1
|
Zuo CJ, Tian J. Advancing the understanding of the role of apoptosis in lung cancer immunotherapy: Global research trends, key themes, and emerging frontiers. Hum Vaccin Immunother 2025; 21:2488074. [PMID: 40186454 PMCID: PMC11980473 DOI: 10.1080/21645515.2025.2488074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025] Open
Abstract
Apoptosis is vital for improving the efficacy of lung cancer (LC) immunotherapy by targeting cancer cell elimination. Despite its importance, there is a lack of comprehensive bibliometric studies analyzing global research on apoptosis in LC immunotherapy. This analysis aims to address this gap by highlighting key trends, contributors, and future directions. A total of 969 publications from 1996 to 2024 were extracted from the Web of Science Core Collection. Analysis was conducted using VOSviewer, CiteSpace, and the R package 'bibliometrix.' The study included contributions from 6,894 researchers across 1,469 institutions in 61 countries, with research published in 356 journals. The volume of publications has steadily increased, led by China and the United States, with Sichuan University as the top contributor. The journal Cancers published the most articles, while Cancer Research had the highest co-citations. Yu-Quan Wei was the leading author, and Jemal, A. was the most frequently co-cited. Key research themes include "cell death mechanisms," "immune regulation," "combination therapies," "gene and nanomedicine applications," and "traditional Chinese medicine (TCM)." Future research is likely to focus on "coordinated regulation of multiple cell death pathways," "modulation of the tumor immune microenvironment," "optimization of combination therapies," "novel strategies in gene regulation," and the "integration of TCM" for personalized treatment. This is the first bibliometric analysis on the role of apoptosis in LC immunotherapy, providing an landscape of global research patterns and emerging therapeutic strategies. The findings offer insights to guide future research and optimize treatment approaches.
Collapse
Affiliation(s)
- Chun-Jian Zuo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yu X, Yao Y, Zhou H, Zhu J, Zhang N, Sang S, Zhou H. Integrating network pharmacology and experimental validation to explore the potential mechanism by which resveratrol acts on osimertinib resistance in lung cancer. Oncol Lett 2025; 29:192. [PMID: 40041411 PMCID: PMC11877012 DOI: 10.3892/ol.2025.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
Globally, osimertinib resistance has been a long-term challenge. Resveratrol, a naturally occurring polyphenolic compound found in various plants, has the potential to modulate multidrug resistance mechanisms. However, the specific role of resveratrol in delaying osimertinib resistance in lung cancer is still unclear. The present study aimed to investigate the therapeutic effects and underlying mechanisms of resveratrol in delaying osimertinib resistance. Accordingly, the corresponding targets of resveratrol were screened through the Traditional Chinese Medicine Systems Pharmacology database. Similarly, the corresponding targets for osimertinib resistance were mined from the GeneCards database. A protein-protein interaction network was subsequently constructed to pinpoint key hub genes that resveratrol may target to delay resistance. Molecular docking analysis was then employed to assess the binding energy between the predicted key targets and resveratrol. Finally, in vitro experiments were performed to validate the results. Ultimately, 13 potential therapeutic targets of resveratrol related to delaying osimertinib resistance were identified. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the effects of resveratrol may be associated with the apoptotic pathway. Molecular docking revealed that resveratrol has good binding affinities with MCL1 and BCL2L11. In vitro experiments confirmed that resveratrol inhibited the proliferation of osimertinib-resistant cells and upregulated the expression of BCL2L11. In conclusion, resveratrol may promote apoptosis by targeting BCL2L11 to delay osimertinib resistance.
Collapse
Affiliation(s)
- Xin Yu
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Yuan Yao
- Department of TCM, Shimen Er Lu Community Health Service Center of Jing'an District, Shanghai 200041, P.R. China
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, P.R. China
| | - Haiwen Zhou
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Jintao Zhu
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Nini Zhang
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
3
|
Du F, Zhang A, Qi X, Yin R, Jiang T, Li J. Novel Camptothecin Derivative 9c with Enhanced Antitumor Activity via NSA2-EGFR-P53 Signaling Pathway. Int J Mol Sci 2025; 26:1987. [PMID: 40076615 PMCID: PMC11900506 DOI: 10.3390/ijms26051987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Therapeutic challenges persist in the management of non-small cell lung cancer (NSCLC) in oncology. Camptothecins have demonstrated as crucial agents in tumor therapy; however, their efficacy is significantly hindered by adverse effects and drug resistance. Herein, we present a novel camptothecin derivative named 9c, which exhibits impressive anti-NSCLC potency surpassing the widely recognized camptothecin analog FL118 through a novel mechanism. Our findings demonstrated that 9c effectively inhibited tumor malignancy through cell cycle arrest and apoptosis induction with the transcriptional downregulation of anti-apoptotic genes including survivin, Mcl-1, Bcl-2, and XIAP. Mechanistically, 9c induced a wild-type p53 expression by destabilizing the NSA2-EGFR axis, thus delaying the cell cycle progression and ultimately triggering apoptosis. 9c significantly inhibited the growth of the NSCLC xenograft in vivo without observed side toxicity. Importantly, it complemented the therapeutic advantages of the novel drug AMG510 for addressing KRAS-mutant NSCLC. Collectively, these findings position 9c as a promising candidate with innovative approaches to combat NSCLC.
Collapse
Affiliation(s)
- Fu Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
4
|
Altıntop MD, Ertorun İ, Akalın Çiftçi G, Özdemir A. Design, synthesis and biological evaluation of a new series of imidazothiazole-hydrazone hybrids as dual EGFR and Akt inhibitors for NSCLC therapy. Eur J Med Chem 2024; 276:116698. [PMID: 39047611 DOI: 10.1016/j.ejmech.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In search of small molecules for targeted therapy of non-small cell lung carcinoma (NSCLC), an efficient four-step synthetic route was followed for the synthesis of new imidazothiazole-hydrazone hybrids, which were assessed for their cytotoxic effects on human lung adenocarcinoma (A549) and human lung fibroblast (CCD-19Lu) cells. Among them, compounds 4, 6, 13, 16, 17 and 21 exhibited selective cytotoxic activity against A549 cell line. In vitro mechanistic studies were performed to assess their effects on apoptosis, caspase-3, cell cycle, EGFR and Akt in A549 cells. Compounds 6, 16, 17 and 21 promoted apoptotic cell death more than erlotinib. According to the in vitro data, it is quite clear that compound 6 promotes apoptosis through caspase-3 activation and arrests the cell cycle at the G0/G1 phase in A549 cells. Compounds 16 and 17 arrested the cell cycle at the S phase, whereas compounds 4, 13 and 21 caused the cell cycle arrest at the G2/M phase. The most effective EGFR inhibitor in this series was found as compound 13, followed by compounds 17 and 16. Furthermore, Akt inhibitory effects of compounds 16 and 17 in A549 cells were close to that of GSK690693. In particular, it can be concluded that the cytotoxic and apoptotic effects of compounds 16 and 17 are associated with their inhibitory effects on both EGFR and Akt. Molecular docking studies suggest that compounds 16 and 17 interact with crucial amino acid residues in the binding sites of human EGFR (PDB ID: 1M17) and Akt2 (PDB ID: 3D0E). Based on the in silico data, both compounds are predicted to possess favorable oral bioavailability and drug-likeness. Further studies are required to benefit from these compounds as anticancer agents for targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - İpek Ertorun
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| |
Collapse
|
5
|
Kim SH, Kang JM, Park Y, Kim Y, Lim B, Park JH. Effects of bipolar irreversible electroporation with different pulse durations in a prostate cancer mouse model. Sci Rep 2024; 14:9902. [PMID: 38688960 PMCID: PMC11061152 DOI: 10.1038/s41598-024-60413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal ablation technique for local tumor treatment known to be influenced by pulse duration and voltage settings, affecting its efficacy. This study aims to investigate the effects of bipolar IRE with different pulse durations in a prostate cancer mouse model. The therapeutic effectiveness was assessed with in vitro cell experiments, in vivo tumor volume changes with magnetic resonance imaging, and gross and histological analysis in a mouse model. The tumor volume continuously decreased over time in all IRE-treated groups. The tumor volume changes, necroptosis (%), necrosis (%), the degree of TUNEL-positive cell expression, and ROS1-positive cell (%) in the long pulse duration-treated groups (300 μs) were significantly increased compared to the short pulse duration-treated groups (100 μs) (all p < 0.001). The bipolar IRE with a relatively long pulse duration at the same voltage significantly increased IRE-induced cell death in a prostate cancer mouse model.
