1
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Takamatsu Y, Hayashi S, Kumamoto H, Imoto S, Tanaka Y, Mitsuya H, Higashi-Kuwata N. A novel anti-HBV agent, E-CFCP, restores Hepatitis B virus (HBV)-induced senescence-associated cellular marker perturbation in human hepatocytes. Virus Res 2023; 329:199094. [PMID: 36933835 PMCID: PMC10194405 DOI: 10.1016/j.virusres.2023.199094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Cellular senescence is a cellular state with a broad spectrum of age-related physiological conditions that can be affected by various infectious diseases and treatments. Therapy of hepatitis B virus (HBV) infection with nucleos(t)ide analogs [NA(s)] is well established and benefits many HBV-infected patients, but requires long-term, perhaps lifelong, medication. In addition to the effects of HBV infection, the effects of NA administration on hepatocellular senescence are still unclear. This study investigated how HBV infection and NA treatment influence cellular senescence in human hepatocytes and humanized-liver chimeric mice chronically infected with live HBV. HBV infection upregulates or downregulates multiple cellular markers including senescence-associated β-galactosidase (SA-β-Gal) activity and cell cycle regulatory proteins (e.g., p21CIP1) expression level in hepatocellular nuclei and humanized-mice liver. A novel highly potent anti-HBV NA, E-CFCP, per se did not have significant disturbance on markers evaluated. Besides, E-CFCP treatment restored HBV-infected cells to their physiological phenotypes that are comparable to the HBV-uninfected cells. The results reported here demonstrate that, regardless of the mechanism(s), chronic HBV infection perturbates multiple senescence-associated markers in human hepatocytes and humanized-mice liver, but E-CFCP can restore this phenomenon.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan; Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho, Nagoya, 467-8601 Japan
| | - Hiroki Kumamoto
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, lna-machi, Kitaadachi-gun, Saitama, 362-0806 Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi, Kumamoto 860-0082 Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan; Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho, Nagoya, 467-8601 Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 5A11, Bethesda, MD 20892-1868 USA; Department of Clinical Sciences, Kumamoto University Hospital, 1-1-1 Honjo, Chuo, Kumamoto, 860-8556 Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 Japan.
| |
Collapse
|
3
|
Li Y, Anand-Srivastava MB. Role of Gi proteins in the regulation of blood pressure and vascular remodeling. Biochem Pharmacol 2023; 208:115384. [PMID: 36549460 DOI: 10.1016/j.bcp.2022.115384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Heterotrimeric guanine nucleotide regulatory proteins (G-proteins) through the activation of several signaling mechanisms including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover. regulate a variety of cellular functions, including vascular reactivity, proliferation and hypertrophy of VSMC. Activity of adenylyl cyclase is regulated by two G proteins, stimulatory (Gsα) and inhibitory (Giα). Gsα stimulates adenylyl cyclase activity and increases the levels of cAMP, whereas Giα inhibits the activity of adenylyl cyclase and results in the reduction of cAMP levels. Abnormalities in Giα protein expression and associated adenylyl cyclase\cAMP levels result in the impaired cellular functions and contribute to various pathological states including hypertension. The expression of Giα proteins is enhanced in various tissues including heart, kidney, aorta and vascular smooth muscle cells (VSMC) from genetic (spontaneously hypertensive rats (SHR)) and experimentally - induced hypertensive rats and contribute to the pathogenesis of hypertension. In addition, the enhanced expression of Giα proteins exhibited by VSMC from SHR is also implicated in the hyperproliferation and hypertrophy, the two key players contributing to vascular remodelling in hypertension. The enhanced levels of endogenous vasoactive peptides including angiotensin II (Ang II), endothelin-1 (ET-1) and growth factors contribute to the overexpression of Giα proteins in VSMC from SHR. In addition, enhanced oxidative stress, activation of c-Src, growth factor receptor transactivation and MAP kinase/PI3kinase signaling also contribute to the augmented expression of Giα proteins in VSMC from SHR. This review summarizes the role of Giα proteins, and the underlying molecular mechanisms implicated in the regulation of high blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
