISTA is upregulated by cancer-secreted factors and that it regulates T-cell accessibility to cancer and healthy tissues. This newly identified mechanism should be considered when using immunotherapeutic approaches aimed at unleashing T cell-mediated cancer immunity.
Collapse
Affiliation(s)
- Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rouven Schoppmeyer
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Antonios Somarakis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ibtissam Acem
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Oncological and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan T Cox
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Werner J van der Meer
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Isoyama S, Tamaki N, Noguchi Y, Okamura M, Yoshimatsu Y, Kondo T, Suzuki T, Yaguchi SI, Dan S. Subtype-selective induction of apoptosis in translocation-related sarcoma cells induced by PUMA and BIM upon treatment with pan-PI3K inhibitors. Cell Death Dis 2023; 14:169. [PMID: 36849535 PMCID: PMC9971170 DOI: 10.1038/s41419-023-05690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Translocation-related sarcomas (TRSs) harbor an oncogenic fusion gene generated by chromosome translocation and account for approximately one-third of all sarcomas; however, effective targeted therapies have yet to be established. We previously reported that a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, ZSTK474, was effective for the treatment of sarcomas in a phase I clinical trial. We also demonstrated the efficacy of ZSTK474 in a preclinical model, particularly in cell lines from synovial sarcoma (SS), Ewing's sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS), all of which harbor chromosomal translocations. ZSTK474 selectively induced apoptosis in all these sarcoma cell lines, although the precise mechanism underlying the induction of apoptosis remained unclear. In the present study, we aimed to determine the antitumor effect of PI3K inhibitors, particularly with regards to the induction of apoptosis, against various TRS subtypes using cell lines and patient-derived cells (PDCs). All of the cell lines derived from SS (six), ES (two) and ARMS (one) underwent apoptosis accompanied by the cleavage of poly-(ADP-ribose) polymerase (PARP) and the loss of mitochondrial membrane potential. We also observed apoptotic progression in PDCs from SS, ES and clear cell sarcoma (CCS). Transcriptional analyses revealed that PI3K inhibitors triggered the induction of PUMA and BIM and the knockdown of these genes by RNA interference efficiently suppressed apoptosis, suggesting their functional involvement in the progression of apoptosis. In contrast, TRS-derived cell lines/PDCs from alveolar soft part sarcoma (ASPS), CIC-DUX4 sarcoma and dermatofibrosarcoma protuberans failed to undergo apoptosis nor induce PUMA and BIM expression, as well as cell lines derived from non-TRSs and carcinomas. Thus, we conclude that PI3K inhibitors induce apoptosis in selective TRSs such as ES and SS via the induction of PUMA and BIM and the subsequent loss of mitochondrial membrane potential. This represents proof of concept for PI3K-targeted therapy, particularly such TRS patients.
Collapse
Affiliation(s)
- Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Naomi Tamaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yutaka Noguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yuki Yoshimatsu
- Department of Patient-derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shin-Ichi Yaguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- OHARA Pharmaceutical Co., Ltd., 36F St. Luke's Tower, 8-1 Akashi-cho, Chuo-ku, Tokyo, 104-6591, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
7
|
Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Synovial Sarcoma Preclinical Modeling: Integrating Transgenic Mouse Models and Patient-Derived Models for Translational Research. Cancers (Basel) 2023; 15:cancers15030588. [PMID: 36765545 PMCID: PMC9913760 DOI: 10.3390/cancers15030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Synovial sarcomas (SyS) are rare malignant tumors predominantly affecting children, adolescents, and young adults. The genetic hallmark of SyS is the t(X;18) translocation encoding the SS18-SSX fusion gene. The fusion protein interacts with both the BAF enhancer and polycomb repressor complexes, and either activates or represses target gene transcription, resulting in genome-wide epigenetic perturbations and altered gene expression. Several experimental in in vivo models, including conditional transgenic mouse models expressing the SS18-SSX fusion protein and spontaneously developing SyS, are available. In addition, patient-derived xenografts have been estab-lished in immunodeficient mice, faithfully reproducing the complex clinical heterogeneity. This review focuses on the main molecular features of SyS and the related preclinical in vivo and in vitro models. We will analyze the different conditional SyS mouse models that, after combination with some of the few other recurrent alterations, such as gains in BCL2, Wnt-β-catenin signaling, FGFR family, or loss of PTEN and SMARCB1, have provided additional insight into the mechanisms of synovial sarcomagenesis. The recent advancements in the understanding of SyS biology and improvements in preclinical modeling pave the way to the development of new epigenetic drugs and immunotherapeutic approaches conducive to new treatment options.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
8
|
Murayama Y, Kasahara Y, Kubo N, Shin C, Imamura M, Oike N, Ariizumi T, Saitoh A, Baba M, Miyazaki T, Suzuki Y, Ling Y, Okuda S, Mihara K, Ogose A, Kawashima H, Imai C. NKp44-based chimeric antigen receptor effectively redirects primary T cells against synovial sarcoma. Transl Oncol 2022; 25:101521. [PMID: 35998437 PMCID: PMC9420389 DOI: 10.1016/j.tranon.2022.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND T-cell receptor-engineered T-cell therapies have achieved promising response rates against synovial sarcoma in clinical trials, but their applicability is limited owing to the HLA matching requirement. Chimeric antigen receptor (CAR) can redirect primary T cells to tumor-associated antigens without requiring HLA matching. However, various obstacles, including the paucity of targetable antigens, must be addressed for synovial sarcoma. Ligands for natural killer (NK) cell-activating receptors are highly expressed by tumor cells. METHODS The surface expression of ligands for NK cell-activating receptors in synovial sarcoma cell lines was analyzed. We analyzed RNA sequencing data deposited in a public database to evaluate NKp44-ligand expression. Primary T cells retrovirally transduced with CAR targeting NKp44 ligands were evaluated for their functions in synovial sarcoma cells. Alterations induced by various stimuli, including a histone deacetylase inhibitor, a hypomethylating agent, inflammatory cytokines, and ionizing radiation, in the expression levels of NKp44 ligands were investigated. RESULTS Ligands for NKp44 and NKp30 were expressed in all cell lines. NKG2D ligands were barely expressed in a single cell line. None of the cell lines expressed NKp46 ligand. Primary synovial sarcoma cells expressed the mRNA of the truncated isoform of MLL5, a known cellular ligand for NKp44. NKp44-based CAR T cells specifically recognize synovial sarcoma cells, secrete interferon-γ, and exert suppressive effects on tumor cell growth. No stimulus altered the expression of NKp44 ligands. CONCLUSION NKp44-based CAR T cells can redirect primary human T cells to synovial sarcoma cells. CAR-based cell therapies may be an option for treating synovial sarcomas.
Collapse
Affiliation(s)
- Yudai Murayama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasushi Kasahara
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Nobuhiro Kubo
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Chansu Shin
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Masaru Imamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Minori Baba
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Tomohiro Miyazaki
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuko Suzuki
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; CURED, Inc., Yokohama, Japan
| | - Yiwei Ling
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan.
| |
Collapse
|
9
|
Establishment and characterization of NCC-SS5-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell 2022; 35:1290-1297. [PMID: 35655041 DOI: 10.1007/s13577-022-00721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2022]
Abstract
Synovial sarcoma (SS) is a rare and aggressive mesenchymal malignancy driven by a unique chromosomal translocation that generates the expression of the SS18:SSX fusion protein. It occurs at almost any anatomical site and most commonly in young adults. The standard curative treatment for primary SS is a wide surgical resection combined with radiotherapy and/or neoadjuvant chemotherapy. The prognosis of SS varies among patients, with the 5 years survival rate ranging from 50 to 60% in adults and 90% in children. Although patient-derived cell lines are a useful resource for the development of new therapies, only a few are available from public cell banks. Therefore, this study aimed to establish and characterize a novel SS cell line. We successfully established a novel cell line, NCC-SS5-C1, harboring an SS18-SSX1 fusion gene. NCC-SS5-C1 cells demonstrated constant growth and invasion ability. We performed integrative drug screening using eight SS cell lines, including NCC-SS5-C1 cells, and examined the response spectrum of existing anticancer agents. We conclude that NCC-SS5-C1 is a useful resource for studying SS.
Collapse
|
10
|
Li X, Dean DC, Yuan J, Temple TH, Trent JC, Rosenberg AE, Yu S, Hornicek FJ, Duan Z. Inhibition of CDK7-dependent transcriptional addiction is a potential therapeutic target in synovial sarcoma. Biomed Pharmacother 2022; 149:112888. [PMID: 35367753 DOI: 10.1016/j.biopha.2022.112888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Synovial sarcoma is typical aggressive malignant without satisfactory treatment outcome in adult series. Cyclin-dependent kinases (CDKs) in transcription have been considered promising molecular targets in cancer. Among these, CDK7 has been shown to play important roles in the pathogenesis of malignancies. However, the modulation mechanism of CDK7-regulated transcription in synovial sarcoma is unknown. In the present study, we aim to determine the expression and function of CDK7 in the transcription cycle of RNA polymerase II (RNAP II), and evaluate its prognostic and therapeutic significance in synovial sarcoma. Results showed that overexpression of CDK7 correlates with higher clinical stage and grade, and worse outcomes in clinic. High CDK7 expression was confirmed in all tested human synovial sarcoma cell lines and CDK7 was largely localized to the cell nucleus. Downregulation through siRNA or inhibition with the CDK7-targeting agent BS-181 exhibited dose-dependent cytotoxicity and prevented cell colony formation. Western blots demonstrated that inhibition of CDK7 paused transcription by a reduction of RNAP II phosphorylation. Blocking CDK7-dependent transcriptional addiction was accompanied by promotion of apoptosis. Furthermore, the CDK7-specific inhibitor reduced 3D spheroid formation and migration of synovial sarcoma. Collectively, our findings highlight the role of CDK7-dependent transcriptional addiction in human synovial sarcoma. CDK7-specific cytotoxic agents are therefore promising novel treatment options for synovial sarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, Keck School of Medicine at University of Southern California (USC), USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave, NTT 3449, Los Angeles, California, 90033, USA.
| | - Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Thomas H Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Jonathan C Trent
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Andrew E Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Sudo H, Tsuji AB, Sugyo A, Harada Y, Nagayama S, Katagiri T, Nakamura Y, Higashi T. FZD10-targeted α-radioimmunotherapy with 225 Ac-labeled OTSA101 achieves complete remission in a synovial sarcoma model. Cancer Sci 2021; 113:721-732. [PMID: 34935247 PMCID: PMC8819345 DOI: 10.1111/cas.15235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial sarcomas are rare tumors arising in adolescents and young adults. The prognosis for advanced disease is poor, with an overall survival of 12‐18 months. Frizzled homolog 10 (FZD10) is overexpressed in most synovial sarcomas, making it a promising therapeutic target. The results of a phase 1 trial of β‐radioimmunotherapy (RIT) with the 90Y‐labeled anti‐FZD10 antibody OTSA101 revealed a need for improved efficacy. The present study evaluated the potential of α‐RIT with OTSA101 labeled with the α‐emitter 225Ac. Competitive inhibition and cell binding assays showed that specific binding of 225Ac‐labeled OTSA101 to SYO‐1 synovial sarcoma cells was comparable to that of the imaging agent 111In‐labeled OTSA101. Biodistribution studies showed high uptake in SYO‐1 tumors and low uptake in normal organs, except for blood. Dosimetric studies showed that the biologically effective dose (BED) of 225Ac‐labeled OTSA101 for tumors was 7.8 Bd higher than that of 90Y‐labeled OTSA101. 90Y‐ and 225Ac‐labeled OTSA101 decreased tumor volume and prolonged survival. 225Ac‐labeled OTSA101 achieved a complete response in 60% of mice, and no recurrence was observed. 225Ac‐labeled OTSA101 induced a larger amount of necrosis and apoptosis than 90Y‐labeled OTSA101, although the cell proliferation decrease was comparable. The BED for normal organs and tissues was tolerable; no treatment‐related mortality or obvious toxicity, except for temporary body weight loss, was observed. 225Ac‐labeled OTSA101 provided a high BED for tumors and achieved a 60% complete response in the synovial sarcoma mouse model SYO‐1. RIT with 225Ac‐labeled OTSA101 is a promising therapeutic option for synovial sarcoma.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | | | - Satoshi Nagayama
- Department of Surgery, Uji Tokushukai Medical Center, Kyoto, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
12
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
13
|
Li J, Mulvihill TS, Li L, Barrott JJ, Nelson ML, Wagner L, Lock IC, Pozner A, Lambert SL, Ozenberger BB, Ward MB, Grossmann AH, Liu T, Banito A, Cairns BR, Jones KB. A Role for SMARCB1 in Synovial Sarcomagenesis Reveals That SS18-SSX Induces Canonical BAF Destruction. Cancer Discov 2021; 11:2620-2637. [PMID: 34078620 PMCID: PMC8567602 DOI: 10.1158/2159-8290.cd-20-1219] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 01/09/2023]
Abstract
Reduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined Smarcb1 genetic loss with SS18-SSX expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from SS18-SSX alone, indicating a defining role for SMARCB1 in synovial sarcoma. Smarcb1 silencing alone in mesenchyme modeled epithelioid sarcomagenesis. In mouse and human synovial sarcoma cells, SMARCB1 was identified within PBAF and canonical BAF (CBAF) complexes, coincorporated with SS18-SSX in the latter. Recombinant expression of CBAF components in human cells reconstituted CBAF subcomplexes that contained equal levels of SMARCB1 regardless of SS18 or SS18-SSX inclusion. In vivo, SS18-SSX expression led to whole-complex CBAF degradation, rendering increases in the relative prevalence of other BAF-family subtypes, PBAF and GBAF complexes, over time. Thus, SS18-SSX alters BAF subtypes levels/balance and genome distribution, driving synovial sarcomagenesis. SIGNIFICANCE: The protein level of BAF component SMARCB1 is reduced in synovial sarcoma but plays a defining role, incorporating into PBAF and SS18-SSX-containing canonical BAF complexes. Reduced levels of SMARCB1 derive from whole-complex degradation of canonical BAF driven by SS18-SSX, with relative increases in the abundance of other BAF-family subtypes.See related commentary by Maxwell and Hargreaves, p. 2375.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Jinxiu Li
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Timothy S. Mulvihill
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Li Li
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jared J. Barrott
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mary L. Nelson
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Lena Wagner
- Hopp Children's Cancer Center (KiTZ), German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Ian C. Lock
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amir Pozner
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sydney Lynn Lambert
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Benjamin B. Ozenberger
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Michael B. Ward
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Allie H. Grossmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Ting Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Bradley R. Cairns
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah.,Corresponding Authors: Kevin B. Jones, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112. Phone: 801-585-0300; Fax: 801-585-7084; E-mail: ; and Bradley R. Cairns,
| | - Kevin B. Jones
- Department of Orthopedics, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Corresponding Authors: Kevin B. Jones, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112. Phone: 801-585-0300; Fax: 801-585-7084; E-mail: ; and Bradley R. Cairns,
| |
Collapse
|
14
|
Murayama Y, Kawashima H, Kubo N, Shin C, Kasahara Y, Imamura M, Oike N, Ariizumi T, Saitoh A, Mihara K, Umezu H, Ogose A, Imai C. Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Transl Oncol 2021; 14:101227. [PMID: 34555727 PMCID: PMC8461377 DOI: 10.1016/j.tranon.2021.101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
HER2-targeted/4-1BB costimulated CAR T cells recognized synovial sarcoma cells. HER2-targeted CAR T cells secrete interferon gamma and tumor necrosis factor alpha. HER2-targeted CAR T cells exert cytotoxic effects in synovial sarcoma cells. HER2-targeted CAR T cell therapy for chemo-refractory or relapsed synovial sarcoma.
Background Synovial sarcoma is a rare malignant soft-tissue tumor that is prevalent in adolescents and young adults, and poor prognosis has been reported in patients with metastatic lesions. Chimeric antigen receptor (CAR) T-cell therapy is an emerging novel therapy for solid tumors; however, its application in synovial sarcoma has not yet been explored. Methods A novel human epidermal growth factor receptor 2 (HER2)-targeted CAR containing scFv-FRP5, CD8α hinge and transmembrane domains as well as 4-1BB costimulatory and CD3ζ signaling domains was developed. Three synovial sarcoma cell lines that expressed the fusion transcript SS18-SSX1/2/4 were used in the study. Cytokine secretion assay, cytotoxicity assay, and real-time cell analysis experiments were conducted to confirm the function of T cells transduced with the CAR gene. Results High cell-surface expression of HER2 was observed in all the cell lines. HER2-targeted/4-1BB-costimulated CAR T cells specifically recognized the synovial sarcoma cells, secreted interferon gamma and tumor necrosis factor alpha, and exerted cytotoxic effects in these cells. Conclusion To the best of our knowledge, this is the first study to indicate that HER2-targeted CAR T cells are directly effective against molecularly defined synovial sarcoma cells. Furthermore, our findings might set the basis for developing improved CAR T cell-based therapies for chemo-refractory or relapsed synovial sarcoma.
Collapse
Affiliation(s)
- Yudai Murayama
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuhiro Kubo
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Yasushi Kasahara
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
15
|
Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat Biomed Eng 2021; 5:914-925. [PMID: 33782572 DOI: 10.1038/s41551-021-00692-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
Cancer recurrence can arise owing to rare circulating cancer stem cells (CSCs) that are resistant to chemotherapies and radiotherapies. Here, we show that a double-network hydrogel can rapidly reprogramme differentiated cancer cells into CSCs. Spheroids expressing elevated levels of the stemness genes Sox2, Oct3/4 and Nanog formed within 24 h of seeding the gel with cells from any of six human cancer cell lines or with brain cancer cells resected from patients with glioblastoma. Human brain cancer cells cultured on the double-network hydrogel and intracranially injected in immunodeficient mice led to higher tumorigenicity than brain cancer cells cultured on single-network gels. We also show that the double-network gel induced the phosphorylation of tyrosine kinases, that gel-induced CSCs from primary brain cancer cells were eradicated by an inhibitor of the platelet-derived growth factor receptor, and that calcium channel receptors and the protein osteopontin were essential for the regulation of gel-mediated induction of stemness in brain cancer cells.
Collapse
|
16
|
Unmasking BCL-2 Addiction in Synovial Sarcoma by Overcoming Low NOXA. Cancers (Basel) 2021; 13:cancers13102310. [PMID: 34065859 PMCID: PMC8150384 DOI: 10.3390/cancers13102310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Synovial sarcoma is a soft-tissue sarcoma that lacks effective systemic therapy and carries poor prognosis due to frequent late local recurrence and metastases. The cancer is known to be driven in part by increased expression of the pro-survival protein BCL-2. Surprisingly, synovial sarcoma proved resistant to BCL-2 inhibitors in pre-clinical trials. We identified increased activity of a second pro-survival protein, MCL-1, as responsible for this resistance. We showed that co-targeting both BCL-2 and MCL-1 proves to be an effective therapeutic approach both in cell culture and animal models of synovial sarcoma, supporting translation into clinical trials. Abstract Synovial sarcoma (SS) is frequently diagnosed in teenagers and young adults and continues to be treated with polychemotherapy with variable success. The SS18-SSX gene fusion is pathognomonic for the disease, and high expression of the anti-apoptotic BCL-2 pathologically supports the diagnosis. As the oncogenic SS18-SSX fusion gene itself is not druggable, BCL-2 inhibitor-based therapies are an appealing therapeutic opportunity. Venetoclax, an FDA-approved BCL-2 inhibitor that is revolutionizing care in some BCL-2-expressing hematological cancers, affords an intriguing therapeutic possibility to treat SS. In addition, there are now dozens of venetoclax-based combination therapies in clinical trials in hematological cancers, attributing to the limited toxicity of venetoclax. However, preclinical studies of venetoclax in SS have demonstrated an unexpected ineffectiveness. In this study, we analyzed the response of SS to venetoclax and the underlying BCL-2 family biology in an effort to understand venetoclax treatment failure and find a therapeutic strategy to sensitize SS to venetoclax. We found remarkably depressed levels of the endogenous MCL-1 inhibitor, NOXA, in SS compared to other sarcomas. Expressing NOXA led to sensitization to venetoclax, as did the addition of the MCL-1 BH3 mimetic, S63845. Importantly, the venetoclax/S63845 combination induced tumor regressions in SS patient-derived xenograft (PDX) models. As a very close analog of S63845 (S64315) is now in clinical trials with venetoclax in AML (NCT03672695), the combination of MCL-1 BH3 mimetics and venetoclax should be considered for SS patients as a new therapy.
Collapse
|
17
|
Yokoo S, Fujiwara T, Yoshida A, Uotani K, Morita T, Kiyono M, Hasei J, Nakata E, Kunisada T, Iwata S, Yonemoto T, Ueda K, Ozaki T. Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma. Cancers (Basel) 2021; 13:1823. [PMID: 33920416 PMCID: PMC8069269 DOI: 10.3390/cancers13081823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1+CD9+ EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1+CD9+ EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1+CD9+ EVs and indicates the therapeutic potential of MCT1 in SS.