Collapse
Affiliation(s)
- Song Hee Kim
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yunlim Kim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Bumjin Lim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
6
|
Mohanty D, Padhee S, Priyadarshini A, Champati BB, Das PK, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Elucidating the anti-cancer potential of Cinnamomum tamala essential oil against non-small cell lung cancer: A multifaceted approach involving GC-MS profiling, network pharmacology, and molecular dynamics simulations. Heliyon 2024; 10:e28026. [PMID: 38533033 PMCID: PMC10963383 DOI: 10.1016/j.heliyon.2024.e28026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Arpita Priyadarshini
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| |
Collapse
|
7
|
Kart NNB, Günal B, Mutlu D, Doğan NM, Arslan Ş, Semiz G. Evaluating Antibiofilm, Cytotoxic and Apoptotic Activities of Scutellaria brevibracteata subsp. brevibracteata Essential Oil. Chem Biodivers 2023; 20:e202300878. [PMID: 37947368 DOI: 10.1002/cbdv.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Essential oils have many important biological properties, including antibacterial and antibiofilm activities. These unique properties make, essential oils good alternatives to synthetic chemical drugs, which have many side effects. In this study, we aimed to determine the chemical composition and biological activity of the essential oil obtained from Scutellaria brevibracteata subsp. brevibracteata. Specifically, its antibiofilm activity against Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ATCC 29213 biofilms using XTT assay. Cytotoxic and apoptotic properties of the essential oil were investigated in human lung cancer cells (A540 and H1299) using MTT assay, Annexin V-FITC and propidium iodide staining and q-PCR. Thirty-two different compounds were identified from the essential oil, of which elemol (20.42 %), γ-eudesmol (20.12 %) and β-eudesmol (14.85 %) were the main components. The essential oil was more effective against P. aeruginosa PAO1 biofilm (79 %) than S. aureus ATCC 29213 biofilm (27 %). The specific activity of the essential oil against P. aeruginosa biofilm may be related to its high terpene contents. In addition, the essential oil showed high cytotoxic activity towards A549 (IC50 9.09 μg/ml) and H1299 (IC50 55.04 μg/ml) cell lines, inducing apoptosis in these cancer cells. These results demonstrate the antibiofilm and anticancer activities of S. brevibracteata subsp. brevibracteata essential oil.
Collapse
Affiliation(s)
| | - Batıkan Günal
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Doğukan Mutlu
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Nazime Mercan Doğan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Şevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Gürkan Semiz
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
8
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
9
|
Zhang C, Zhang C, Wang K, Wang H. Orchestrating smart therapeutics to achieve optimal treatment in small cell lung cancer: recent progress and future directions. J Transl Med 2023; 21:468. [PMID: 37452395 PMCID: PMC10349514 DOI: 10.1186/s12967-023-04338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with elusive mechanism of pathogenesis and dismal prognosis. Over the past decades, platinum-based chemotherapy has been the backbone treatment for SCLC. However, subsequent chemoresistance after initial effectiveness urges researchers to explore novel therapeutic targets of SCLC. Recent years have witnessed significant improvements in targeted therapy in SCLC. New molecular candidates such as Ataxia telangiectasia and RAD3-related protein (ATR), WEE1, checkpoint kinase 1 (CHK1) and poly-ADP-ribose polymerase (PARP) have shown promising therapeutic utility in SCLC. While immune checkpoint inhibitor (ICI) has emerged as an indispensable treatment modality for SCLC, approaches to boost efficacy and reduce toxicity as well as selection of reliable biomarkers for ICI in SCLC have remained elusive and warrants our further investigation. Given the increasing importance of precision medicine in SCLC, optimal subtyping of SCLC using multi-omics have gradually applied into clinical practice, which may identify more drug targets and better tailor treatment strategies to each individual patient. The present review summarizes recent progress and future directions in SCLC. In addition to the emerging new therapeutics, we also focus on the establishment of predictive model for early detection of SCLC. More importantly, we also propose a multi-dimensional model in the prognosis of SCLC to ultimately attain the goal of accurate treatment of SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Number 440, Ji Yan Road, Jinan, China.
| |
Collapse
|
10
|
Moleirinho S, Kitamura Y, Borges PSGN, Auduong S, Kilic S, Deng D, Kanaya N, Kozono D, Zhou J, Gray JJ, Revai-Lechtich E, Zhu Y, Shah K. Fate and Efficacy of Engineered Allogeneic Stem Cells Targeting Cell Death and Proliferation Pathways in Primary and Brain Metastatic Lung Cancer. Stem Cells Transl Med 2023; 12:444-458. [PMID: 37311043 PMCID: PMC10346421 DOI: 10.1093/stcltm/szad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/07/2023] [Indexed: 06/15/2023] Open
Abstract
Primary and metastatic lung cancer is a leading cause of cancer-related death and novel therapies are urgently needed. Epidermal growth factor receptor (EGFR) and death receptor (DR) 4/5 are both highly expressed in primary and metastatic non-small cell lung cancer (NSCLC); however, targeting these receptors individually has demonstrated limited therapeutic benefit in patients. In this study, we created and characterized diagnostic and therapeutic stem cells (SC), expressing EGFR-targeted nanobody (EV) fused to the extracellular domain of death DR4/5 ligand (DRL) (EVDRL) that simultaneously targets EGFR and DR4/5, in primary and metastatic NSCLC tumor models. We show that EVDRL targets both cell surface receptors, and induces caspase-mediated apoptosis in a broad spectrum of NSCLC cell lines. Utilizing real-time dual imaging and correlative immunohistochemistry, we show that allogeneic SCs home to tumors and when engineered to express EVDRL, alleviate tumor burden and significantly increase survival in primary and brain metastatic NSCLC. This study reports mechanistic insights into simultaneous targeting of EGFR- and DR4/5 in lung tumors and presents a promising approach for translation into the clinical setting.
Collapse
Affiliation(s)
- Susana Moleirinho
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Kitamura
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paulo S G N Borges
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sophia Auduong
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Seyda Kilic
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David Deng
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Esther Revai-Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanni Zhu
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Bahremani M, Rashtchizadeh N, Sabzichi M, Vatankhah AM, Danaiyan S, Poursistany H, Mohammadian J, Ghorbanihaghjo A. Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. J Biochem Mol Toxicol 2023; 37:e23348. [PMID: 36999407 DOI: 10.1002/jbt.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The dose-dependent adverse effects of anticancer agents need new methods with lesser toxicity. The objective of the current research was to evaluate the efficacy of GLUT1 inhibitor, as an inhibitor of glucose consumption in cancer cells, in augmenting the efficiency of docetaxel with respect to cytotoxicity and apoptosis. Cell cytotoxicity was assessed by using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Annexin V/PI double staining was employed to evaluate apoptosis percentage. Quantitative real-time polymerase chain reaction (RT-PCR) analysis was accomplished to detect the expression of genes involved in the apoptosis pathway. The IC50 values for docetaxel and BAY-876 were 3.7 ± 0.81 and 34.1 ± 3.4 nM, respectively. The severity of synergistic mutual effects of these agents on each other was calculated by synergy finder application. It showed that the percentage of apoptotic cells following co-administration of docetaxel and BAY-876 increased to 48.1 ± 2.8%. In comparison without GLUT1 co-administration, the combined therapy decreased significantly the transcriptome levels of the Bcl-2 and Ki-67 and a remarkable increase in the level of the Bax as proapoptotic protein(p < 0.05). Co-treatment of BAY-876 and docetaxel depicted a synergistic effect which was calculated using the synergy finder highest single agent (HSA) method (HSA synergy score: 28.055). These findings recommend that the combination of GLUT-1 inhibitor and docetaxel can be considered as a promising therapeutic approach for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Mona Bahremani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Danaiyan
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Varghese R, Efferth T, Ramamoorthy S. Carotenoids for lung cancer chemoprevention and chemotherapy: Promises and controversies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154850. [PMID: 37187036 DOI: 10.1016/j.phymed.2023.154850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lung cancer is one of the leading causes of malignancy in the world. Several therapeutical and chemopreventive approaches have been practised to mitigate the disease. The use of phytopigments including carotenoids is a well-known approach. However, some of the prominent clinical trials interrogated the efficacy of carotenoids in lung cancer prevention. METHODS A elaborate literature survey have been performed investigating in vitro, in vivo, and clinical studies reported on the administration of carotenoids for chemoprevention and chemotherapy. RESULTS Tobacco consumption, genetic factors, dietary patterns, occupational carcinogens, lung diseases, infection, and sex disparities are some of the prominent factors leading to lung cancer. Significant evidence has been found underlining the efficiency of carotenoids in alleviating cancer. In vitro studies have proven that carotenoids act through PI3K/ AKT/mTOR, ERK-MAPK pathways and induce apoptosis through PPAR, IFNs, RAR, which are p53 intermediators in lung cancer signaling. Animal models and cell lines studies showed promising results, while the outcomes of clinical trials are contradictory and require further verification. CONCLUSION The carotenoids exert chemotherapeutic and chemopreventive effects on lung tumors which has been evidenced in numerous investigations. However, further analyses are necessary to the answer the uncertainties raised by several clinical trials.