4
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
5
|
Yun D, Yan Y, Liu J. Isolation, structure and biological activity of polysaccharides from the fruits of Lycium ruthenicum Murr: A review. Carbohydr Polym 2022; 291:119618. [DOI: 10.1016/j.carbpol.2022.119618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
6
|
Zhang C, Xie Y, Lai R, Wu J, Guo Z. Nonsynonymous C1653T Mutation of Hepatitis B Virus X Gene Enhances Malignancy of Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2022; 9:367-377. [PMID: 35535232 PMCID: PMC9078866 DOI: 10.2147/jhc.s348690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Cuifang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Oncology, The Pingshan County People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, People’s Republic of China, Tel + 86 311 8609 5734, Fax + 86 311 8609 5237, Email
| |
Collapse
|
7
|
Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers (Basel) 2021; 13:cancers13184732. [PMID: 34572959 PMCID: PMC8468315 DOI: 10.3390/cancers13184732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cell senescence constitutes a physiological process that serves as protection from malignant transformation of cells. However, recent scientific discoveries also identify cell senescence as pivotal in hepatocellular cancer (HCC) biology. The review herein aimed to accumulate evidence on senescence as a mediator of HCC occurrence in hepatitis B (HBV), C (HCV) virus infections, and non-alcoholic fatty liver disease (NAFLD). In HBV infection, the carcinogenic HBV X protein frequently mutates during chronic infection, and subsequently exhibits different effects on senescence. In HCV infection, senescent non-functional T-cells do not effectively clear pre-malignant hepatocytes. Furthermore, the HCV Core protein inhibits the occurrence of normal stress-induced hepatocyte senescence, allowing damaged cells to maintain their proliferative potential. In NAFLD-mediated HCC, current data point towards the gut microbiome and hepatic stellate cell senescence. Additionally, senescence contributes in the development of resistance in targeted therapies, such as sorafenib. Finally, the promising role of senotherapeutics in HCC was also explored. Overall, although we may still be at a primitive stage in fully unraveling the role of senescence in cancer, it seems that understanding and harnessing senescence may have the potential to revolutionize the way we treat hepatocellular cancer.
Collapse
|
8
|
Kohli J, Veenstra I, Demaria M. The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep 2021; 22:e52243. [PMID: 33734564 PMCID: PMC8024996 DOI: 10.15252/embr.202052243] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of pro-inflammatory cytokines and molecules. Senescence-associated phenotypes restrict damage propagation and activate immune responses, two essential processes involved in response to viral infections. However, excessive accumulation and persistence of senescent cells can become detrimental and promote pathology and dysfunctions. Various pharmacological interventions, including antiviral therapies, lead to aberrant and premature senescence. Here, we review the molecular mechanisms by which viral infections and antiviral therapy induce senescence. We highlight the importance of these processes in attenuating viral dissemination and damage propagation, but also how prematurely induced senescent cells can promote detrimental adverse effects in humans. We describe which sequelae due to viral infections and treatment can be partly due to excessive and aberrant senescence. Finally, we propose that pharmacological strategies which eliminate senescent cells or suppress their secretory phenotype could mitigate side effects and alleviate the onset of additional morbidities. These strategies can become extremely beneficial in patients recovering from viral infections or undergoing antiviral therapy.