Collapse
Affiliation(s)
- Suguru Yokoo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Koji Uotani
- Department of Orthopaedic Surgery, Okayama Rosai Hospital, 1-10-25, Chikkomidorimachi, Minami-ku, Okayama 702-8055, Japan;
| | - Takuya Morita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Masahiro Kiyono
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| | - Shintaro Iwata
- Department of Orthopaedic Surgery, Chiba Cancer Center, 666-2, Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; (S.I.); (T.Y.)
| | - Tsukasa Yonemoto
- Department of Orthopaedic Surgery, Chiba Cancer Center, 666-2, Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; (S.I.); (T.Y.)
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo 135-8550, Japan;
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (S.Y.); (A.Y.); (T.M.); (M.K.); (J.H.); (E.N.); (T.K.); (T.O.)
| |
Collapse
|
18
|
Abdul Hamid MF, Wahab S, Nik Abeed NN, Hau NB, Ban Yu-Lin A. A successfully treated primary tracheal synovial sarcoma. PROCEEDINGS OF SINGAPORE HEALTHCARE 2021. [DOI: 10.1177/2010105820948532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary tracheal synovial sarcoma is a rare malignancy and is usually found incidentally. Tumours can present with cough, dyspnoea, stridor and intermittent haemoptysis. The diagnosis is challenging because it is rare, and the symptoms may mimic other diseases of airway obstruction. A previously well 53-year-old man presented with an eight-month history of cough. He had a history of minimal haemoptysis a few months prior to presentation. Spirometry showed an obstructive pattern, and a computed tomography scan of the thorax revealed an intraluminal tracheal mass. This case highlights that a thorough initial evaluation, including spirometry, leads to an earlier diagnosis and successful treatment of this rare sarcoma.
Collapse
Affiliation(s)
| | - Sopian Wahab
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| | - Nik Nuratiqah Nik Abeed
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| | - Ng Boon Hau
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| | - Andrea Ban Yu-Lin
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| |
Collapse
|
19
|
De Logu F, Ugolini F, Caporalini C, Palomba A, Simi S, Portelli F, Campanacci DA, Beltrami G, Massi D, Nassini R. TRPA1 Expression in Synovial Sarcoma May Support Neural Origin. Biomolecules 2020; 10:biom10101446. [PMID: 33076385 PMCID: PMC7602570 DOI: 10.3390/biom10101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Synovial sarcoma (SS) is a malignant mesenchymal soft tissue neoplasm. Despite its name, the cells of origin are not synovial cells, but rather neural, myogenic, or multipotent mesenchymal stem cells have been proposed as possible cells originators. Unlike other sarcomas, an unusual presentation of long-term pain at the tumor site has been documented, but the exact mechanisms have not been fully clarified yet. The transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel mainly expressed in primary sensory neurons, where it functions as a pain sensor. TRPA1 have also been described in multiple non-excitable cells, including those derived from neural crest stem cells such as glial cells and, in particular, Schwann cell oligodendrocytes and astrocytes. We evaluated TRPA1 expression in SS. We selected a cohort of 41 SSs, and by immunohistochemistry, we studied TRPA1 expression. TRPA1 was found in 92.6% of cases. Triple TRPA1/pS100/SOX10 and TRPA1/SLUG/SNAIL staining strongly supports a neural origin of SS. TRPA1 positivity was also observed in a subset of cases negative with pS100, SOX10 and/or SLUG/SNAIL, and these divergent phenotypes may reflect a process of tumor plasticity and dedifferentiation of neural-derived SSs. Given the functional diversity of TRPA1 and its expression in neuronal and non-neuronal multipotent neural crest stem cells, it remains to be determined whether TRPA1 expression in SSs neoplastic cells plays a role in the molecular mechanism associated with premonitory pain symptoms and tumor progression.
Collapse
Affiliation(s)
- Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | | | - Annarita Palomba
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Sara Simi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Francesca Portelli
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Domenico Andrea Campanacci
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Giovanni Beltrami
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
- Correspondence: ; Tel.: +39-055-794-9082
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| |
Collapse
|
20
|
Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, Uno Y, Moriyama H, Sawa M, Nagakawa Y, Tsuchida A, Matsumoto M, Nakamura M, Nakayama R, Masuda M. Feasibility of Targeting Traf2-and-Nck-Interacting Kinase in Synovial Sarcoma. Cancers (Basel) 2020; 12:cancers12051258. [PMID: 32429395 PMCID: PMC7281028 DOI: 10.3390/cancers12051258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023] Open
Abstract
Background: The treatment of patients with metastatic synovial sarcoma is still challenging, and the development of new molecular therapeutics is desirable. Dysregulation of Wnt signaling has been implicated in synovial sarcoma. Traf2-and-Nck-interacting kinase (TNIK) is an essential transcriptional co-regulator of Wnt target genes. We examined the efficacy of a small interfering RNA (siRNA) to TNIK and a small-molecule TNIK inhibitor, NCB-0846, for synovial sarcoma. Methods: The expression of TNIK was determined in 20 clinical samples of synovial sarcoma. The efficacy of NCB-0846 was evaluated in four synovial sarcoma cell lines and a mouse xenograft model. Results: We found that synovial sarcoma cell lines with Wnt activation were highly dependent upon the expression of TNIK for proliferation and survival. NCB-0846 induced apoptotic cell death in synovial sarcoma cells through blocking of Wnt target genes including MYC, and oral administration of NCB-846 induced regression of xenografts established by inoculation of synovial sarcoma cells. Discussion: It has become evident that activation of Wnt signaling is causatively involved in the pathogenesis of synovial sarcoma, but no molecular therapeutics targeting the pathway have been approved. This study revealed for the first time the therapeutic potential of TNIK inhibition in synovial sarcoma.
Collapse
Affiliation(s)
- Tetsuya Sekita
- Laboratory of Collaborative Research, Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (T.S.); (M.M.)
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Tesshi Yamada
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
- Correspondence:
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (E.K.); (A.K.)
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Toru Hirozane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (E.K.); (A.K.)
| | - Yuko Uno
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Hideki Moriyama
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Masaaki Sawa
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Robert Nakayama
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Mari Masuda
- Laboratory of Collaborative Research, Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (T.S.); (M.M.)
| |
Collapse
|
21
|
Abe K, Yamamoto N, Domoto T, Bolidong D, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Inatani H, Aoki Y, Higuchi T, Taniguchi Y, Yonezawa H, Araki Y, Aiba H, Minamoto T, Tsuchiya H. Glycogen synthase kinase 3β as a potential therapeutic target in synovial sarcoma and fibrosarcoma. Cancer Sci 2019; 111:429-440. [PMID: 31808966 PMCID: PMC7004542 DOI: 10.1111/cas.14271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare cancer type. Almost half are unresponsive to multi-pronged treatment and might therefore benefit from biologically targeted therapy. An emerging target is glycogen synthase kinase (GSK)3β, which is implicated in various diseases including cancer. Here, we investigated the expression, activity and putative pathological role of GSK3β in synovial sarcoma and fibrosarcoma, comprising the majority of STS that are encountered in orthopedics. Expression of the active form of GSK3β (tyrosine 216-phosphorylated) was higher in synovial sarcoma (SYO-1, HS-SY-II, SW982) and in fibrosarcoma (HT1080) tumor cell lines than in untransformed fibroblast (NHDF) cells that are assumed to be the normal mesenchymal counterpart cells. Inhibition of GSK3β activity by pharmacological agents (AR-A014418, SB-216763) or of its expression by RNA interference suppressed the proliferation of sarcoma cells and their invasion of collagen gel, as well as inducing their apoptosis. These effects were associated with G0/G1-phase cell cycle arrest and decreased expression of cyclin D1, cyclin-dependent kinase (CDK)4 and matrix metalloproteinase 2. Intraperitoneal injection of the GSK3β inhibitors attenuated the growth of SYO-1 and HT1080 xenografts in athymic mice without obvious detrimental effects. It also mitigated cell proliferation and induced apoptosis in the tumors of mice. This study indicates that increased activity of GSK3β in synovial sarcoma and fibrosarcoma sustains tumor proliferation and invasion through the cyclin D1/CDK4-mediated pathway and enhanced extracellular matrix degradation. Our results provide a biological basis for GSK3β as a new and promising therapeutic target for these STS types.