Collapse
Affiliation(s)
- Ressin Varghese
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute, Technology, Vellore 632014, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute, Technology, Vellore 632014, India.
| |
Collapse
|
13
|
Zhou JY, Yang RR, Chang J, Song J, Fan ZS, Zhang YH, Lu CH, Jiang HL, Zheng MY, Zhang SL. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Acta Pharmacol Sin 2023; 44:475-485. [PMID: 35918411 PMCID: PMC9889308 DOI: 10.1038/s41401-022-00936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
The B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1-3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target. Herein, we describe the discovery and identification of DC-B01, a novel BCL-2 inhibitor targeting the BH4 domain, through virtual screening combined with biophysical and biochemical methods. Our results from surface plasmon resonance and cellular thermal shift assay confirmed that the BH4 domain is responsible for the interaction between BCL-2 and DC-B01. As evidenced by further cell-based experiments, DC-B01 induced cell killing in a BCL-2-dependent manner and triggered apoptosis via the mitochondria-mediated pathway. DC-B01 disrupted the BCL-2/c-Myc interaction and consequently suppressed the transcriptional activity of c-Myc. Moreover, DC-B01 inhibited tumor growth in vivo in a BCL‑2‑dependent manner. Collectively, these results indicate that DC-B01 is a promising BCL-2 BH4 domain inhibitor with the potential for further development.
Collapse
Affiliation(s)
- Jing-Yi Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui-Rui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai, 200031, China
| | - Jie Chang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jia Song
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zi-Sheng Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying-Hui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Cheng-Hao Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hua-Liang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Ming-Yue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Su-Lin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
14
|
Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2865-2876. [PMID: 36073799 DOI: 10.1002/tox.23643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts were successfully applied to synthesize nanoparticles, and expected such biological processes of effective for chemotherapeutic applications and safe for human use. Our study planned to evaluate the anticancer efficacy of silver nanoparticles (AgNPs) synthesized by Euphorbia hirta on human lung adenocarcinoma A549 cells. The E. hirta synthesized Eh-AgNPs was investigated by UV-spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy examination. The bactericidal efficacy of Eh-AgNPs was studied by the agar well method, and the cytotoxicity on A549 cells was assessed by MTT assay. Results showed that Eh-AgNPs exhibited effective antibacterial activity against bacterial pathogens, established dose-dependent cytotoxicity on A549 cells, and persuaded apoptosis, as evidenced by increased lipid peroxidation and decreased levels of antioxidants. Eh-AgNPs significantly increased the early apoptosis in A549 cells in a concentration-dependent way. The Eh-AgNPs administration reduced the Bcl-2 expression; however, it increased the expression of p53, Bax, cleaved caspase-3 and -9 apoptotic members. Eh-AgNPs treatment reduced PI3Kγ, phospho-PI3K, phospho-Akt, phospho-mTOR, and p70S6K levels. The obtained results demonstrated that the Eh-AgNPs induce reactive oxygen species-mediated apoptosis by expressing p53, Bax, and inhibiting PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Rajalakshmi Ramachandran
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Ramya Parthasarathy
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
15
|
Vikas, Mehata AK, Suseela MNL, Behera C, Kumari P, Mahto SK, Muthu MS. Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022; 221:874-890. [PMID: 36089091 DOI: 10.1016/j.ijbiomac.2022.09.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cabazitaxel (CZT) loaded chitosan-alginate based (CSA) nanoparticles were developed with dual targeting functions of both folate receptor and epidermal growth factor receptor (EGFR) using ionic gelation technique. The chitosan-folate conjugate was synthesized, and characterized by using FTIR, NMR and Mass spectroscopy. The physicochemical parameters and morphology of all CSA nanoparticles were examined. The degree of conjugation of folic acid and cetuximab (CTXmab) was determined by UV-Visible spectroscopy and Bradford assay, respectively. Moreover, XPS analysis also supported the presence of the ligands on nanoparticles. The cellular-uptake study performed on A-549 cells demonstrated a significant enhancement in the uptake of dual-receptor targeted CSA nanoparticles than non-targeted and single-receptor targeted CSA nanoparticles. Further, CZT-loaded dual receptors targeted CSA nanoparticles also showed significantly lower IC50 values (~38 folds) than the CZT control against A-549 cells. Further, in-vivo histopathological evaluations of dual receptor-targeted CSA nanoparticles have demonstrated better safety in Wistar rats. Moreover, its treatment on the Benzo(a)pyrene (B(a)P) induced lung cancer mice model has showed the enhanced anticancer efficacy of CZT with a prolonged survival rate.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - M Nikitha Lakshmi Suseela
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Chittaranjan Behera
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Pooja Kumari
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
16
|
Innets B, Thongsom S, Petsri K, Racha S, Yokoya M, Moriue S, Chaotham C, Chanvorachote P. Akt/mTOR Targeting Activity of Resveratrol Derivatives in Non-Small Lung Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238268. [PMID: 36500361 PMCID: PMC9739815 DOI: 10.3390/molecules27238268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The Akt-mTOR signal is important for the survival and proliferation of cancer cells and has become an interesting drug target. In this study, five resveratrol derivatives were evaluated for anticancer activity and Akt/mTOR targeting activity in non-small lung cancer cell lines. The effects of resveratrol derivatives on cell proliferation were assessed by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nucleus staining, and colony formation assay. Furthermore, the effect of resveratrol derivatives on proliferation-related protein expression was analyzed by immunofluorescence and Western blotting. For the structure-activity relationship (SAR), results reveal that two derivatives of resveratrol which are 4,4'-(ethane-1,2-diyl) bis(2-methoxyphenol) (RD2) and the 4-(3-hydroxy-4-methoxyphenethyl)-2-methoxyphenol (RD3) had very similar structures but exerted different cytotoxicity. The IC50 of RD2 and RD3 were 108.6 ± 10.82 and more than 200 µM in the A549 cell line and 103.5 ± 6.08 and more than 200 µM in H23 cells, respectively. RD2 inhibited cell proliferation and induced apoptosis when compared with the control, while RD3 caused minimal effects. Cells treated with RD2 exhibited apoptotic nuclei in a concomitant with the reduction of cellular p-Akt and p-mTOR. RD3 had minimal effects on such proteins. According to these results, molecular docking analysis revealed a high-affinity interaction between RD2 and an Akt molecule at the ATP-binding and the allosteric sites, indicating this RD2 as a potential Akt inhibitor. This study provides useful information of resveratrol derivatives RD2 for treating lung cancer via Akt/mTOR inhibition.
Collapse
Affiliation(s)
- Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Sohsuke Moriue
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-2188-344
| |
Collapse
|
17
|
Sheinin M, Jeong B, Paidi RK, Pahan K. Regression of Lung Cancer in Mice by Intranasal Administration of SARS-CoV-2 Spike S1. Cancers (Basel) 2022; 14:5648. [PMID: 36428739 PMCID: PMC9688283 DOI: 10.3390/cancers14225648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
This study underlines the importance of SARS-CoV-2 spike S1 in prompting death in cultured non-small cell lung cancer (NSCLC) cells and in vivo in lung tumors in mice. Interestingly, we found that recombinant spike S1 treatment at very low doses led to death of human A549 NSCLC cells. On the other hand, boiled recombinant SARS-CoV-2 spike S1 remained unable to induce death, suggesting that the induction of cell death in A549 cells was due to native SARS-CoV-2 spike S1 protein. SARS-CoV-2 spike S1-induced A549 cell death was also inhibited by neutralizing antibodies against spike S1 and ACE2. Moreover, our newly designed wild type ACE2-interacting domain of SARS-CoV-2 (wtAIDS), but not mAIDS, peptide also attenuated SARS-CoV-2 spike S1-induced cell death, suggesting that SARS-CoV-2 spike S1-induced death in A549 NSCLC cells depends on its interaction with ACE2 receptor. Similarly, recombinant spike S1 treatment also led to death of human H1299 and H358 NSCLC cells. Finally, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) intoxication led to the formation tumors in lungs of A/J mice and alternate day intranasal treatment with low dose of recombinant SARS-CoV-2 spike S1 from 22-weeks of NNK insult (late stage) induced apoptosis and tumor regression in the lungs. These studies indicate that SARS-CoV-2 spike S1 may have implications for lung cancer treatment.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Brian Jeong
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Petsri K, Thongsom S, Racha S, Chamni S, Jindapol S, Kaekratoke N, Zou H, Chanvorachote P. Novel mechanism of napabucasin, a naturally derived furanonaphthoquinone: apoptosis and autophagy induction in lung cancer cells through direct targeting on Akt/mTOR proteins. BMC Complement Med Ther 2022; 22:250. [PMID: 36180880 PMCID: PMC9524025 DOI: 10.1186/s12906-022-03727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear. Method Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. Result A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl‑2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. Conclusion Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03727-6.