Collapse
Affiliation(s)
- Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Iris Veenstra
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| |
Collapse
|
9
|
Cha S, Jang KL. Hepatitis B virus X protein stimulates cell growth by downregulating p16 levels via PA28γ-mediated proteasomal degradation. J Gen Virol 2021; 101:963-971. [PMID: 32568029 DOI: 10.1099/jgv.0.001461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteasomal activator 28 gamma (PA28γ), an essential constituent of the 20S proteasome responsible for ubiquitin-independent degradation of target proteins, is frequently overexpressed in hepatocellular carcinoma. Recently, we have reported that hepatitis B virus (HBV) X protein (HBx) activates PA28γ expression in human hepatocytes via upregulation of p53 levels; however, its role in HBV tumorigenesis remains unknown. Here, we found that HBx-activated PA28γ downregulates p16 levels via ubiquitin-independent proteasomal degradation. As a result, HBx activated the Rb-E2F pathway and stimulated G1/S cell cycle progression, resulting in an increase in cell proliferation. The potential of HBx to induce these effects was reproduced in a 1.2-mer HBV replicon and in in vitro HBV infection systems and was almost completely abolished by either PA28γ knockdown or p16 overexpression, demonstrating the critical role of the PA28γ-mediated p16 degradation in HBV tumorigenesis.
Collapse
Affiliation(s)
- Sungkyung Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Karakousis ND, Papatheodoridi A, Chatzigeorgiou A, Papatheodoridis G. Cellular senescence and hepatitis B-related hepatocellular carcinoma: An intriguing link. Liver Int 2020; 40:2917-2927. [PMID: 32890439 DOI: 10.1111/liv.14659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B is mainly responsible for the morbidity and mortality from hepatitis B virus (HBV)-related complications, including hepatocellular carcinoma (HCC) and decompensated cirrhosis. Hepatocellular carcinoma remains the main challenge in the management of not only undiagnosed and/or untreated but also diagnosed and treated patients with chronic HBV infection, as its incidence decreases but is not eliminated even after many years of effective anti-HBV therapy. The exact mechanisms used by HBV to cause malignant transformation remain uncertain, although much of the available data are in favour of a pathogenetic role of HBx protein. Senescence is a cellular state, in which cells lose their ability to proliferate. This biological mechanism may function in a dual mode, namely being both cancer-protective as a result of reduced cellular proliferation, but also cancer-enhancing as a result of modulation of the tissular microenvironment by immune cells during persistent accumulation of senescent cells. Protein X of HBV protein exhibits many similarities in terms of the implemented mechanisms of action and pathways related to the biological process of cellular senescence. Concurrently, insufficient clearance of both senescent and precancerous hepatocytes combined with inadequate immune surveillance as a result of immunosenescence caused by chronic HBV infection may lead to hepatocarcinogenesis. Thus, the effect of HBV seems to be critical as a connecting link between cellular senescence and development of HCC. An ongoing research is underway towards identifying and validating markers of hepatocyte senescence, which could improve the landscape for evaluation of chronic liver disease, thereby providing valuable information in terms of HBV-related carcinogenesis.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Papatheodoridi
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
11
|
Guo M. Cellular senescence and liver disease: Mechanisms and therapeutic strategies. Biomed Pharmacother 2017; 96:1527-1537. [PMID: 29174037 DOI: 10.1016/j.biopha.2017.11.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a fundamental cell fate caused by several cellular injuries which results in irreversible cell cycle arrest yet remaining metabolically active across all species. Cellular senescence not only can prevent tumor occurrence by inhibiting the proliferation of injured cells, but also can affect the surrounding cells through the senescence-associated secretory phenotype (SASP). Attractively, accumulating evidence shows that cellular senescence is closely related to various liver diseases. Therapeutic opportunities based on targeting senescent cells and the SASP are considered to be potential strategy for liver diseases. However, although research on cell senescence has attracted widespread attention, the overview on detailed mechanism and biological function of cell senescence in liver disease is still largely unknown. The present review summarizes the specific role of cell senescence in various liver diseases, and updates the molecular mechanisms underlying cell senescence. Moreover, the review also explores new strategies for prevention and treatment of liver disease through promoting senescence or counteracting excessive pathological senescence.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
12
|