Collapse
Affiliation(s)
- Kensaku Abe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Dilireba Bolidong
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Inatani
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Aoki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshihiro Araki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisaki Aiba
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Lanzi C, Dal Bo L, Favini E, Tortoreto M, Beretta GL, Arrighetti N, Zaffaroni N, Cassinelli G. Overactive IGF1/Insulin Receptors and NRASQ61R Mutation Drive Mechanisms of Resistance to Pazopanib and Define Rational Combination Strategies to Treat Synovial Sarcoma. Cancers (Basel) 2019; 11:cancers11030408. [PMID: 30909453 PMCID: PMC6468361 DOI: 10.3390/cancers11030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Pazopanib is approved for treatment of advanced soft tissue sarcomas, but primary and secondary drug resistance limits its clinical utility. We investigated the molecular mechanisms mediating pazopanib resistance in human synovial sarcoma (SS) models. We found reduced cell sensitivity to pazopanib associated with inefficient inhibition of the two critical signaling nodes, AKT and ERKs, despite strong inhibition of the main drug target, PDGFRα. In the CME-1 cell line, overactivation of IGF1 and Insulin receptors (IGF1R/InsR) sustained AKT activation and pazopanib resistance, which was overcome by a combination treatment with the double IGF1R/InsR inhibitor BMS754807. In the highly pazopanib resistant MoJo cell line, NRASQ61R mutation sustained constitutive ERK activation. Transfection of the NRAS mutant in the pazopanib sensitive SYO-1 cell line increased the drug IC50. MoJo cells treatment with pazopanib in combination with the MEK inhibitor trametinib restored ERK inhibition, synergistically inhibited cell growth, and induced apoptosis. The combination significantly enhanced the antitumor efficacy against MoJo orthotopic xenograft abrogating growth in 38% of mice. These findings identified two different mechanisms of intrinsic pazopanib resistance in SS cells, supporting molecular/immunohistochemical profiling of tumor specimens as a valuable approach to selecting patients who may benefit from rational drug combinations.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Giovanni Luca Beretta
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
23
|
van IJzendoorn DGP, Szuhai K, Briaire-de Bruijn IH, Kostine M, Kuijjer ML, Bovée JVMG. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput Biol 2019; 15:e1006826. [PMID: 30785874 PMCID: PMC6398862 DOI: 10.1371/journal.pcbi.1006826] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Based on morphology it is often challenging to distinguish between the many different soft tissue sarcoma subtypes. Moreover, outcome of disease is highly variable even between patients with the same disease. Machine learning on transcriptome sequencing data could be a valuable new tool to understand differences between and within entities. Here we used machine learning analysis to identify novel diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas. Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue Expression project and the French Sarcoma Group. We identified three groups of tumors that overlap in their molecular profiles as seen with unsupervised t-Distributed Stochastic Neighbor Embedding clustering and a deep neural network. The three groups corresponded to subtypes that are morphologically overlapping. Using a random forest algorithm, we identified novel diagnostic markers for soft tissue sarcoma that distinguished between synovial sarcoma and MPNST, and that we validated using qRT-PCR in an independent series. Next, we identified prognostic genes that are strong predictors of disease outcome when used in a k-nearest neighbor algorithm. The prognostic genes were further validated in expression data from the French Sarcoma Group. One of these, HMMR, was validated in an independent series of leiomyosarcomas using immunohistochemistry on tissue micro array as a prognostic gene for disease-free interval. Furthermore, reconstruction of regulatory networks combined with data from the Connectivity Map showed, amongst others, that HDAC inhibitors could be a potential effective therapy for multiple soft tissue sarcoma subtypes. A viability assay with two HDAC inhibitors confirmed that both leiomyosarcoma and synovial sarcoma are sensitive to HDAC inhibition. In this study we identified novel diagnostic markers, prognostic markers and therapeutic leads from multiple soft tissue sarcoma gene expression datasets. Thus, machine learning algorithms are powerful new tools to improve our understanding of rare tumor entities. Soft-tissue sarcomas are a group of rare cancers that can be challenging to diagnose and treat. The morphology of the different soft-tissue sarcoma subtypes can overlap and the prognosis differs significantly between, and also within, the different subtypes. Moreover, targeted therapies are often not available. In this study we used transcriptome sequencing data from The Cancer Genome Atlas, containing 206 soft-tissue sarcoma samples which we analyzed using different machine learning algorithms to gain novel insights. When possible, we verified our findings in independent datasets or in cell lines. First, we found that both synovial sarcomas and malignant peripheral nerve sheath tumors show the largest overlap with normal tissue derived from the nervous system. This link with neural differentiation for synovial sarcoma was not well established until now. Second, genes were identified whose expression could be used to differentiate between the different soft-tissue sarcomas where the morphology overlaps. Third, novel prognostic genes were identified for separate subtypes. One gene, HMMR, which we found as a strong prognostic gene for leiomyosarcoma, was verified with immunohistochemistry on samples from our archives. Last, using a network analysis new potential therapies were identified. HDAC inhibitors were identified as a potential strong therapy for sarcomas, including leiomyosarcomas, which we verified in cell lines.
Collapse
Affiliation(s)
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marie Kostine
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- * E-mail: (MLK); (JVMGB)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (MLK); (JVMGB)
| |
Collapse
|
24
|
Li X, Seebacher NA, Xiao T, Hornicek FJ, Duan Z. Targeting regulation of cyclin dependent kinase 9 as a novel therapeutic strategy in synovial sarcoma. J Orthop Res 2019; 37:510-521. [PMID: 30488489 DOI: 10.1002/jor.24189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023]
Abstract
Synovial sarcomas hold a low genomic complexity, making it distinct from other types of soft-tissue sarcomas. Many studies focused on targeting the SS18-SSX fusion protein, which presents in over 90% of human synovial sarcomas. This protein acts as an oncogenic promoter in the tumorigenesis of synovial sarcomas, making it an ideal therapeutic target. However, to date there have been no effective strategies targeting SS18-SSX for the treatment of synovial sarcomas. Therefore, it is an urgent need to identify alternative therapeutic targets. More recently, CDK9, a protein involved in RNA transcription regulation, has been investigated for its role in the pathogenesis of cancer. However, the expression and function of CDK9 in synovial sarcomas remains to be elucidated. In the present study, we found that CDK9 was to be largely localized to the cell nucleus, and highly expressed in all tested human synovial sarcoma cell lines and over 90% of human sarcoma tissue microarray samples. High-CDK9 expression was associated with a poorer patient prognosis of human sarcomas. Inhibition of CDK9, with either siRNA or a CDK9 inhibitor, prevented synovial sarcoma cell growth and proliferation in a dose-dependent manner. This was also accompanied with a reduction in the phosphorylation of RNA polymerase II and an increase in the expression of anti-apoptotic proteins. Moreover, CDK9 inhibition decreased sarcoma cell spheroid formation and cell motility. Collectively, these findings highlight the importance of CDK9 in human synovial sarcoma cell growth and proliferation. Therefore, CDK9 may represent a promising target for the treatment of synovial sarcomas. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:510-521, 2019.
Collapse
Affiliation(s)
- Xiaoyang Li
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095.,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| |
Collapse
|
25
|
Xing Z, Wei L, Jiang X, Conroy J, Glenn S, Bshara W, Yu T, Pao A, Tanaka S, Kawai A, Choi C, Wang J, Liu S, Morrison C, Yu YE. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget 2018; 9:36878-36888. [PMID: 30627328 PMCID: PMC6305143 DOI: 10.18632/oncotarget.26416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Synovial sarcoma is the most common pediatric non-rhabdomyosarcoma soft tissue sarcoma and accounts for about 8-10% of all soft tissue sarcoma in childhood and adolescence. The presence of a chromosomal translocation-associated SS18-SSX-fusion gene is causally linked to development of primary synovial sarcoma. Metastases occur in approximately 50-70% of synovial sarcoma cases with yet unknown mechanisms, which led to about 70-80% mortality rate in five years. To explore the possibilities to investigate metastatic mechanisms of synovial sarcoma, we carried out the first genome-wide search for potential genetic biomarkers and drivers associated with metastasis by comparative mutational profiling of 18 synovial sarcoma samples isolated from four patients carrying the primary tumors and another four patients carrying the metastatic tumors through whole exome sequencing. Selected from the candidates yielded from this effort, we examined the effect of the multiple missense mutations of ADAM17, which were identified solely in metastatic synovial sarcoma. The mutant alleles as well as the wild-type control were expressed in the mammalian cells harboring the SS18-SSX1 fusion gene. The ADAM17-P729H mutation was shown to enhance cell migration, a phenotype associated with metastasis. Therefore, like ADAM17-P729H, other mutations we identified solely in metastatic synovial sarcoma may also have the potential to serve as an entry point for unraveling the metastatic mechanisms of synovial sarcoma.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey Conroy
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Sean Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Christopher Choi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl Morrison
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
26
|
Pazopanib-induced changes in protein expression signatures of extracellular vesicles in synovial sarcoma. Biochem Biophys Res Commun 2018; 506:723-730. [DOI: 10.1016/j.bbrc.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023]
|
27
|
Namatame N, Tamaki N, Yoshizawa Y, Okamura M, Nishimura Y, Yamazaki K, Tanaka M, Nakamura T, Semba K, Yamori T, Yaguchi SI, Dan S. Antitumor profile of the PI3K inhibitor ZSTK474 in human sarcoma cell lines. Oncotarget 2018; 9:35141-35161. [PMID: 30416685 PMCID: PMC6205545 DOI: 10.18632/oncotarget.26216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022] Open
Abstract
Treatment of patients with advanced sarcoma remains challenging due to lack of effective medicine, with the development of novel drugs being of keen interest. A pan-PI3K inhibitor, ZSTK474, has been evaluated in clinical trials against a range of advanced solid tumors, with clinical benefit shown in sarcoma patients. In the present study, we developed a panel of 14 human sarcoma cell lines and investigated the antitumor effect of 24 anticancer agents including ZSTK474, other PI3K inhibitors, and those clinically used for sarcoma treatment. ZSTK474 exhibited a similar antiproliferative profile to other PI3K inhibitors but was clearly different from the other drugs examined. Indeed, ZSTK474 inhibited PI3K-downstream pathways, in parallel to growth inhibition, in all cell lines examined, showing proof-of-concept of PI3K inhibition. In addition, ZSTK474 induced apoptosis selectively in Ewing's sarcoma (RD-ES and A673), alveolar rhabdomyosarcoma (SJCRH30) and synovial sarcoma (SYO-1, Aska-SS and Yamato-SS) cell lines, all of which harbor chromosomal translocation and resulting oncogenic fusion genes, EWSR1-FLI1, PAX3-FOXO1 and SS18-SSX, respectively. Finally, animal experiments confirmed the antitumor activity of ZSTK474 in vivo, with superior efficacy observed in translocation-positive cells. These results suggest that ZSTK474 could be a promising drug candidate for treating sarcomas, especially those harboring chromosomal translocation.
Collapse
Affiliation(s)
- Nachi Namatame
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,R&D Center, Zenyaku Kogyo Co. Ltd, Tokyo, Japan
| | - Naomi Tamaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuya Yoshizawa
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yumiko Nishimura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miwa Tanaka
- Division of Carcinogenesis, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Present address: Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Shin-Ichi Yaguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,R&D Center, Zenyaku Kogyo Co. Ltd, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
28
|
Oike N, Kawashima H, Ogose A, Hotta T, Hatano H, Ariizumi T, Sasaki T, Yamagishi T, Umezu H, Endo N. Prognostic impact of the tumor immune microenvironment in synovial sarcoma. Cancer Sci 2018; 109:3043-3054. [PMID: 30133055 PMCID: PMC6172059 DOI: 10.1111/cas.13769] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
The association between the immune status within the tumor microenvironment and prognosis in synovial sarcoma is not well understood. We aimed to investigate the tumor immune microenvironment and analyze its prognostic impact for patients with synovial sarcoma. A total of 36 primary patients who were treated in our institution were retrospectively evaluated. Infiltration of lymphocytes (CD4+, CD8+, and FOXP3+), CD163+ macrophages, and expression of human leukocyte antigen (HLA) class I and programmed death ligand 1 (PD-L1) were evaluated by immunohistochemistry. Moreover, we investigated PD-L1 and programmed death ligand 2 (PD-L2) mRNA expression in 19 of the 36 cases, using real-time PCR. The Kaplan-Meier method was used to estimate overall survival and progression-free survival. Infiltration of lymphocytes and macrophages varied among the patients. Furthermore, the expression of HLA class I was negative or downregulated in 11 specimens. No PD-L1 expression was observed using immunohistochemistry. Moreover, although PD-L1 mRNA expression was observed in 18 of 19 specimens, the expression level was low. A higher infiltration of CD8+ or FOXP3+ lymphocytes in patients was associated with a favorable overall survival. In addition, a higher infiltration of CD163+ macrophages indicated a significantly worse overall and progression-free survival. Infiltration of CD4+ lymphocytes, HLA class I, PD-L1, and PD-L2 expression were not associated with patient prognosis. This represents the first report investigating the tumor immune microenvironment as a prognostic factor in synovial sarcoma, indicating that CD163+ macrophages are associated with tumor progression. Our results underscore the clinical significance of the tumor immune microenvironment in synovial sarcoma.