Collapse
|
19
|
Wang Y, Li Y, Wang L, Chen B, Zhu M, Ma C, Mu C, Tao A, Li S, Luo L, Ma P, Ji S, Lan T. Cinnamaldehyde Suppressed EGF-Induced EMT Process and Inhibits Ovarian Cancer Progression Through PI3K/AKT Pathway. Front Pharmacol 2022; 13:779608. [PMID: 35645793 PMCID: PMC9133335 DOI: 10.3389/fphar.2022.779608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies in women worldwide with a poor survival rate. Cinnamaldehyde (CA), a bioactive substance isolated from cinnamon bark, is a natural drug and has shown that it can inhibit the progression of other tumors. However, the role of CA in ovarian cancer and its mechanism is poorly understood. In this study, wound healing assays, plate cloning, CCK-8, and transwell assays were used to determine cell proliferation and invasion. Western blot and flow cytometry were used to detect apoptosis levels. Western blot and immunofluorescence were used to detect changes in cellular EMT levels. The Western blot was used to detect levels of the PI3K/AKT signaling pathway. In vivo, we established a subcutaneous transplantation tumor model in nude mice to verify the role of CA in the progression and metastasis of ovarian cancer. Our data showed that in vitro CA was able to inhibit the cell viability of ovarian cancer. The results of scratch assay and transwell assay also showed that CA inhibited the proliferation and invasion ability of A2780 and SKOV3 cells. In addition, CA promoted apoptosis by increasing the expression of cleaved-PARP and cleaved-caspase 3 in ovarian cancer cells. Mechanistically, we found that CA inhibited the EGF-induced PI3K/AKT signaling pathway and reduced the phosphorylation levels of mTOR, PI3K, and AKT. The EGF-induced EMT process was also abolished by CA. The EMT process induced by AKT-specific activator SC79 was also suppressed by CA. Furthermore, in in vivo, CA significantly repressed the progression of ovarian cancer as well as liver metastasis. In all, our results suggest that CA inhibits ovarian cancer progression and metastasis in vivo and in vitro and inhibits EGF-induced EMT processes through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yue Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Buze Chen
- Department of Gynecology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Chunyi Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chunyan Mu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Aibin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- School of Pharmacology, Xuzhou Medical University, Xuzhou, China
| | - Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Omoruyi SI, Enogieru AB, Ekpo OE. In vitro evaluation of the antiproliferative activity of Carpobrotus edulis on human neuroblastoma cells. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Hadisaputri YE, Andika R, Sopyan I, Zuhrotun A, Maharani R, Rachmat R, Abdulah R. Caspase Cascade Activation During Apoptotic Cell Death of Human Lung Carcinoma Cells A549 Induced by Marine Sponge Callyspongia aerizusa. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1357-1368. [PMID: 33824580 PMCID: PMC8018393 DOI: 10.2147/dddt.s282913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
Abstract
Introduction In this study, Callyspongia aerizusa (CA), one of the most popular marine sponges for cancer therapy research, was investigated for its phytochemical compounds and evaluated for its anticancer activity in various cell lines. Since lung cancer is the most frequently diagnosed cancer, a solution from this marine source is a good choice to address the resistance to anticancer agents. Elucidation of the underlying mechanism of cell death elicited by a CA extract in human lung carcinoma cells A549 was undertaken. Methods The presence of secondary metabolites in CA methanol extract was revealed by gas chromatography-mass spectrometry (GC-MS) and evaluated on four cancerous cell lines and a non-cancerous cell line using Cell Counting Kit-8. Since the activity of CA extract in A549 cells was then evaluated through clonogenic assay, morphological detection of apoptosis, polymerase chain reaction (PCR) and Western blot assay, were also presented in this study. Results GC-MS analysis revealed the presence of two ergosteroids, ergost-22-en-3-one, (5β,22E), and ergost-7-en-3-ol, (35β) in the sponge extract that was suggested to suppress A549 cells (IC50 9.38 μg/mL), and another cancerous cell’s viability (IC50 3.12–10.72 μg/mL) in 24 h, but not in the non-cancerous cells. Moreover, CA extract was also able to reduce the colony-forming ability of A549 cells, and through A549 cells morphology seems that apoptosis is the underlying mechanism of cell death. Further, the treatment with CA extract induced the up-regulation of caspase-9, caspase-3, and PARP-1, and the down-regulation of BCL-2, in both mRNA and proteins expression level, promoting apoptotic cell death via caspase cascade. Conclusion These findings suggest that the compounds in CA extract possess the ability to induce apoptotic cell death in A549 cells and could become a promising candidate for future anticancer therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rheza Andika
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Iyan Sopyan
- Department of Pharmaceutical and Pharmacy Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rani Maharani
- Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia.,Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rachmaniar Rachmat
- Oceanographic Research Center, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
22
|
Kumar R, Saneja A, Panda AK. An Annexin V-FITC-Propidium Iodide-Based Method for Detecting Apoptosis in a Non-Small Cell Lung Cancer Cell Line. Methods Mol Biol 2021; 2279:213-223. [PMID: 33683697 DOI: 10.1007/978-1-0716-1278-1_17] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Annexin V and propidium iodide staining is widely used for determining the cellular death through apoptosis. In the presence of Ca2+ ions, annexin V has a strong binding affinity for phosphatidylserine, a membrane phospholipid that during apoptosis is translocated from the inner side of the cell membrane to its outer side. On the other hand, propidium iodide has ability for DNA binding and it can only enter into necrotic or late apoptotic cells. This chapter describes a commonly used method for detection of apoptosis in a non-small cell lung cancer cell line using annexin V and propidium iodide dye. We describe the detection of different stages of apoptosis in the A549 lung cancer cell line treated with dihydroartemisinin (DHA). This apoptosis detection method can be used to determine the efficacy of different kinds of drugs on cultured cancer cell lines.
Collapse
Affiliation(s)
- Robin Kumar
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Ankit Saneja
- Product Development Cell, National Institute of Immunology, New Delhi, India.
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
23
|
OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:244. [PMID: 33198776 PMCID: PMC7667862 DOI: 10.1186/s13046-020-01751-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Background Smac mimetics are a type of drug that can induce apoptosis by antagonizing IAP family members in cancer treatment. However, a recent study showed that Smac mimetics can trigger cell invasion and migration in cancer cells by activating the NF-κB pathway. Methods We assessed lung cancer cell elongation, invasion and migration under treatment with the Smac mimetic LCL161. Functional analyses (in vitro and in vivo) were performed to detect the contribution of NIK and OTUD7B to LCL161-induced cell invasion and migration. The role of OTUD7B in regulation of the TRAF3/NIK/NF-κB pathway under LCL161 treatment was analysed by immunoblotting, immunoprecipitation, luciferase and ubiquitin assays, shRNA silencing and plasmid overexpression. Expression levels of OTUD7B, NIK and TRAF3 in tissue samples from lung cancer patients were examined by immunohistochemistry. Results We found that LCL161 stimulates lung cancer cell elongation, invasion and migration at non-toxic concentrations. Mechanistically, LCL161 results in NIK accumulation and activates the non-canonical rather than the canonical NF-κB pathway to enhance the transcription of target genes, such as IL-2 and MMP-9. Importantly, knockdown of NIK dramatically suppresses LCL161-induced cell invasion and migration by reducing the proteolytic processing of p100 to p52 and target gene transcription. Interestingly, we discovered that OTUD7B increases TRAF3 and decreases NIK to inhibit the non-canonical NF-κB pathway and that overexpression of OTUD7B suppresses LCL161-induced cell invasion and migration. Notably, OTUD7B directly binds to TRAF3 rather than to NIK and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing NIK accumulation and NF-κB pathway activation. Furthermore, the OTU domain of OTUD7B is required for the inhibition of LCL161-induced cell invasion and migration, as demonstrated by transfection of the C194S/H358R(CH) mutant OTUD7B. Finally, we investigated whether OTUD7B inhibits LCL161-induced lung cancer cell intrapulmonary metastasis in vivo, and our analysis of clinical samples was consistent with the above findings. Conclusions Our study highlights the importance of OTUD7B in the suppression of LCL161-induced lung cancer cell invasion and migration, and the results are meaningful for selecting lung cancer patients suitable for LCL161 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01751-3.
Collapse
|
24
|
Güngör EM, Altıntop MD, Sever B, Çiftçi GA. Design, Synthesis, In vitro and In silico Evaluation of New Hydrazonebased Antitumor Agents as Potent Akt Inhibitors. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200618163507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
Akt is overexpressed or activated in a variety of human cancers, including
gliomas, lung, breast, ovarian, gastric and pancreatic carcinomas. Akt inhibition leads to the induction
of apoptosis and inhibition of tumor growth and therefore extensive efforts have been devoted
to the discovery of potent antitumor drugs targeting Akt.