Choi JH, Jeong H, Jang KL. Hepatitis B virus X protein suppresses all-trans retinoic acid-induced apoptosis in human hepatocytes by repressing p14 expression via DNA methylation. J Gen Virol 2017; 98:2786-2798. [PMID: 29068287 DOI: 10.1099/jgv.0.000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to activate p14 expression via promoter hypermethylation to induce p53-dependent apoptosis in human hepatocytes. In this study, we found that the oncogenic hepatitis B virus (HBV) X protein (HBx) of HBV, derived from both overexpression and 1.2-mer replicon systems, suppresses ATRA-induced apoptosis in p53-positive human hepatocytes. For this effect, HBx upregulated both protein and enzyme activity levels of DNA methyltransferase 1, 3a and 3b, in the presence of ATRA and thereby inhibited p14 expression via promoter hypermethylation, resulting in inactivation of the p14-mouse double minute 2 pathway and subsequent downregulation of p53 levels. As a result, HBx was able to impair the potential of ATRA to activate apoptosis-related molecules, including Bax, p53-upregulated modulator of apoptosis, caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In conclusion, the present study provides a new oncogenic action mechanism of HBx, namely by suppressing the anticancer potential of ATRA to induce p53-dependent apoptosis in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
15
|
Popkov VA, Zorova LD, Korvigo IO, Silachev DN, Jankauskas SS, Babenko VA, Pevzner IB, Danilina TI, Zorov SD, Plotnikov EY, Zorov DB. Do Mitochondria Have an Immune System? BIOCHEMISTRY (MOSCOW) 2016; 81:1229-1236. [PMID: 27908248 DOI: 10.1134/s0006297916100217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question if mitochondria have some kind of immune system is not trivial. The basis for raising this question is the fact that bacteria, which are progenitors of mitochondria, do have an immune system. The CRISPR system in bacteria based on the principle of RNA interference serves as an organized mechanism for destroying alien nucleic acids, primarily those of viral origin. We have shown that mitochondria are also a target for viral attacks, probably due to a related organization of genomes in these organelles and bacteria. Bioinformatic analysis performed in this study has not given a clear answer if there is a CRISPR-like immune system in mitochondria. However, this does not preclude the possibility of mitochondrial immunity that can be difficult to decipher or that is based on some principles other than those of CRISPR.
Collapse
Affiliation(s)
- V A Popkov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kong XX, Lv YR, Shao LP, Nong XY, Zhang GL, Zhang Y, Fan HX, Liu M, Li X, Tang H. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells. J Transl Med 2016; 14:189. [PMID: 27349221 PMCID: PMC4924318 DOI: 10.1186/s12967-016-0949-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Occurrence and progression of hepatocellular carcinoma (HCC) are associated with hepatitis B virus (HBV) infection. miR-1269b is up-regulated in HCC cells and tissues. However, the regulation of miR-1269b expression by HBV and the mechanism underlying the oncogenic activity of miR-1269b in HCC are unclear. METHODS Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of miR-1269b and target genes in HCC tissues and cell lines. Western blot analysis was used to assess the expression of miR-1269b target genes and related proteins. Using luciferase reporter assays and EMSA, we identified the factors regulating the transcriptional level of miR-1269b. Colony formation, flow cytometry and cell migration assays were performed to evaluate the phenotypic changes caused by miR-1269b and its target in HCC cells. RESULTS We demonstrated that the expression levels of pre-miR-1269b and miR-1269b in HBV-positive HepG2.2.15 cells were dramatically increased compared with HBV-negative HepG2 cells. HBx was shown to facilitate translocation of NF-κB from the cytoplasm to the nucleus, and NF-κB binds to the promoter of miR-1269b to enhance its transcription. miR-1269b targets and up-regulates CDC40, a cell division cycle 40 homolog. CDC40 increases cell cycle progression, cell proliferation and migration. Rescue experiment indicated that CDC40 promotes malignancy induced by miR-1269b in HCC cells. CONCLUSION We found that HBx activates NF-κB to promote the expression of miR1269b, which augments CDC40 expression, contributing to malignancy in HCC. Our findings provide insights into the mechanisms underlying HBV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiao-Xiao Kong
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yan-Ru Lv
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Shao
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Xiang-Yang Nong
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guang-Ling Zhang
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan City, Hebei Province, China
| | - Yi Zhang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Hong-Xia Fan
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Xin Li
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.