Collapse
Affiliation(s)
- Naoki Oike
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Ogose
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Tetsuo Hotta
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Hatano
- Department of Orthopedic Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taro Sasaki
- Department of Orthopedic Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Tetsuro Yamagishi
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hajime Umezu
- Department of Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
29
|
Luk SJ, van der Steen DM, Hagedoorn RS, Jordanova ES, Schilham MW, Bovée JV, Cleven AH, Falkenburg JF, Szuhai K, Heemskerk MH. PRAME and HLA Class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy. Oncoimmunology 2018; 7:e1507600. [PMID: 30524904 PMCID: PMC6279314 DOI: 10.1080/2162402x.2018.1507600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023] Open
Abstract
Synovial sarcoma expresses multiple cancer testis antigens that could potentially be targeted by T-cell receptor (TCR) gene therapy. In this study we investigated whether PRAME-TCR-gene therapy could be an effective treatment for synovial sarcoma by investigating the potential of PRAME-specific T-cells to recognize sarcoma cells and by evaluating the expression patterns of PRAME and HLA class I (HLA-I) in synovial sarcoma tumor samples. All PRAME expressing sarcoma cell lines, including 2 primary synovial sarcoma cell cultures (passage < 3), were efficiently recognized by PRAME-specific T-cells. mRNA FISH demonstrated that PRAME was expressed in all synovial sarcoma samples, mostly in an homogeneous pattern. Immunohistochemistry demonstrated low HLA-I baseline expression in synovial sarcoma, but its expression was elevated in specific areas of the tumors, especially in biphasic components of biphasic synovial sarcoma. In 5/11 biphasic synovial sarcoma patients and in 1/17 monophasic synovial sarcoma patients, elevated HLA-I on tumor cells was correlated with infiltration of T-cells in these specific areas. In conclusion, low-baseline expression of HLA-I in synovial sarcoma is elevated in biphasic areas and in areas with densely infiltrating T-cells, which, in combination with homogeneous and high PRAME expression, makes synovial sarcoma potentially a suitable candidate for PRAME-specific TCR-gene therapy.
Collapse
Affiliation(s)
- Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Gynecological Oncology Amsterdam, Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Vmg Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen Hg Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam Hm Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Li HK, Sugyo A, Tsuji AB, Morokoshi Y, Minegishi K, Nagatsu K, Kanda H, Harada Y, Nagayama S, Katagiri T, Nakamura Y, Higashi T, Hasegawa S. α-particle therapy for synovial sarcoma in the mouse using an astatine-211-labeled antibody against frizzled homolog 10. Cancer Sci 2018; 109:2302-2309. [PMID: 29952132 PMCID: PMC6029834 DOI: 10.1111/cas.13636] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022] Open
Abstract
Synovial sarcoma (SS) is a rare yet refractory soft‐tissue sarcoma that predominantly affects young adults. We show in a mouse model that radioimmunotherapy (RIT) with an α‐particle emitting anti‐Frizzled homolog 10 (FZD10) antibody, synthesized using the α‐emitter radionuclide astatine‐211 (211At‐OTSA101), suppresses the growth of SS xenografts more efficiently than the corresponding β‐particle emitting anti‐FZD10 antibody conjugated with the β‐emitter yettrium‐90 (90Y‐OTSA101). In biodistribution analysis, 211At was increased in the SS xenografts but decreased in other tissues up to 1 day after injection as time proceeded, albeit with a relatively higher uptake in the stomach. Single 211At‐OTSA101 doses of 25 and 50 μCi significantly suppressed SS tumor growth in vivo, whereas a 50‐μCi dose of 90Y‐OTSA101 was needed to achieve this. Importantly, 50 μCi of 211At‐OTSA101 suppressed tumor growth immediately after injection, whereas this effect required several days in the case of 90Y‐OTSA101. Both radiolabeled antibodies at the 50‐μCi dosage level significantly prolonged survival. Histopathologically, severe cellular damage accompanied by massive cell death was evident in the SS xenografts at even 1 day after the 211At‐OTSA101 injection, but these effects were relatively milder with 90Y‐OTSA101 at the same timepoint, even though the absorbed doses were comparable (3.3 and 3.0 Gy, respectively). We conclude that α‐particle RIT with 211At‐OTSA101 is a potential new therapeutic option for SS.
Collapse
Affiliation(s)
- Huizi Keiko Li
- Radiation and Cancer Biology Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukie Morokoshi
- Radiation and Cancer Biology Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Katsuyuki Minegishi
- Targetry and Target Chemistry Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kotaro Nagatsu
- Targetry and Target Chemistry Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroaki Kanda
- Department of Pathology, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Satoshi Nagayama
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sumitaka Hasegawa
- Radiation and Cancer Biology Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
31
|
McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, Araujo DM, Wang WL, Tsai JW, Yeagley M, Wagner AJ, Futreal PA, Khan J, Lazar AJ, Kadoch C. The SS18-SSX Fusion Oncoprotein Hijacks BAF Complex Targeting and Function to Drive Synovial Sarcoma. Cancer Cell 2018; 33:1128-1141.e7. [PMID: 29861296 PMCID: PMC6791822 DOI: 10.1016/j.ccell.2018.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
Synovial sarcoma (SS) is defined by the hallmark SS18-SSX fusion oncoprotein, which renders BAF complexes aberrant in two manners: gain of SSX to the SS18 subunit and concomitant loss of BAF47 subunit assembly. Here we demonstrate that SS18-SSX globally hijacks BAF complexes on chromatin to activate an SS transcriptional signature that we define using primary tumors and cell lines. Specifically, SS18-SSX retargets BAF complexes from enhancers to broad polycomb domains to oppose PRC2-mediated repression and activate bivalent genes. Upon suppression of SS18-SSX, reassembly of BAF47 restores enhancer activation, but is not required for proliferative arrest. These results establish a global hijacking mechanism for SS18-SSX on chromatin, and define the distinct contributions of two concurrent BAF complex perturbations.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John L Pulice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hannah C Beird
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew R D'Avino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert T Nakayama
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Enrique M Garcia-Rivera
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dejka M Araujo
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jen-Wei Tsai
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Yeagley
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Javed Khan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Li X, Seebacher NA, Garbutt C, Ma H, Gao P, Xiao T, Hornicek FJ, Duan Z. Inhibition of cyclin-dependent kinase 4 as a potential therapeutic strategy for treatment of synovial sarcoma. Cell Death Dis 2018; 9:446. [PMID: 29670090 PMCID: PMC5906661 DOI: 10.1038/s41419-018-0474-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Synovial sarcoma is a highly aggressive but rare form of soft tissue malignancy that primarily affects the extremities of the arms or legs, for which current chemotherapeutic agents have not been proven to be very effective. The cyclin-dependent kinase 4/6-retinoblastoma protein (CDK4/6-Rb) pathway of cell cycle control is known to be aberrant in a large proportion of cancers. Recently, CDK4 inhibitors have successfully been used pre-clinically for the treatment of many human cancers, and in 2015, following the success of clinical trials, the FDA approved the first selective CDK4/6 inhibitor, palbociclib, for the treatment of endocrine therapy resistant breast cancers. However, the expression and therapeutic potential of targeting CDK4 in synovial sarcoma remains unclear. In the present study, we report that CDK4 is highly expressed in human synovial sarcoma, and high CDK4 expressions are associated with poor prognosis in sarcomas patients and the clinical stage and the TNM grade in synovial sarcoma patients. Knockdown of CDK4 with specific small interference RNAs inhibits cell proliferation and enhances apoptotic effects in synovial sarcoma cells. CDK4 inhibitor palbociclib suppresses synovial sarcoma cell proliferation and growth in a dose and time-dependent manner. Palbociclib also inhibits the CDK4/6-Rb signaling pathway and promotes cell apoptosis without changing CDK4/6 protein levels, suggesting that palbociclib only represses the hyper-activation, not the expression of CDK4/6. Flow cytometry analysis reveals that palbociclib induces G1 cell-cycle arrest and apoptotic effects by targeting the CDK4/6-Rb pathway in synovial sarcoma cells. Furthermore, wound healing assays demonstrate that inhibition of the CDK4/6-Rb pathway by palbociclib significantly decreases synovial sarcoma cell migration in vitro. Our study highlights the importance of the CDK4/6-Rb pathway in human synovial sarcoma pathogenesis, and the role of the current selective CDK4/6 inhibitor, palbociclib, as a potential promising targeted therapeutic agent in the treatment of human synovial sarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Cassandra Garbutt
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hangzhan Ma
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Peng Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Banito A, Li X, Laporte AN, Roe JS, Sanchez-Vega F, Huang CH, Dancsok AR, Hatzi K, Chen CC, Tschaharganeh DF, Chandwani R, Tasdemir N, Jones KB, Capecchi MR, Vakoc CR, Schultz N, Ladanyi M, Nielsen TO, Lowe SW. The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 2018; 33:527-541.e8. [PMID: 29502955 PMCID: PMC5881394 DOI: 10.1016/j.ccell.2018.01.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/14/2017] [Accepted: 01/27/2018] [Indexed: 12/25/2022]
Abstract
Synovial sarcoma is an aggressive cancer invariably associated with a chromosomal translocation involving genes encoding the SWI-SNF complex component SS18 and an SSX (SSX1 or SSX2) transcriptional repressor. Using functional genomics, we identify KDM2B, a histone demethylase and component of a non-canonical polycomb repressive complex 1 (PRC1.1), as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX1 physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands. Via KDM2B, SS18-SSX1 binds and aberrantly activates expression of developmentally regulated genes otherwise targets of polycomb-mediated repression, which is restored upon KDM2B depletion, leading to irreversible mesenchymal differentiation. Thus, SS18-SSX1 deregulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.