Objectives:
The objective of this work was to identify potent anticancer agents targeting Akt.
Methods:
New hydrazone derivatives were synthesized and investigated for their cytotoxic effects
on 5RP7 H-ras oncogene transformed rat embryonic fibroblast and L929 mouse embryonic fibroblast
cell lines. Besides, the apoptotic effects of the most active compounds on 5RP7 cell line were
evaluated using flow cytometry. Their Akt inhibitory effects were also investigated using a colorimetric
assay. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME)
studies were also performed using Schrödinger’s Maestro molecular modeling package.
Results and Discussion:
Compounds 3a, 3d, 3g and 3j were found to be effective on 5RP7 cells
(with IC50 values of <0.97, <0.97, 1.13±0.06 and <0.97 μg/mL, respectively) when compared with
cisplatin (IC50= 1.87±0.15 μg/mL). It was determined that these four compounds significantly induced
apoptosis in 5RP7 cell line. Among them, N'-benzylidene-2-[(4-(4-methoxyphenyl)pyrimidin-
2-yl)thio]acetohydrazide (3g) significantly inhibited Akt (IC50= 0.5±0.08 μg/mL) when compared
with GSK690693 (IC50= 0.6±0.05 μg/mL). Docking studies suggested that compound 3g showed
good affinity to the active site of Akt (PDB code: 2JDO). According to in silico ADME studies, the
compound also complies with Lipinski's rule of five and Jorgensen's rule of three.
Conclusion:
Compound 3g stands out as a potential orally bioavailable cytotoxic agent and apoptosis
inducer targeting Akt.
Collapse
Affiliation(s)
- Emine Merve Güngör
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
25
|
Jiang H, Li L, Zhang J, Wan Z, Wang Y, Hou J, Yu Y. MiR-101-3p and Syn-Cal14.1a Synergy in Suppressing EZH2-Induced Progression of Breast Cancer. Onco Targets Ther 2020; 13:9599-9609. [PMID: 33061442 PMCID: PMC7532305 DOI: 10.2147/ott.s264600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
Objective EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and has been documented as an oncogene in breast cancer. The microRNA (miR)-101-3p can suppress breast cancer progression by targeting with EZH2. Syn-cal14.1a, a synthetic peptide derived from Californiconus californicus (Cal14.1a), can decrease the cell viability and activate the cell apoptosis in cancer. In this study, we explored whether the synergy of miR-101-3p mimic and syn-cal14.1a could inhibit the expression of EZH2. We also investigated this binding treatment’s effects on the suppression of breast cancer cells. Methods MiR-101-3p mimic was transfected and syn-cal14.1a was added in SK-BR-3 and MCF-7 breast cancer cells. The expression of EZH2 protein level was determined. Then, cell proliferation, migration, invasion, and apoptosis were observed. Results MiR-101-3p and syn-cal14.1a, when applied together, exerted a synergistic anti-EZH2 expression in breast cancer cells. The combination of miR-101-3p and syn-cal14.1a synergistically suppressed the EZH2-induced breast cancer cell migration, invasion, and proliferation. In parallel, this synergy treatment was able to promote the apoptosis of breast cancer cells. To our knowledge, this is the first report describing inhibition of EZH2 in human breast cancer cell lines by syn-cal14.1a. Conclusion The anti-EZH2 roles of miR-101-3p and/or syn-cal14.1a could provide an effective therapeutic strategy in breast cancer. These data provide significant insights into molecular mechanisms of breast cancer and may have benefits in clinical therapeutics for breast cancer.
Collapse
Affiliation(s)
- Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li Li
- Assisted Reproduction Technology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhang
- Department of Plastic Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Wang
- Department of Health Medicine, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Sever B, Akalın Çiftçi G, Altıntop MD. A new series of benzoxazole-based SIRT1 modulators for targeted therapy of non-small-cell lung cancer. Arch Pharm (Weinheim) 2020; 354:e2000235. [PMID: 32930414 DOI: 10.1002/ardp.202000235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023]
Abstract
In an attempt to identify potential anticancer agents for non-small-cell lung cancer (NSCLC) targeting sirtuin 1 (SIRT1), the synthesis of a new series of benzoxazoles (3a - i) was carried out through a facile and versatile synthetic route. The compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cells using the MTT assay. 2-[(5-Nitro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3e) and 2-[(5-chloro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3g) were the most potent and selective anticancer agents in this series against the A549 cell line, with IC50 values of 46.66 ± 11.54 and 55.00 ± 5.00 µM, respectively. The flow cytometry-based apoptosis detection assay was performed to determine their effects on apoptosis in A549 cells. Both compounds induced apoptosis in a dose-dependent manner. The effects of compounds 3e and 3g on SIRT1 activity were determined. On the basis of in vitro studies, it was observed that compound 3g caused a significant decrease in SIRT1 levels in a dose-dependent manner, whereas compound 3e increased the SIRT1 levels. According to molecular docking studies, the substantial alteration in the type of action could be attributed to the difference between the interactions of compounds 3e and 3g with the same residues in the active site of SIRT1 (PDB code: 4IG9). On the basis of in silico ADME (absorption, distribution, metabolism, and excretion) studies, these compounds are predicted to possess favorable ADME profiles. According to the in vitro and in silico studies, compounds 3e and 3g, small-molecule SIRT1 modulators, were identified as potential orally bioavailable anticancer agents for the targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
27
|
Yang LT, Ma F, Zeng HT, Zhao M, Zeng XH, Liu ZQ, Yang PC. Restoration of Mal overcomes the defects of apoptosis in lung cancer cells. PLoS One 2020; 15:e0227634. [PMID: 31978067 PMCID: PMC6980397 DOI: 10.1371/journal.pone.0227634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIMS Cancer is one of the life-threatening diseases of human beings; the pathogenesis of cancer remains to be further investigated. Toll like receptor (TLR) activities are involved in the apoptosis regulation. This study aims to elucidate the role of Mal (MyD88-adapter-like) molecule in the apoptosis regulation of lung cancer (LC) cells. METHODS The LC tissues were collected from LC patients. LC cells and normal control (NC) cells were isolated from the tissues and analyzed by pertinent biochemical and immunological approaches. RESULTS We found that fewer apoptotic LC cells were induced by cisplatin in the culture as compared to NC cells. The expression of Fas ligand (FasL) was lower in LC cells than that in NC cells. FasL mRNA levels declined spontaneously in LC cells. A complex of FasL/TDP-43 was detected in LC cells. LC cells expressed less Mal than NC cells. Activation of Mal by lipopolysaccharide (LPS) increased TDP-43 expression in LC cells. TDP-43 formed a complex with FasL mRNA to prevent FasL mRNA from decay. Reconstitution of Mal or TDP-43 restored the sensitiveness of LC cells to apoptotic inducers. CONCLUSIONS LC cells express low Mal levels that contributes to FasL mRNA decay through impairing TDP-43 expression. Reconstitution of Mal restores sensitiveness of LC cells to apoptosis inducers that may be a novel therapeutic approach for LC treatment.
Collapse
Affiliation(s)
- Li-Tao Yang
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Fei Ma
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Hao-Tao Zeng
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Miao Zhao
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Xian-Hai Zeng
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Zhi-Qiang Liu
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute, Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| |
Collapse
|
28
|
Koç Erbaşoğlu Ö, Horozoğlu C, Ercan Ş, Kara HV, Turna A, Farooqi AA, Yaylım İ. Effect of trail C1595T variant and gene expression on the pathogenesis of non-small cell lung cancer. Libyan J Med 2019; 14:1535746. [PMID: 30481147 PMCID: PMC6263097 DOI: 10.1080/19932820.2018.1535746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
It is known that disorders in apoptosis function play an important role in the pathogenesis of many types of cancer, including lung cancer. Tumor necrosis factor related apoptosis inducing ligand (TRAIL), a type II transmembrane protein, is a death ligand capable of inducing apoptosis by activating distinctive death receptor. Our purpose in this study is to investigate the gene polymorphisms in TRAIL molecular pathway and TRAIL gene expression levels in non-small cell lung cancer (NSCLC) patients in terms of pathogenesis and prognosis of the disease. In this study, TRAIL C1595T polymorphism was genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis in 158 patients with NSCLC and 98 healthy individuals. Surgically resected tissues were examined and classified histopathologically. In addition, TRAIL gene expression levels in tumor tissue and tumor surrounding tissue samples of 48 patients with NSCLC were determined using real-time polymerase chain reaction. TRAIL gene expression levels of NSCLC patients were detected significantly 28.8 fold decrease in the tumor tissue group compared to the control group (p=0.026). When patients were compared to tumor stage, expression of TRAIL gene in advanced tumor stage was found to be significantly 7.86 fold higher than early tumor stage [p=0.028]. No significant relationship was found between NSCLC predisposition and prognostic parameters of NSCLC with TRAIL genotypes, but the frequency of TRAIL gene 1595 CT genotype was observed to be lower in the patients compared to the other genotypes, and the difference was found to be very close to statistical significance (p=0.07). It can be suggested that TRAIL may play an important role in the development of NSCLC and may be an effective prognostic factor in tumor progression.: It is known that disorders in apoptosis function play an important role in the pathogenesis of many types of cancer, including lung cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein, is a death ligand capable of inducing apoptosis by activating distinctive death receptor. Our purpose in this study is to investigate the gene polymorphisms in TRAIL molecular pathway and TRAIL gene expression levels in non-small cell lung cancer (NSCLC) patients in terms of pathogenesis and prognosis of the disease.