| |
Collapse
|
17
|
Idrissi ME, Hachem H, Koering C, Merle P, Thénoz M, Mortreux F, Wattel E. HBx triggers either cellular senescence or cell proliferation depending on cellular phenotype. J Viral Hepat 2016; 23:130-8. [PMID: 26316075 DOI: 10.1111/jvh.12450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023]
Abstract
Replicative senescence is a hallmark of chronic liver diseases including chronic hepatitis B virus (HBV) infection, whereas HBV-encoded oncoproteins HBx and preS2 have been found to overcome senescence. HBx possesses a C-terminal truncation mainly in hepatocellular carcinomas but also in noncancerous liver tissues. Here, by cell counting, BrdU incorporation, MTT proliferation assay, cell cycle analysis, SA-βgal staining and Western blotting in primary and malignant cells, we investigated the effect of HBx C-terminal mutants on cellular senescence. HBx C-terminal mutants were found to trigger cellular senescence in primary MRC5 cells, and malignant liver cells Huh7, and SK-Hep1. In contrast, these mutants promoted the proliferation of HepG2 malignant liver cells. The pro-senescent effect of HBx relied on an increased p16(INK4a) and p21(Waf1/Cip1) expression, and a decreased phosphorylation of Rb. Together, these results suggest that the two main variants of HBx present in HBV-infected liver possess opposite effects on cellular senescence that depend on the phenotype of infected cells.
Collapse
Affiliation(s)
- M E Idrissi
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France
| | - H Hachem
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France
| | - C Koering
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France
| | - P Merle
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université Lyon-1, Villeurbanne, France.,Hospices Civils de Lyon, Service d'Hépatologie et de Gastroentérologie, Groupement Hospitalier Lyon Nord, Lyon, France
| | - M Thénoz
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France
| | - F Mortreux
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France
| | - E Wattel
- Université Lyon-1, CNRS UMR5239, Oncovirologie et Biothérapies, Lyon, France.,Université Lyon-1, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
18
|
Ancey PB, Testoni B, Gruffaz M, Cros MP, Durand G, Le Calvez-Kelm F, Durantel D, Herceg Z, Hernandez-Vargas H. Genomic responses to hepatitis B virus (HBV) infection in primary human hepatocytes. Oncotarget 2015; 6:44877-91. [PMID: 26565721 PMCID: PMC4792598 DOI: 10.18632/oncotarget.6270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 01/04/2023] Open
Abstract
Viral infections are able to modify the host's cellular programs, with DNA methylation being a biological intermediate in this process. The extent to which viral infections deregulate gene expression and DNA methylation is not fully understood. In the case of Hepatitis B virus (HBV), there is evidence for an interaction between viral proteins and the host DNA methylation machinery. We studied the ability of HBV to modify the host transcriptome and methylome, using naturally infected primary human hepatocytes to better mimic the clinical setting.Gene expression was especially sensitive to culture conditions, independently of HBV infection. However, we identified non-random changes in gene expression and DNA methylation occurring specifically upon HBV infection. There was little correlation between expression and methylation changes, with transcriptome being a more sensitive marker of time-dependent changes induced by HBV. In contrast, a set of differentially methylated sites appeared early and were stable across the time course experiment. Finally, HBV-induced DNA methylation changes were defined by a specific chromatin context characterized by CpG-poor regions outside of gene promoters.These data support the ability of HBV to modulate host cell expression and methylation programs. In addition, it may serve as a reference for studies addressing the genome-wide consequences of HBV infection in human hepatocytes.