Collapse
Affiliation(s)
- Ana Banito
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang Li
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Francisco Sanchez-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R Dancsok
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katerina Hatzi
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Chi-Chao Chen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rohit Chandwani
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nilgun Tasdemir
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kevin B Jones
- Department of Orthopedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
34
|
Takakura M, Matsumoto T, Nakamura M, Mizumoto Y, Myojyo S, Yamazaki R, Iwadare J, Bono Y, Orisaka S, Obata T, Iizuka T, Kagami K, Nakayama K, Hayakawa H, Sakurai F, Mizuguchi H, Urata Y, Fujiwara T, Kyo S, Sasagawa T, Fujiwara H. Detection of circulating tumor cells in cervical cancer using a conditionally replicative adenovirus targeting telomerase-positive cells. Cancer Sci 2017; 109:231-240. [PMID: 29151279 PMCID: PMC5765291 DOI: 10.1111/cas.13449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTC) are newly discovered biomarkers of cancers. Although many systems detect CTC, a gold standard has not yet been established. We analyzed CTC in uterine cervical cancer patients using an advanced version of conditionally replicative adenovirus targeting telomerase-positive cells, which was enabled to infect coxsackievirus-adenovirus receptor-negative cells and to reduce false-positive signals in myeloid cells. Blood samples from cervical cancer patients were hemolyzed and infected with the virus and then labeled with fluorescent anti-CD45 and anti-pan cytokeratin antibodies. GFP (+)/CD45 (-) cells were isolated and subjected to whole-genome amplification followed by polymerase chain reaction analysis of human papillomavirus (HPV) DNA. CTC were detected in 6 of 23 patients with cervical cancers (26.0%). Expression of CTC did not correlate with the stage of cancer or other clinicopathological factors. In 5 of the 6 CTC-positive cases, the same subtype of HPV DNA as that of the corresponding primary lesion was detected, indicating that the CTC originated from HPV-infected cancer cells. These CTC were all negative for cytokeratins. The CTC detected by our system were genetically confirmed. CTC derived from uterine cervical cancers had lost epithelial characteristics, indicating that epithelial marker-dependent systems do not have the capacity to detect these cells in cervical cancer patients.
Collapse
Affiliation(s)
- Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Takeo Matsumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Subaru Myojyo
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Rena Yamazaki
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Jyunpei Iwadare
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yukiko Bono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shunsuke Orisaka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takeshi Obata
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Graduate School of Medicine, Izumo, Japan
| | | | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Graduate School of Medicine, Izumo, Japan
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
35
|
Cassinelli G, Dal Bo L, Favini E, Cominetti D, Pozzi S, Tortoreto M, De Cesare M, Lecis D, Scanziani E, Minoli L, Naggi A, Vlodavsky I, Zaffaroni N, Lanzi C. Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Lett 2017; 415:187-197. [PMID: 29225052 DOI: 10.1016/j.canlet.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/26/2023]
Abstract
Synovial sarcoma (SS) is an aggressive tumor with propensity for lung metastases which significantly impact patients' prognosis. New therapeutic approaches are needed to improve treatment outcome. Targeting the heparanase/heparan sulfate proteoglycan system by heparin derivatives which act as heparanase inhibitors/heparan sulfate mimetics is emerging as a therapeutic approach that can sensitize the tumor response to chemotherapy. We investigated the therapeutic potential of a supersulfated low molecular weight heparin (ssLMWH) in preclinical models of SS. ssLMWH showed a potent anti-heparanase activity, dose-dependently inhibited SS colony growth and cell invasion, and downregulated the activation of receptor tyrosine kinases including IGF1R and IR. The combination of ssLMWH and the IGF1R/IR inhibitor BMS754807 synergistically inhibited proliferation of cells exhibiting IGF1R hyperactivation, also abrogating cell motility and promoting apoptosis in association with PI3K/AKT pathway inhibition. The drug combination strongly enhanced the antitumor effect against the CME-1 model, as compared to single agent treatment, abrogating orthotopic tumor growth and significantly repressing spontaneous lung metastatic dissemination in treated mice. These findings provide a strong preclinical rationale for developing drug regimens combining heparanase inhibitors/HS mimetics with IGF1R antagonists for treatment of metastatic SS.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Glucuronidase/antagonists & inhibitors
- Glucuronidase/metabolism
- Heparin, Low-Molecular-Weight/administration & dosage
- Heparin, Low-Molecular-Weight/metabolism
- Heparin, Low-Molecular-Weight/pharmacology
- Humans
- Mice, SCID
- Neoplasm Metastasis
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Receptor, IGF Type 1
- Receptors, Somatomedin/antagonists & inhibitors
- Receptors, Somatomedin/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/metabolism
- Sarcoma, Synovial/pathology
- Sulfates
- Triazines/administration & dosage
- Triazines/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Denis Cominetti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Sabina Pozzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Michelandrea De Cesare
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Daniele Lecis
- Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Mouse and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, 20133 Milan, Italy
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, P.O. Box 9649, Haifa 31096, Israel
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Cinzia Lanzi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
36
|
Qiao Z, Shiozawa K, Kondo T. Proteomic approach toward determining the molecular background of pazopanib resistance in synovial sarcoma. Oncotarget 2017; 8:109587-109595. [PMID: 29312631 PMCID: PMC5752544 DOI: 10.18632/oncotarget.22730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Pazopanib, a multitarget tyrosine kinase (TK) inhibitor, has been approved for treatment of soft tissue sarcoma. Elucidation of the molecular background of pazopanib resistance should lead to improved clinical outcomes in sarcomas; accordingly, we investigated this in synovial sarcoma using a proteomic approach. Pazopanib sensitivity was examined in four synovial sarcoma cell lines: SYO-1, HS-SYII, 1273/99, and YaFuSS. The 1273/99 cell line showed significantly higher IC50 values than the others for pazopanib. Expression levels of 90 TKs in the cell lines were examined by western blotting. Among these, the levels of PDGFRB, DDR1, AXL, MET, and PYK2 were higher, and those of FGFR1 and VEGFR3 were lower in the 1273/99 cell line than the other cell lines. Gene silencing analysis of the TKs upregulated in 1273/99 cells showed differing effects on cell growth: PDGFRB, MET, and PYK2 knockdown induced cell growth inhibition, whereas DDR1 and AXL knockdown did not influence cell growth. Using the PamChip peptide microarray, we found that 18 peptide substrates were highly phosphorylated in the 1273/99 cell line compared with other cell lines. Using the PhosphoNet database, we found that kinases FGFR3, RET, VEGFR1, EPHA2, EPHA4, TRKA, and SRC phosphorylated these 18 peptide substrates. Moreover, the results for overexpressed and aberrantly activated TKs in pazopanib-resistant cells showed no overlap. Taken together, our study indicates that identification of comprehensive TK profiles represents an essential approach to determining the molecular background of pazopanib resistance in synovial sarcoma.
Collapse
Affiliation(s)
- Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
37
|
Shiozawa K, Shuting J, Yoshioka Y, Ochiya T, Kondo T. Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochem Biophys Res Commun 2017; 495:1322-1327. [PMID: 29191657 DOI: 10.1016/j.bbrc.2017.11.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
The development of drug resistance in tumor cells leads to relapse and distant metastasis. Secreted microRNAs (miRNAs) enclosed in extracellular vesicles (EVs) can act as intercellular messengers. The objective of our study was to elucidate the role of secreted miRNAs to better understand the regulatory network underlying pazopanib-resistance in synovial sarcoma cells. We performed a comprehensive analysis of secreted miRNA abundance in pazopanib treated/untreated synovial sarcoma cells from four different cell lines (SYO-1, HS-SYII, 1273/99, and YaFuSS) using microarray technology, and discovered miR-761 in EVs as a potential biomarker of pazopanib-resistance in synovial sarcoma. Furthermore, we showed that miR-761 putatively targeted three proteins, thyroid hormone receptor interactor 6 (TRIP6), lamin A/C (LMNA), and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Knockdown of any of these proteins was shown in previous studies to confer increased resistance to chemotherapeutic agents. Our findings provide new insight into the potential role of miR-761, an EV-secreted miRNA from synovial sarcoma cells, making it a potential candidate for use in sarcoma therapy in the future.
Collapse
Affiliation(s)
- Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Ji Shuting
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
38
|
Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Sci Rep 2017; 7:14634. [PMID: 29116117 PMCID: PMC5676745 DOI: 10.1038/s41598-017-12660-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The lack of useful biomarkers is a crucial problem for patients with soft tissue sarcomas (STSs). Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel impact as biomarkers for patients with malignant diseases, but their significance in synovial sarcoma (SS) patients remains unknown. Initial global miRNA screening using SS patient serum and SS cell culture media identified a signature of four upregulated miRNAs. Among these candidates, miR-92b-3p secretion from SS cells was confirmed, which was embedded within tumour-derived exosomes rather than argonaute-2. Animal experiments revealed a close correlation between serum miR-92b-3p levels and tumour dynamics. Clinical relevance was validated in two independent clinical cohorts, and we subsequently identified that serum miR-92b-3p levels were significantly higher in SS patients in comparison to that in healthy individuals. Moreover, serum miR-92b-3p was robust in discriminating patients with SS from the other STS patients and reflected tumour burden in SS patients. Overall, liquid biopsy using serum miR-92b-3p expression levels may represent a novel approach for monitoring tumour dynamics of SS.
Collapse
|
39
|
Laporte AN, Poulin NM, Barrott JJ, Wang XQ, Lorzadeh A, Vander Werff R, Jones KB, Underhill TM, Nielsen TO. Death by HDAC Inhibition in Synovial Sarcoma Cells. Mol Cancer Ther 2017; 16:2656-2667. [PMID: 28878027 DOI: 10.1158/1535-7163.mct-17-0397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022]
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting the causative SS18-SSX fusion oncoprotein are currently available. Histone deacetylase (HDAC) inhibition has been shown in previous studies to disrupt the synovial sarcoma oncoprotein complex, resulting in apoptosis. To understand the molecular effects of HDAC inhibition, RNA-seq transcriptome analysis was undertaken in six human synovial sarcoma cell lines. HDAC inhibition induced pathways of cell-cycle arrest, neuronal differentiation, and response to oxygen-containing species, effects also observed in other cancers treated with this class of drugs. More specific to synovial sarcoma, polycomb group targets were reactivated, including tumor suppressor CDKN2A, and proapoptotic transcriptional patterns were induced. Functional analyses revealed that ROS-mediated FOXO activation and proapoptotic factors BIK, BIM, and BMF were important to apoptosis induction following HDAC inhibition in synovial sarcoma. HDAC inhibitor pathway activation results in apoptosis and decreased tumor burden following a 7-day quisinostat treatment in the Ptenfl/fl;hSS2 mouse model of synovial sarcoma. This study provides mechanistic support for a particular susceptibility of synovial sarcoma to HDAC inhibition as a means of clinical treatment. Mol Cancer Ther; 16(12); 2656-67. ©2017 AACR.