Collapse
Affiliation(s)
- Öncü Koç Erbaşoğlu
- Department of Molecular Medicine, Institute for Aziz Sancar Experimental Medicine Research, İstanbul University, İstanbul, Turkey
| | - Cem Horozoğlu
- Department of Medical Services and Techniques, Vocational School of Health Services, İstanbul Gelişim University, İstanbul, Turkey
| | - Şeyda Ercan
- Department of Molecular Medicine, Institute for Aziz Sancar Experimental Medicine Research, İstanbul University, İstanbul, Turkey
| | - Hasan Volkan Kara
- Department of Thoracic Surgery, Cerrahpasa Medical School, İstanbul University, İstanbul, Turkey
| | - Akif Turna
- Department of Thoracic Surgery, Cerrahpasa Medical School, İstanbul University, İstanbul, Turkey
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| | - İlhan Yaylım
- Department of Molecular Medicine, Institute for Aziz Sancar Experimental Medicine Research, İstanbul University, İstanbul, Turkey
| |
Collapse
|
29
|
Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A. Activation of death receptor, DR5 and mitochondria-mediated apoptosis by a 3,4,5-trimethoxybenzyloxy derivative in wild-type and p53 mutant colorectal cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:405-417. [PMID: 31641820 DOI: 10.1007/s00210-019-01730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
Collapse
Affiliation(s)
- Zachariah Chee Ken Chan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Huda Salah Kareem
- General Directorate of Curricular, Ministry of Education, Baghdad, 3310, Iraq
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Immunotherapy with Monoclonal Antibodies in Lung Cancer of Mice: Oxidative Stress and Other Biological Events. Cancers (Basel) 2019; 11:cancers11091301. [PMID: 31487876 PMCID: PMC6770046 DOI: 10.3390/cancers11091301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Lung cancer (LC) is a major leading cause of death worldwide. Immunomodulators that target several immune mechanisms have proven to reduce tumor burden in experimental models through induction of the immune microenvironment. We hypothesized that other biological mechanisms may also favor tumor burden reduction in lung cancer-bearing mice treated with immunomodulators. Methods: Tumor weight, area, T cells and tumor growth (immunohistochemistry), oxidative stress, apoptosis, autophagy, and signaling (NF-κB and sirtuin-1) markers were analyzed (immunoblotting) in subcutaneous tumor of BALB/c mice injected with LP07 adenocarcinoma cells treated with monoclonal antibodies (CD-137, CTLA-4, PD-1, and CD-19, N = 9/group) and non-treated control animals. Results: Compared to non-treated cancer mice, in tumors of monoclonal-treated animals, tumor area and weight and ki-67 were significantly reduced, while T cell counts, oxidative stress, apoptosis, autophagy, activated p65, and sirtuin-1 markers were increased. Conclusions: Immunomodulators elicited a reduction in tumor burden (reduced tumor size and weight) through decreased tumor proliferation and increased oxidative stress, apoptosis, autophagy, and signaling markers, which may have interfered with the immune profile of the tumor microenvironment. Future research should be devoted to the elucidation of the specific contribution of each biological mechanism to the reduced tumor burden.
Collapse
|
31
|
Yu WN, Lai YJ, Ma JW, Ho CT, Hung SW, Chen YH, Chen CT, Kao JY, Way TDER. Citronellol Induces Necroptosis of Human Lung Cancer Cells via TNF-α Pathway and Reactive Oxygen Species Accumulation. In Vivo 2019; 33:1193-1201. [PMID: 31280209 PMCID: PMC6689369 DOI: 10.21873/invivo.11590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Our current study aimed to determine the molecular mechanisms of citronellol-induced cell death and ROS accumulation in non-small cell lung cancer (NCI-H1299 cells) and also compare the anticancer effects of citronellol and EOPC. MATERIALS AND METHODS ROS measurement and western blotting were performed to detect whether citronellol can induce necroptosis in vitro. Besides, we performed an in vivo analysis of tumourigenesis inhibition by citronellol treatment in BALB/c (nu/nu) nude mice. RESULTS Necroptosis occured by up-regulating TNF-α, RIP1/RIP3 activities, and down-regulating caspase-3/caspase-8 activities after citronellol treatment in NCI-H1299 cells. Citronellol also resulted in a biphasic increase in ROS production at 1 h and at 12 h in NCI-H1299 cells. Xenograft model experiments showed that citronellol could effectively inhibit subcutaneous tumours produced 4 weeks after intraperitoneal injection of NCI-H1299 in BALB/c nude mice. CONCLUSION Citronellol induced necroptosis of NCI-H1299 cells via TNF-α pathway and ROS accumulation.
Collapse
Affiliation(s)
- Wan-Nien Yu
- Department of Otolaryngology, Head and Neck Surgery, Changhwa Christian Hospital, Changhwa, Taiwan, R.O.C
| | - Ying-Ju Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| | - Jui-Wen Ma
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, U.S.A
| | - Shan-Wei Hung
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Taichung, Taiwan, R.O.C
| | - Chiung-Tong Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, R.O.C
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Jung-Yie Kao
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C.
| | - Tzong-DER Way
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C.
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
32
|
Yu Y, Chen C, Huo G, Deng J, Zhao H, Xu R, Jiang L, Chen S, Wang S. ATP1A1 Integrates AKT and ERK Signaling via Potential Interaction With Src to Promote Growth and Survival in Glioma Stem Cells. Front Oncol 2019; 9:320. [PMID: 31114755 PMCID: PMC6503087 DOI: 10.3389/fonc.2019.00320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Glioma stem cells (GSCs) have been considered to be responsible for treatment failure due to their self-renewal and limitless proliferative property. Recently, the Na+/K+-ATPase a1 (ATP1A1) subunit was described as a novel therapeutic target for gliomas. Interestingly, our previous proteomics study revealed that ATP1A1 is remarkably overexpressed in GSCs. In the current study, we investigated the role of ATP1A1 in regulating growth, survival, and tumorigenicity of primary human GSCs and the underlying molecular mechanism. We tested RNA and protein expression of ATP1A1 in glioma tissues and GSCs. In addition, we knocked down ATP1A1 in GSCs and assessed the effects thereof on growth, survival, and apoptosis. The role of ATP1A1 in signaling pathways was investigated in vitro. We found that the ATP1A1 expression level was associated with the grade of glioma. Knockdown of ATP1A1 in GSCs in vitro inhibited cell proliferation and survival, increased apoptosis, and halted cell-cycle progression at the G1 phase. Cell proliferation and survival were resumed upon rescue of ATP1A1 expression in ATP1A1-knockdown GSCs. The ERK1/2 and AKT pathways were inhibited through suppression of Src phosphorylation by ATP1A1 knockdown. Collectively, our findings suggest that ATP1A1 overexpression promotes GSC growth and proliferation by affecting Src phosphorylation to activate the ERK1/2 and AKT signaling pathways.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Huo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinmu Deng
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongxin Zhao
- Department of Neurosurgery, First Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Rui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shali Wang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Lu M, Liu B, Xiong H, Wu F, Hu C, Liu P. Trans-3,5,4´-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498. J Cell Mol Med 2019; 23:2431-2441. [PMID: 30701693 PMCID: PMC6433677 DOI: 10.1111/jcmm.14086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/20/2018] [Accepted: 11/17/2018] [Indexed: 01/02/2023] Open
Abstract
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.