Collapse
Affiliation(s)
- Pierre-Benoit Ancey
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Barbara Testoni
- INSERM U1052, Molecular Physiopathology and New Treatments of Viral Hepatitis, Centre de Recherche en Cancérologie (CRCL), Lyon, France
| | - Marion Gruffaz
- INSERM U1052, Molecular Physiopathology and New Treatments of Viral Hepatitis, Centre de Recherche en Cancérologie (CRCL), Lyon, France
| | - Marie-Pierre Cros
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Geoffroy Durand
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Florence Le Calvez-Kelm
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - David Durantel
- INSERM U1052, Molecular Physiopathology and New Treatments of Viral Hepatitis, Centre de Recherche en Cancérologie (CRCL), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | | |
Collapse
|
19
|
Niller HH, Ay E, Banati F, Demcsák A, Takacs M, Minarovits J. Wild type HBx and truncated HBx: Pleiotropic regulators driving sequential genetic and epigenetic steps of hepatocarcinogenesis and progression of HBV-associated neoplasms. Rev Med Virol 2015; 26:57-73. [PMID: 26593760 DOI: 10.1002/rmv.1864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) is one of the causative agents of hepatocellular carcinoma. The molecular mechanisms of tumorigenesis are complex. One of the host factors involved is apparently the long-lasting inflammatory reaction which accompanies chronic HBV infection. Although HBV lacks a typical viral oncogene, the HBx gene encoding a pleiotropic regulatory protein emerged as a major player in liver carcinogenesis. Here we review the tumorigenic functions of HBx with an emphasis on wild type and truncated HBx variants, and their role in the transcriptional dysregulation and epigenetic reprogramming of the host cell genome. We suggest that HBx acquired by the HBV genome during evolution acts like a cellular proto-onc gene that is activated by deletion during hepatocarcinogenesis. The resulting viral oncogene (v-onc gene) codes for a truncated HBx protein that facilitates tumor progression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Eva Ay
- Department of Retrovirology, National Center for Epidemiology, Budapest, Hungary
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, Mosonmagyarovar, Hungary
| | - Anett Demcsák
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - Maria Takacs
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| |
Collapse
|
20
|
Pazienza V, Panebianco C, Andriulli A. Hepatitis viruses exploitation of host DNA methyltransferases functions. Clin Exp Med 2015; 16:265-72. [PMID: 26148656 DOI: 10.1007/s10238-015-0372-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell's pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy.
| | - Concetta Panebianco
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy
| | - Angelo Andriulli
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy
| |
Collapse
|
21
|
Afanas'ev I. Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis 2015; 6:216-27. [PMID: 26029480 DOI: 10.14336/ad.2014.0924] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023] Open
Abstract
Superoxide is a precursor of many free radicals and reactive oxygen species (ROS) in biological systems. It has been shown that superoxide regulates major epigenetic processes of DNA methylation, histone methylation, and histone acetylation. We suggested that superoxide, being a radical anion and a strong nucleophile, could participate in DNA methylation and histone methylation and acetylation through mechanism of nucleophilic substitution and free radical abstraction. In nucleophilic reactions superoxide is able to neutralize positive charges of methyl donors S-adenosyl-L-methionine (SAM) and acetyl-coenzyme A (AcCoA) enhancing their nucleophilic capacity or to deprotonate cytosine. In the reversed free radical reactions of demethylation and deacetylation superoxide is formed catalytically by the (Tet) family of dioxygenates and converted into the iron form of hydroxyl radical with subsequent oxidation and final eradication of methyl substituents. Double role of superoxide in these epigenetic processes might be of importance for understanding of ROS effects under physiological and pathological conditions including cancer and aging.