Collapse
Affiliation(s)
- Aimée N Laporte
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neal M Poulin
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared J Barrott
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Xiu Qing Wang
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Vander Werff
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin B Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Barrott JJ, Zhu JF, Smith-Fry K, Susko AM, Nollner D, Burrell LD, Pozner A, Capecchi MR, Yap JT, Cannon-Albright LA, Deng X, Jones KB. The Influential Role of BCL2 Family Members in Synovial Sarcomagenesis. Mol Cancer Res 2017; 15:1733-1740. [PMID: 28851813 DOI: 10.1158/1541-7786.mcr-17-0315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Synovial sarcomas are deadly soft tissue malignancies associated with t(X;18) balanced chromosomal translocations. Expression of the apoptotic regulator BCL2 is prominent in synovial sarcomas and has prompted the hypothesis that synovial sarcomagenesis may depend on it. Herein, it is demonstrated that Bcl2 overexpression enhances synovial sarcomagenesis in an animal model. Furthermore, we determined increased familial clustering of human synovial sarcoma patients with victims of other BCL2-associated malignancies in the Utah Population Database. Conditional genetic disruption of Bcl2 in mice also led to reduced sarcomagenesis. Pharmacologic inhibition specific to BCL2 had no demonstrable efficacy against human synovial sarcoma cell lines or mouse tumors. However, targeting BCLxL in human and mouse synovial sarcoma with the small molecule BH3 domain inhibitor, BXI-72, achieved significant cytoreduction and increased apoptotic signaling. Thus, the contributory role of BCL2 in synovial sarcomagenesis does not appear to render it as a therapeutic target, but mitochondrial antiapoptotic BCL2 family members may be.Implications: The association of BCL2 expression with synovial sarcoma is found to fit with a subtle, but significant, impact of its enhanced presence or absence during early tumorigenesis. However, specific pharmacologic inhibition of BCL2 does not demonstrate a persistent dependence in fully developed tumors. Conversely, inhibition of the BCL2 family member BCLxL resulted in nanomolar potency against human synovial sarcoma cell lines and 50% tumor reduction in a genetically engineered mouse model. Mol Cancer Res; 15(12); 1733-40. ©2017 AACR.
Collapse
Affiliation(s)
- Jared J Barrott
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Asia M Susko
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dakota Nollner
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lance D Burrell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.,Center for Quantitative Cancer Imaging, University of Utah School of Medicine, Salt Lake City, Utah
| | - Amir Pozner
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jeffrey T Yap
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.,Center for Quantitative Cancer Imaging, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa A Cannon-Albright
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah. .,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
41
|
Koto K, Murata H, Sawai Y, Ashihara E, Horii M, Kubo T. Cytotoxic effects of zoledronic acid-loaded hydroxyapatite and bone cement in malignant tumors. Oncol Lett 2017; 14:1648-1656. [PMID: 28789391 DOI: 10.3892/ol.2017.6355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
Metastatic and primary bone tumors are malignant tumors affecting the skeleton. Although the prognosis of patients with these tumors has improved with the development of effective chemotherapy, the challenges of local recurrence, subsequent osteolysis, degradation of bone strength and unresectable tumors persist. Local control of these tumors is therefore a key strategy to address these limitations. The third-generation bisphosphonate (BP), zoledronic acid (ZOL), has been demonstrated to reduce osteoclasts and exhibited potent antitumor effects in a number of malignancies. Hydroxyapatite (HA) and polymethyl methacrylate (PMMA) bone cement are used in orthopedic surgery as bone graft substitutes, for implant arthroplasty and bone strengthening, and as a sustained-release system for drugs such as antibiotics. At present, the antitumor effects of ZOL-loaded HA in vitro or in vivo or of ZOL-loaded bone cement in vivo have not been described. Therefore, the present study assessed the effects of ZOL-loaded HA and bone cement in malignant tumor cells. The two materials exerted strong antitumor effects against osteosarcoma, fibrosarcoma, synovial sarcoma, renal cancer, prostate cancer and lung cancer cells upon releasing ZOL. The antitumor effects of ZOL-loaded HA were less potent compared with those of ZOL-loaded bone cement, possibly as BPs exhibit higher affinity to HA. ZOL-loaded bone cement also exerted antitumor effects against pulmonary metastases and primary lesions, without exhibiting systemic toxicity in vivo. These results demonstrate that these materials may be beneficial for the treatment of malignant bone tumors, including metastatic bone tumors. In addition, as these materials are already in clinical use, such applications may be easily implemented.
Collapse
Affiliation(s)
- Kazutaka Koto
- Department of Orthopaedics, Meiji University of Integrative Medicine, Nantan, Kyoto 629-0301, Japan.,Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Hiroaki Murata
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.,Department of Orthopaedic Surgery, Matsushita Memorial Hospital, Moriguchi, Osaka 570-8540, Japan
| | - Yasushi Sawai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Kyoto 607-8414, Japan
| | - Motoyuki Horii
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| |
Collapse
|
42
|
Yamada S, Imura Y, Nakai T, Nakai S, Yasuda N, Kaneko K, Outani H, Takenaka S, Hamada K, Myoui A, Araki N, Ueda T, Itoh K, Yoshikawa H, Naka N. Therapeutic potential of TAS-115 via c-MET and PDGFRα signal inhibition for synovial sarcoma. BMC Cancer 2017; 17:334. [PMID: 28511645 PMCID: PMC5434537 DOI: 10.1186/s12885-017-3324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
Background The prognosis of synovial sarcoma (SS), an aggressive soft tissue sarcoma, remains poor. We previously reported that c-MET or platelet-derived growth factor receptor α (PDGFRα) signalling pathway is related to SS progression based upon the findings of phospho-receptor tyrosine kinase (RTK) arrays. TAS-115 is a novel c-MET/ vascular endothelial growth factor receptor-targeting tyrosine kinase inhibitor that has been shown to inhibit multiple RTKs. Here we aimed to investigate the therapeutic potential of TAS-115 against SS. Methods We first evaluated which signalling pathway was relevant to the viability of three human SS cell lines: Yamato-SS, SYO-1 and HS-SY-II. Next, we assessed the anticancer activity and mechanism of action of TAS-115 in these SS cell lines. Finally, we compared the ability of TAS-115 to inhibit c-MET and PDGFRα phosphorylation with that of pazopanib. Results We classified the SS cell lines as c-MET-dependent or PDGFRα-dependent based upon the differences in the signalling pathway relevant for growth and/or survival. We also found that c-MET and PDGFRα were the primary activators of both phosphatidylinositol 3-kinase/AKT and mitogen-activated protein kinase pathways in c-MET-dependent and PDGFRα-dependent SS cells, respectively. TAS-115 treatment blocked the phosphorylation of PDGFRα as well as that of c-MET and their downstream effectors, leading to marked growth inhibition in both types of SS cell lines in in vitro and in vivo studies. Furthermore, PDGFRα phosphorylation, on at least four representative autophosphorylation sites, was impeded by TAS-115 equivalently to pazopanib. Conclusions These experimental results have demonstrated the significance of c-MET and PDGFRα signalling for growth and/or survival of SS tumours. TAS-115 monotherapy may benefit SS patients whose tumours are dependent upon either c-MET or PDGFRα signalling by functioning as a multiple tyrosine kinase inhibitor to suppress c-MET as well as PDGFRα pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3324-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shutaro Yamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinori Imura
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Yasuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiko Kaneko
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetatsu Outani
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenichiro Hamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Myoui
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuhito Araki
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Takafumi Ueda
- Department of Orthopaedic Surgery, Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan
| | - Kazuyuki Itoh
- Research Institute, Nozaki Tokushukai, 2-10-50 Tanigawa, Daitou, Osaka, 574-0074, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
43
|
Activation of ERK1/2 Causes Pazopanib Resistance via Downregulation of DUSP6 in Synovial Sarcoma Cells. Sci Rep 2017; 7:45332. [PMID: 28350009 PMCID: PMC5368598 DOI: 10.1038/srep45332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Synovial sarcoma (SS) is a rare high-grade malignant mesenchymal tumour with a relatively poor prognosis despite intensive multimodal therapy. Although pazopanib, a multi-kinase inhibitor, is often used for advanced SS, most cases eventually become resistant to pazopanib. In the present study, we investigated the mechanisms of acquired pazopanib resistance in SS. To examine acquired pazopanib resistance, two SS cell lines, SYO-1 and HS-SY-II, were isolated after multiple selection steps with increasing concentrations of pazopanib. SYO-1 was also used in vivo. Then, pazopanib-resistant clones were investigated to assess potential mechanisms of acquired pazopanib resistance. Stable pazopanib-resistant clones were established and exhibited enhanced cell cycle progression, cell growth with increased ERK1/2 phosphorylation, and higher sensitivity than parental cells to a MEK-inhibitor, trametinib, both in vitro and in vivo. Furthermore, addition of low-dose trametinib partially reversed the pazopanib resistance. In the pazopanib-resistant clones, dual specificity phosphatase 6 (DUSP6) was downregulated. Inhibition of DUSP6 expression in parental HS-SY-II cells partially recapitulated acquired pazopanib resistance. Acquired pazopanib resistance in SS was associated with activation of ERK1/2 through downregulation of DUSP6 expression. Simultaneous treatment with pazopanib and a MEK inhibitor could be a promising strategy to overcome pazopanib resistance in SS.
Collapse
|
44
|
Laporte AN, Barrott JJ, Yao RJ, Poulin NM, Brodin BA, Jones KB, Underhill TM, Nielsen TO. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS One 2017; 12:e0169407. [PMID: 28056055 PMCID: PMC5215898 DOI: 10.1371/journal.pone.0169407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition.
Collapse
Affiliation(s)
- Aimée N. Laporte
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared J. Barrott
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Ren Jie Yao
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neal M. Poulin
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bertha A. Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin B. Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - T. Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O. Nielsen
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
45
|
Harati K, Behr B, Daigeler A, Hirsch T, Jacobsen F, Renner M, Harati A, Wallner C, Lehnhardt M, Becerikli M. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays. Nutr Cancer 2017; 69:340-351. [PMID: 28045549 DOI: 10.1080/01635581.2017.1263349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. METHODS Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). RESULTS As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. CONCLUSION Curcumin and VAE can inhibit the proliferation and viability of STS cells.