Collapse
Affiliation(s)
- Min Lu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xiong
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Li Y, Deng L, Zhao X, Li B, Ren D, Yu L, Pan H, Gong Q, Song L, Zhou X, Dai T. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246:366-378. [PMID: 30043491 DOI: 10.1002/path.5144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.,Department of Immunobiology, Jinan University, Guangzhou, PR China
| | - Liwen Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bohan Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dong Ren
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Hehai Pan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
35
|
Jiao YN, Wu LN, Xue D, Liu XJ, Tian ZH, Jiang ST, Han SY, Li PP. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer Cell Int 2018; 18:149. [PMID: 30275772 PMCID: PMC6161462 DOI: 10.1186/s12935-018-0646-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Marsdenia tenacissima is an herb medicine which has been utilized to treat malignant diseases for decades. The M. tenacissima extract (MTE) shows significant anti-proliferation activity against non-small cell lung cancer (NSCLC) cells, but the underlying mechanisms remain unclear. In this study, we explored the potential anti-proliferation mechanisms of MTE in NSCLC cells in relation to apoptosis as well as autophagy, which are two critical forms to control cancer cell survival and death. METHODS The proliferation of H1975 and A549 cells was evaluated by MTT assay. Cell apoptosis was assessed by Annexin V and PI staining, Caspase 3 expression and activity. Autophagy flux proteins were detected by Western blot with or without autophagy inducer and inhibitor. Endogenous LC3-II puncta and LysoTracker staining were monitored by confocal microscopy. The formation of autophagic vacuoles was measured by acridine orange staining. ERK is a crucial molecule to interplay with cell autophagy and apoptosis. The role of ERK on cell apoptosis and autophagy influenced by MTE was determined in the presence of MEK/ERK inhibitor U0126. RESULTS The significant growth inhibition and apoptosis induction were observed in MTE treated NSCLC cells. MTE induced cell apoptosis coexisted with elevated Caspase 3 activity. MTE also impaired autophagic flux by upregulated LC3-II and p62 expression. Autophagy inducer EBSS could not abolish the impaired autophagic flux by MTE, while it was augmented in the presence of autophagy inhibitor Baf A1. The autophagosome-lysosome fusion was blocked by MTE via affecting lysosome function as evidenced by decreased expression of LAMP1 and Cathepsin B. The molecule ERK became hyperactivated after MTE treatment, but the MEK/ERK inhibitor U0126 abrogated autophagy inhibition and apoptosis induction caused by MTE, suggested that ERK signaling pathways partially contributed to cell death caused by MTE. CONCLUSION Our results demonstrate that MTE caused apoptosis induction as well as autophagy inhibition in NSCLC cells. The activated ERK is partially associated with NSCLC apoptotic and autophagic cell death in response to MTE treatment. The present findings reveal new mechanisms for the anti-tumor activity of MTE against NSCLC.
Collapse
Affiliation(s)
- Yan-Na Jiao
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People’s Republic of China
| | - Li-Na Wu
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Dong Xue
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People’s Republic of China
| | - Xi-Juan Liu
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Zhi-Hua Tian
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Shan-Tong Jiang
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People’s Republic of China
| | - Shu-Yan Han
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People’s Republic of China
| | - Ping-Ping Li
- 0000 0001 0027 0586grid.412474.0Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142 People’s Republic of China
| |
Collapse
|
36
|
Interferon-γ and Smac mimetics synergize to induce apoptosis of lung cancer cells in a TNFα-independent manner. Cancer Cell Int 2018; 18:84. [PMID: 29946223 PMCID: PMC6001173 DOI: 10.1186/s12935-018-0579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The prognosis of lung cancer is very poor and hence new therapeutic strategies are urgently desired. In this study, we searched for efficacious Smac mimetic-based combination therapies with biomarkers to predict responses for non-small cell lung cancer (NSCLC). Methods NSCLC cell lines and normal human alveolar epithelial cells were treated with Smac mimetics plus IFNγ or other agonists and cell viabilities were assessed by MTS assay, cell counting, flow cytometry and cell colony assay. Western blot analysis was performed to assess the cleavage (activation) of caspases and expression of signaling molecules. Caspase activity was determined to verify caspase activation. The pathways involved in NSCLC cell death were investigated using specific inhibitors. Results We found that IFNγ could cooperate with various Smac mimetics to trigger a profound apoptosis in a number of NSCLC cell lines that are competent for IFNγ signaling (i.e. expressing IFNγ receptor-1 and STAT1) but have low expression levels of inhibitor of apoptosis proteins survivin and livin without harming normal human lung epithelial cells. IFNγ co-treatment with a novel class dimeric Smac mimetic AZD5582 eradicated NSCLC cell colony formation. Unlike IFNγ, IFNα, IFNλ, TNFα, or TRAIL alone or plus AZD5582 had minor effects on NSCLC cell viability. IFNγ/AZD5582-induced cell death in NSCLC cells was independent of TNFα autocrine but relied on apoptosis mediated by JAK kinase, caspase 8 and RIPK1 pathways. Conclusion Our results indicate that IFNγ and Smac mimetics can synergize to induce apoptosis of NSCLC cells and suggest that IFNγ and Smac mimetic regimen may be a novel and efficacious apoptosis targeted therapy with biomarkers to predict responses for NSCLC cells.
Collapse
|
37
|
Song Z, Xu X, Liu M, Liu J, Chen J, Li C, Yao C, Zhou Q. Efficacy and mechanism of steep pulse irreversible electroporation technology on xenograft model of nude mice: a preclinical study. World J Surg Oncol 2018; 16:84. [PMID: 29695251 PMCID: PMC5918770 DOI: 10.1186/s12957-018-1386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Steep pulse therapy can irreversible electrically brackdown of tumor membrance and cause cell death. In previous studies, we investigated the effect of steep pulsed electroporation on the killing of large cell lung cancer cell line L981- in vitro, and determined the best parameters for killing lung cancer cells by steep pulse technology. But the optimal parameters and the mechanisms of steep pulse irreversible electroporation technology on nude mouse tumor model are unclear. Methods Three settings of steep pulse therapy parameters were applied to the nude mouse model. An in vivo imaging system was employed to observe the effect of different parameters on the mouse model. The pathological changes of the tumor tissue and immunofluorescence data on Caspase-3 protein expression were recorded. Results Under the in vivo imaging system, the steep pulse had an obvious inhibitory effect on the transplanted tumor in the nude mouse model. Pathological tests showed that occurrence of necrosis and apoptosis and expression of Caspase-3 protein in the tumor tissue were increased compared to those in the normal tissue. Conclusions Steep pulse irreversible electroporation technology showed a promising antitumor effect in the nude mouse tumor model. With splint-type electrode, the best treatment parameters determined for the nude mouse tumor model were voltage amplitude 2000 V/cm, pulse width 100 μs, pulse frequency 1 Hz, pulse number 60, and repeat time 3. Moreover, steep pulse induced coagulative necrosis of tumor tissue by cell apoptosis.
Collapse
Affiliation(s)
- Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaohong Xu
- College of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chengxiang Li
- College of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chenguo Yao
- College of Electrical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Qinghua Zhou
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
38
|
Wen X, Wang B, Feng T, Yuan W, Zhou J, Fang T. TNF receptor-associated factor 1 as a biomarker for assessment of non-small cell lung cancer metastasis and overall survival. CLINICAL RESPIRATORY JOURNAL 2018. [PMID: 29528567 DOI: 10.1111/crj.12789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC), which comprises 80%-85% of all lung cancer cases, is one of the most common human malignancies. Despite great improvements in diagnostic technology and the introduction of new therapeutic agents in recent years, the 5-year survival rate of NSCLC is still low. Tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) plays an important role in the TNF-related apoptosis-inducing ligand (TRAIL) associated signal pathway. METHODS In this study, we aim to illuminate the function of TRAF1 in NSCLC. Toward that end, TRAF1 expression was detected using immunohistochemistry (IHC) in specimens from 200 NSCLC patients. The function of TRAF1 in the A549 and H1299 cell lines was evaluated by colony formation and MTT assays. RESULTS Our data showed that TRAF1 was significantly upregulated in NSCLC tissues. TRAF1 expression was positively associated with NSCLC lymphatic metastasis and clinical stage and was negatively associated with overall patient survival. TRAF1 promoted NSCLC cell proliferation CONCLUSION: TRAF1 expression was positively associated with NSCLC lymphatic metastasis and histological grade and was negatively associated with overall patient survival. TRAF1 may be an important therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoxing Wen
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Bingping Wang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Tao Feng
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| |
Collapse
|
39
|
Yang J, Chen H, Wang Q, Deng S, Huang M, Ma X, Song P, Du J, Huang Y, Wen Y, Ren Y, Yang X. Inhibitory Effect of Kurarinone on Growth of Human Non-small Cell Lung Cancer: An Experimental Study Both in Vitro and in Vivo Studies. Front Pharmacol 2018; 9:252. [PMID: 29628889 PMCID: PMC5876310 DOI: 10.3389/fphar.2018.00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Kurarinone, a flavonoid isolated from Sophora flavescens Aiton, has been reported to have significant antitumor activity. However, the cytotoxic activity of kurarinone against non-small cell lung cancer (NSCLC) cells is still under explored. In our study, we have evaluated the inhibitory effects of kurarinone on the growth of NSCLC both in vivo and in vitro as well as the molecular mechanisms underlying kurarinone-induced A549 cell apoptosis. The results showed that kurarinone effectively inhibited the proliferation of A549 cells with little toxic effects on human bronchial epithelial cell line BEAS-2B. FASC examination and Hoechst 33258 staining assay showed that kurarinone dose-dependently provoked A549 cells apoptosis. Mechanistically, kurarinone significantly decreased the ratio of Bcl-2/Bax, thereby causing the activation of caspase 9 and caspase 3, and reduced the expression of Grp78, which led to relieve the inhibition of caspase-12 and caspase-7, as well as suppressing the activity of AKT. Meanwhile, modeling results from the Surflex-Dock program suggested that residue Ser473 of Akt is a potential binding site for kurarinone. In vivo, kurarinone inhibited the growth of A549 xenograft mouse models without apparent signs of toxicity. Our study indicated that kurarinone has the potential effects of anti-NSCLC, implemented through activating mitochondria apoptosis signaling pathway, as well as repressing the activity of endoplasmic reticulum pathway and AKT in A549 cells.