Collapse
Affiliation(s)
- Igor Afanas'ev
- Vitamin Research Institute, Moscow, Russia, Porto, Portugal
| |
Collapse
|
22
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma. J Pathol 2014; 233:392-401. [PMID: 24838394 DOI: 10.1002/path.4376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 12/19/2022]
Abstract
The tumour suppressor gene RB1 is frequently silenced in many different types of human cancer, including hepatocellular carcinoma (HCC). However, mutations of the RB1 gene are relatively rare in HCC. A systematic screen for the identification of imprinted genes deregulated in human HCC revealed that RB1 shows imprint abnormalities in a high proportion of primary patient samples. Altogether, 40% of the HCC specimens (16/40) showed hyper- or hypomethylation at the CpG island in intron 2 of the RB1 gene. Re-analysis of publicly available genome-wide DNA methylation data confirmed these findings in two independent HCC cohorts. Loss of correct DNA methylation patterns at the RB1 locus leads to the aberrant expression of an alternative RB1-E2B transcript, as measured by quantitative real-time PCR. Demethylation at the intron 2 CpG island by DNMT1 knock-down or aza-deoxycytidine (DAC) treatment stimulated expression of the RB1-E2B transcript, accompanied by diminished RB1 main transcript expression. No aberrant DNA methylation was found at the RB1 locus in hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5) and their corresponding adjacent liver tissue specimens. Deregulated RB1 expression due to hyper- or hypomethylation in intron 2 of the RB1 gene is found in tumours without loss of heterozygosity and is associated with a decrease in overall survival (p = 0.032) if caused by hypermethylation of CpG85. This unequivocally demonstrates that loss of imprinting represents an important additional mechanism for RB1 pathway inactivation in human HCC, complementing well-described molecular defects.
Collapse
|
23
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
24
|
Arataki K, Hayes CN, Akamatsu S, Akiyama R, Abe H, Tsuge M, Miki D, Ochi H, Hiraga N, Imamura M, Takahashi S, Aikata H, Kawaoka T, Kawakami Y, Ohishi W, Chayama K. Circulating microRNA-22 correlates with microRNA-122 and represents viral replication and liver injury in patients with chronic hepatitis B. J Med Virol 2013; 85:789-98. [PMID: 23508904 DOI: 10.1002/jmv.23540] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection is associated with increased expression of microRNA-122. Serum microRNA-122 and microRNA-22 levels were analyzed in 198 patients with chronic HBV who underwent liver biopsy and were compared with quantitative measurements of HBsAg, HBeAg, HBV DNA, and other clinical and histological findings. Levels of serum microRNA-122 and microRNA-22 were determined by reverse transcription-TaqMan PCR. Serum levels of microRNA-122 and microRNA-22 were correlated (R(2) = 0.576; P < 0.001), and both were elevated in chronic HBV patients. Significant linear correlations were found between microRNA-122 or microRNA-22 and HBsAg levels (R(2) = 0.824, P < 0.001 and R(2) = 0.394, P < 0.001, respectively) and ALT levels (R(2) = 0.498, P < 0.001 and R(2) = 0.528, P < 0.001, respectively). MicroRNA-122 levels were also correlated with HBV DNA titers (R(2) = 0.694, P < 0.001 and R(2) = 0.421, P < 0.001). Levels of these microRNAs were significantly higher in HBeAg-positive patients compared to HBeAg-negative patients (P < 0.001 and P < 0.001). MicroRNA-122 levels were also lower in patients with advanced liver fibrosis (P < 0.001) and lower inflammatory activity (P < 0.025). These results suggest that serum micro-RNA levels are significantly associated with multiple aspects of HBV infection. The biological meaning of the correlation between microRNA-122 and HBsAg and should be investigated further.