Collapse
Affiliation(s)
- K Harati
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - B Behr
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - A Daigeler
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - T Hirsch
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - F Jacobsen
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Renner
- b Institute of Pathology, University of Heidelberg , Heidelberg , Germany
| | - A Harati
- c Department of Neurosurgery , Klinikum Dortmund , Dortmund , Germany
| | - C Wallner
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Lehnhardt
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Becerikli
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| |
Collapse
|
46
|
Imura Y, Nakai T, Yamada S, Outani H, Takenaka S, Hamada K, Araki N, Itoh K, Yoshikawa H, Naka N. Functional and therapeutic relevance of hepatocyte growth factor/c-MET signaling in synovial sarcoma. Cancer Sci 2016; 107:1867-1876. [PMID: 27779808 PMCID: PMC5198956 DOI: 10.1111/cas.13092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/02/2023] Open
Abstract
Synovial sarcoma (SS) is an aggressive soft tissue sarcoma with a poor prognosis and, thus, novel therapeutic strategies for SS are urgently required. In the present study, we investigated the functional and therapeutic relevance of hepatocyte growth factor (HGF)/c‐MET signaling in SS. Both HGF and c‐MET were highly expressed in Yamato‐SS cells, resulting in activation of c‐MET and its downstream AKT and extracellular signal‐regulated kinase signaling pathways, whereas c‐MET was expressed but not activated in SYO‐1 or HS‐SY‐II cells. c‐MET‐activated Yamato‐SS cells showed higher anchorage‐independent growth ability and less sensitivity to chemotherapeutic agents than did c‐MET‐inactivated SYO‐1 or HS‐SY‐II cells. INC280, a selective c‐MET inhibitor, inhibited growth of Yamato‐SS cells both in vitro and in vivo but not that of SYO‐1 or HS‐SY‐II cells. INC280 induced cell cycle arrest and apoptosis, and blocked phosphorylation of c‐MET and its downstream effectors in Yamato‐SS cells. Co‐expression of HGF and c‐MET in SS clinical samples correlated with a poor prognosis in patients with SS. Taken together, activation of HGF/c‐MET signaling in an autocrine fashion leads to an aggressive phenotype in SS and targeting of this signaling exerts superior antitumor effects on c‐MET‐activated SS. HGF/c‐MET expression status is a potential biomarker for identification of SS patients with a worse prognosis who can benefit from c‐MET inhibitors.
Collapse
Affiliation(s)
- Yoshinori Imura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Musculoskeletal Oncology Service, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shutaro Yamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetatsu Outani
- Musculoskeletal Oncology Service, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Hamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuhito Araki
- Musculoskeletal Oncology Service, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kazuyuki Itoh
- Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| |
Collapse
|
47
|
Harati K, Behr B, Wallner C, Daigeler A, Hirsch T, Jacobsen F, Renner M, Harati A, Lehnhardt M, Becerikli M. Anti‑proliferative activity of epigallocatechin‑3‑gallate and silibinin on soft tissue sarcoma cells. Mol Med Rep 2016; 15:103-110. [PMID: 27909727 PMCID: PMC5355719 DOI: 10.3892/mmr.2016.5969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Disseminated soft tissue sarcomas (STS) present a therapeutic dilemma. The first-line cytostatic doxorubicin demonstrates a response rate of 30% and is not suitable for elderly patients with underlying cardiac disease, due to its cardiotoxicity. Well‑tolerated alternative treatment options, particularly in palliative situations, are rare. Therefore, the present study assessed the anti‑proliferative effects of the natural compounds epigallocatechin-3-gallate (EGCG), silibinin and noscapine on STS cells. A total of eight different human STS cell lines were used in the study: Fibrosarcoma (HT1080), liposarcoma (SW872, T778 and MLS‑402), synovial sarcoma (SW982, SYO1 and 1273) and pleomorphic sarcoma (U2197). Cell proliferation and viability were analysed by 5‑bromo-2'-deoxyuridine and MTT assays and real‑time cell analysis (RTCA). RTCA indicated that noscapine did not exhibit any inhibitory effects. By contrast, EGCG decreased proliferation and viability of all cell lines except for the 1273 synovial sarcoma cell line. Silibinin exhibited anti‑proliferative effects on all synovial sarcoma, liposarcoma and fibrosarcoma cell lines. Liposarcoma cell lines responded particularly well to EGCG while synovial sarcoma cell lines were more sensitive to silibinin. In conclusion, the green tea polyphenol EGCG and the natural flavonoid silibinin from milk thistle suppressed the proliferation and viability of liposarcoma, synovial sarcoma and fibrosarcoma cells. These compounds are therefore potential candidates as mild therapeutic options for patients that are not suitable for doxorubicin‑based chemotherapy and require palliative treatment. The findings from the present study provide evidence to support in vivo trials assessing the effect of these natural compounds on solid sarcomas.
Collapse
Affiliation(s)
- Kamran Harati
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, D‑69120 Heidelberg, Germany
| | - Ali Harati
- Department of Neurosurgery, Klinikum Dortmund, D‑44145 Dortmund, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| |
Collapse
|
48
|
Barrott JJ, Kafchinski LA, Jin H, Potter JW, Kannan SD, Kennedy R, Mosbruger T, Wang WL, Tsai JW, Araujo DM, Liu T, Capecchi MR, Lazar AJ, Jones KB. Modeling synovial sarcoma metastasis in the mouse: PI3'-lipid signaling and inflammation. J Exp Med 2016; 213:2989-3005. [PMID: 27956588 PMCID: PMC5154942 DOI: 10.1084/jem.20160817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022] Open
Abstract
Solid tumor metastasis is a complex biology, impinged upon by a variety of dysregulated signaling pathways. PI3'-lipid signaling has been associated with metastasis and inflammation in many cancers, but the relationship between tumor cell-intrinsic PI3'-lipid signaling and inflammatory cell recruitment has remained enigmatic. Elevated PI3'-lipid signaling associates with progression of synovial sarcoma, a deadly soft tissue malignancy initiated by a t(X;18) chromosomal translocation that generates an SS18-SSX fusion oncoprotein. Here, we show in genetically engineered mouse models of locally induced expression of SS18-SSX1 or SS18-SSX2 that Pten silencing dramatically accelerated and enhanced sarcomagenesis without compromising synovial sarcoma characteristics. PTEN deficiency increased tumor angiogenesis, promoted inflammatory gene expression, and enabled highly penetrant spontaneous pulmonary metastasis. PTEN-deficient sarcomas revealed infiltrating myeloid-derived hematopoietic cells, particularly macrophages and neutrophils, recruited via PI3'-lipid-induced CSF1 expression in tumor cells. Moreover, in a large panel of human synovial sarcomas, enhanced PI3'-lipid signaling also correlated with increased inflammatory cell recruitment and CSF1R signal transduction in both macrophages and endothelial cells. Thus, both in the mouse model and in human synovial sarcomas, PI3'-lipid signaling drives CSF1 expression and associates with increased infiltration of the monocyte/macrophage lineage as well as neutrophils.
Collapse
Affiliation(s)
- Jared J Barrott
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Lisa A Kafchinski
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112
| | - Huifeng Jin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared W Potter
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Sarmishta D Kannan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Robert Kennedy
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Tim Mosbruger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Bioinformatics, University of Utah, Salt Lake City, UT 84112
| | - Wei-Lien Wang
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Jen-Wei Tsai
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Dejka M Araujo
- Sarcoma Medical Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ting Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Alexander J Lazar
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112 .,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
49
|
β-catenin stabilization enhances SS18-SSX2-driven synovial sarcomagenesis and blocks the mesenchymal to epithelial transition. Oncotarget 2016; 6:22758-66. [PMID: 26259251 PMCID: PMC4673197 DOI: 10.18632/oncotarget.4283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
β-catenin is a master regulator in the cellular biology of development and neoplasia. Its dysregulation is implicated as a driver of colorectal carcinogenesis and the epithelial-mesenchymal transition in other cancers. Nuclear β-catenin staining is a poor prognostic sign in synovial sarcoma, the most common soft-tissue sarcoma in adolescents and young adults. We show through genetic experiments in a mouse model that expression of a stabilized form of β-catenin greatly enhances synovial sarcomagenesis. Stabilization of β-catenin enables a stem-cell phenotype in synovial sarcoma cells, specifically blocking epithelial differentiation and driving invasion. β-catenin achieves its reprogramming in part by upregulating transcription of TCF/LEF target genes. Even though synovial sarcoma is primarily a mesenchymal neoplasm, its progression towards a more aggressive and invasive phenotype parallels the epithelial-mesenchymal transition observed in epithelial cancers, where β-catenin's transcriptional contribution includes blocking epithelial differentiation.
Collapse
|
50
|
Maekawa A, Kohashi K, Kuda M, Iura K, Ishii T, Endo M, Nakatsura T, Iwamoto Y, Oda Y. Prognostic significance of FOXM1 expression and antitumor effect of FOXM1 inhibition in synovial sarcomas. BMC Cancer 2016; 16:511. [PMID: 27439614 PMCID: PMC4955131 DOI: 10.1186/s12885-016-2542-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Synovial sarcoma (SS) is a soft tissue sarcoma of unknown histogenesis. Most metastatic or unresectable cases are incurable. Novel antitumor agents and precise prognostication are needed for SS patients. The protein forkhead box M1 (FOXM1), which belongs to the FOX family of transcription factors, is considered to be an independent predictor of poor survival in many cancers and sarcomas, but the prognostic implications and oncogenic roles of FOXM1 in SS are poorly understood. Here we examined the correlation between FOXM1 expression and clinicopathologic and prognostic factors, and we investigated the efficacy of FOXM1 target therapy in SS cases. Methods Immunohistochemical study of 106 tumor specimens was conducted to evaluate their immunohistochemical expression of FOXM1. An in vitro study examined the antitumor effect of the FOXM1 inhibitor thiostrepton and small interference RNA (siRNA) on two SS cell lines. We also assessed the efficacy of the combined use of doxorubicin (DOX) and thiostrepton. Results Univariate and multivariate analyses revealed that FOXM1 expression was associated with poor prognosis in SS. The cDNA microarray analysis using clinical samples revealed that the expression of cell cycle-associated genes was correlated with FOXM1 expression. FOXM1 inhibition by thiostrepton showed significant antitumor activity on the SS cell lines in vitro. FOXM1 interruption by siRNA increased the chemosensitivity for DOX in both SS cell lines. Conclusion FOXM1 expression is a novel biomarker, and its inhibition is a potential treatment option for SS. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2542-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Endo
- Departments of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yukihide Iwamoto
- Departments of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|