Collapse
Affiliation(s)
- Keiko Arataki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fiorino S, Lorenzini S, Masetti M, Deleonardi G, Grondona AG, Silvestri T, Chili E, Del Prete P, Bacchi-Reggiani L, Cuppini A, Jovine E. Hepatitis B and C virus infections as possible risk factor for pancreatic adenocarcinoma. Med Hypotheses 2012; 79:678-97. [PMID: 22959312 DOI: 10.1016/j.mehy.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PAC) is a very aggressive and lethal cancer, with a very poor prognosis, because of absence of early symptoms, advanced stage at presentation, early metastatic dissemination and lack of both specific tests to detect its growth in the initial phases and effective systemic therapies. To date, the causes of PAC still remain largely unknown, but multiple lines of evidence from epidemiological and laboratory researches suggest that about 15-20% of all cancers are linked in some way to chronic infection, in particular it has been shown that several viruses have a role in human carcinogenesis. The purpose of this report is to discuss the hypothesis that two well-known oncogenic viruses, Human B hepatitis (HBV) and Human C hepatitis (HCV) are a possible risk factor for this cancer. Therefore, with the aim to examine the potential link between these viruses and PAC, we performed a selection of observational studies evaluating this association and we hypothesized that some pathogenetic mechanisms involved in liver carcinogenesis might be in common with pancreatic cancer development in patients with serum markers of present or past HBV and HCV infections. To date the available observational studies performed are few, heterogeneous in design as well as in end-points and with not univocal results, nevertheless they might represent the starting-point for future larger and better designed clinical trials to define this hypothesized relationship. Should these further studies confirm an association between HBV/HCV infection and PAC, screening programs might be justified in patients with active or previous hepatitis B and C viral infection.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio, Budrio, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lim JS, Park SH, Jang KL. Hepatitis C virus Core protein overcomes stress-induced premature senescence by down-regulating p16 expression via DNA methylation. Cancer Lett 2012; 321:154-61. [PMID: 22326283 DOI: 10.1016/j.canlet.2012.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus Core plays a vital role in the development of hepatocellular carcinoma; however, the mechanism is still controversial. Here, we show that Core overcomes premature senescence provoked by a reactive oxygen species inducer, H2O2, in human liver cells. For this effect, Core down-regulated levels of p16 via promoter hypermethylation and subsequently induced phosphorylation of Rb in the presence of H2O2. Levels of p21 and p27, however, were little affected by Core under the condition. The potentials of Core to inactivate Rb and suppress H2O2-mediated cellular senescence were abolished when levels of p16 were recovered by either exogenous complementation or inhibition of DNA methylation. Considering that cellular senescence provoked by oxidative stresses is an important tumor suppression process, our present study provides a new strategy by which HCV promotes development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Joo Song Lim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|
27
|
Park SH, Lim JS, Lim SY, Tiwari I, Jang KL. Hepatitis C virus Core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Lett 2011; 310:61-8. [PMID: 21757290 DOI: 10.1016/j.canlet.2011.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/27/2011] [Accepted: 06/11/2011] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus Core plays a vital role in the development of hepatocellular carcinoma; however, its action mechanism is still controversial. Here, we showed that Core down-regulated levels of p16, resulting in inactivation of Rb and subsequent activation of E2F1, which lead to growth stimulation of hepatocytes. For this effect, Core inhibited p16 expression by inducing promoter hypermethylation via up-regulation of DNA methyltransferase 1 (DNMT1) and DNMT3b. The growth stimulatory effect of Core was abolished when levels of p16 were restored by either exogenous complementation or treatment with 5-Aza-2'dC, indicating that the effect is critical for the stimulation of cell growth by Core.
Collapse
Affiliation(s)
- Sun-Hye Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. ACTA ACUST UNITED AC 2011; 208:1963-76. [PMID: 21875955 PMCID: PMC3182062 DOI: 10.1084/jem.20110198] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors. Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medical Chemistry, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Chronic hepatitis B virus (HBV) infection has been identified as a major risk factor in hepatocellular carcinoma (HCC), which is one of the most common cancers worldwide. The pathogenesis of HBV-mediated hepatocarcinogenesis is, however, incompletely understood. Evidence suggests that the HBV X protein (HBx) plays a crucial role in HCC development. HBx is a multifunctional regulator that modulates transcription, signal transduction, cell cycle progression, apoptosis, protein degradation pathways, and genetic stability through interaction with host factors. This review describes the current state of knowledge of the molecular pathogenesis of HBV-induced HCC, with a focus on the role of HBx in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sue-Ann Ng
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
30
|
Abstract
Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | | |
Collapse
|
31
|
Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS One 2011; 6:e19758. [PMID: 21573126 PMCID: PMC3089631 DOI: 10.1371/journal.pone.0019758] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/10/2011] [Indexed: 12/28/2022] Open
Abstract
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.
Collapse
|