Collapse
Affiliation(s)
- Jie Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shihao Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Mi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinhua Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Song
- Division of Science & Technology, Qinghai University for Nationalities, Xining, China
| | - Jingwen Du
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yun Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yanzhang Wen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongshen Ren
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
40
|
Zhang G, Wang C, Sun M, Li J, Wang B, Jin C, Hua P, Song G, Zhang Y, Nguyen LLH, Cui R, Liu R, Wang L, Zhang X. Cinobufagin inhibits tumor growth by inducing intrinsic apoptosis through AKT signaling pathway in human nonsmall cell lung cancer cells. Oncotarget 2018; 7:28935-46. [PMID: 26959116 PMCID: PMC5045368 DOI: 10.18632/oncotarget.7898] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
The cinobufagin (CB) has a broad spectrum of cytotoxicity to inhibit cell proliferation of various human cancer cell lines, but the molecular mechanisms still remain elusive. Here we observed that CB inhibited the cell proliferation and tumor growth, but induced cell cycle arrest and apoptosis in a dose-dependent manner in non-small cell lung cancer (NSCLC) cells. Treatment with CB significantly increased the reactive oxygen species but decreased the mitochondrial membrane potential in NSCLC cells. These effects were markedly blocked when the cells were pretreated with N-acetylcysteine, a specific reactive oxygen species inhibitor. Furthermore, treatment with CB induced the expression of BAX but reduced that of BCL-2, BCL-XL and MCL-1, leading to an activation of caspase-3, chromatin condensation and DNA degradation in order to induce programmed cell death in NSCLC cells. In addition, treatment with CB reduced the expressions of p-AKTT308 and p-AKTS473 and inhibited the AKT/mTOR signaling pathway in NSCLC cells in a time-dependent manner. Our results suggest that CB inhibits tumor growth by inducing intrinsic apoptosis through the AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chao Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Integrative Endemic Area, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mei Sun
- Department of Pathology, Second Hospital of Jilin University, Changchun, P.R. China
| | - Jindong Li
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chengyan Jin
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Ge Song
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Yifan Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Lisa L H Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, P.R. China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xingyi Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
41
|
Xie SY, Li G, Han C, Yu YY, Li N. RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. Onco Targets Ther 2017; 10:5605-5619. [PMID: 29200875 PMCID: PMC5703172 DOI: 10.2147/ott.s149200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is exceptionally deadly because the tumors lack sensitive early-stage diagnostic biomarkers and are resistant to radiation and chemotherapy. Here, we investigated the role and mechanism of Raf kinase inhibitory protein (RKIP) in NSCLC radioresistance. The clinical data showed that the RKIP expression level was generally lower in radioresistant NSCLC tissues than in radiosensitive tissues. Reduced RKIP expression was related to NSCLC radioresistance and poor prognosis. In vitro experiments showed that RKIP knockdown increased radioresistance and metastatic ability in NSCLC cell lines. Mechanistically, RKIP reduction activated the Shh signaling pathway by derepressing Smoothened (Smo) and initiating glioma-associated oncogene-1 (Gli1)-mediated transcription in NSCLC. In addition, the inappropriately activated Shh–Gli1 signaling pathway then enhanced cancer stem cell (CSC) expression in the cell lines. The increasing quantity of CSCs in the tumor ultimately promotes the radiation resistance of NSCLC. Together, these results suggest that RKIP plays a vital role in radiation response and metastasis in NSCLC. RKIP reduction enhances radioresistance by activating the Shh signaling pathway and initiating functional CSCs. This role makes it a promising therapeutic target for improving the efficacy of NSCLC radiation treatment.
Collapse
Affiliation(s)
- Shi-Yang Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Chong Han
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Yang-Yang Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Nan Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| |
Collapse
|
42
|
Zhou GZ, Shi YY, Cui LS, Li AF, Wang QQ, Liu M. Oxymatrine induces A549 human non‑small lung cancer cell apoptosis via extrinsic and intrinsic pathways. Mol Med Rep 2017; 17:1071-1076. [PMID: 29115629 DOI: 10.3892/mmr.2017.7982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/11/2017] [Indexed: 11/05/2022] Open
Abstract
Oxymatrine is one of the primary natural compounds extracted from the Sophora flavescens, and has been reported to exhibit numerous pharmacological properties including cancer‑preventive and anti‑cancer effects, however the mechanisms as to how oxymatrine exhibits anti‑proliferative activity in non‑small cell lung carcinoma cells remains uncertain. The present study aimed to explore the mechanism of its anti‑cancer effect, and whether it is due to apoptosis induction and anti‑migration in the A549 lung cancer cell line. Detection of morphological alterations, MTT analysis, Hoechst/propidium iodide dual staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assays verified that oxymatrine induced A549 cell apoptosis. The caspase pan‑inhibitor z‑VAD‑FMK resulted in disappearance of oxymatrine‑elicited nuclei fragmentation via Hoechst 33342 staining. JC‑1 staining demonstrated a decrease in mitochondrial membrane potential which further verified the induction of apoptosis by oxymatrine. The caspase‑3, 8 and 9 activities of oxymatrine‑treated cells were activated, which suggested that extrinsic and intrinsic apoptotic pathways were involved in the anti‑proliferative effects of oxymatrine in A549 cells. Furthermore, the wound healing assay verified the anti‑migratory effects of oxymatrine in A549 cells.
Collapse
Affiliation(s)
- Guang-Zhou Zhou
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Yan-Yan Shi
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Liu-Su Cui
- Laboratory of Morphology, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - A-Fang Li
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Qing-Qing Wang
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Min Liu
- Department of Infectious Diseases, The Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
43
|
Han N, Shi L, Guo Q, Sun W, Yu Y, Yang L, Zhang X, Zhang M. HAT1 induces lung cancer cell apoptosis via up regulating Fas. Oncotarget 2017; 8:89970-89977. [PMID: 29163803 PMCID: PMC5685724 DOI: 10.18632/oncotarget.21205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of apoptosis is one of the factors contributing to lung cancer (LC) growth. Histone acetyltransferase HAT1 can up regulate cell apoptosis. This study aims to investigate the mechanism by which HAT1 induces LC cell (LCC) apoptosis via up regulating the expression of Fas. In this study, the surgically removed human LC tissues were collected. LCCs were isolated from the LC tissues and analyzed for the expression of HAT1 and Fas by RT-qPCR and Western blotting. We observed that the expression of Fas was negatively correlated with PAR2 in LCCs. Activation of PAR2 suppressed the expression of Fas in normal lung epithelial cells. The expression of HAT1 was lower and positively correlated with Fas expression and negatively correlated with PAR2 expression in LCCs. Activation of PAR2 suppressed Fas expression in lung epithelial cells via inhibiting HAT1. Restoration of HAT1 expression restored Fas expression in LCCs and induced LCC apoptosis. In conclusion, less expression of HAT1 in LCCs was associated with the pathogenesis of LC. Up regulation of HAT1 expression in LCCs can induce LCCs apoptosis, which may be a potential novel therapy for the treatment of LC.
Collapse
Affiliation(s)
- Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Shi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Kang M, Li Y, Zhao Y, He S, Shi J. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 2017; 20:457-466. [PMID: 28871425 DOI: 10.1007/s12094-017-1730-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lung cancer continues to be one of the top five causes of cancer-related mortality. This study aims to identify down- and upregulated miRNAs and mRNA which can be used as potential biomarkers and/or therapeutic targets for lung cancer. METHODS Integrated analysis of differential expression profiles of miRNA and mRNA in lung cancer was performed by searching Gene Expression Omnibus datasets. Based on miRNA expression profiles, direct mRNA targets of miRNAs with experimental support were identified through miRTarBase. The levels of representative miRNAs and mRNAs were confirmed through qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS The miR-33a was decreased in non-small cell lung cancer (NSCLC) tissues compared with the para-carcinoma tissues, whereas its target mRNA of cullin-associated NEDD8-dissociated protein 1 (CAND1) was increased in NSCLC tissues. Further research has shown that miR-33a can inhibit lung cancer cell proliferation, cell cycle progression, and migration by targeting CAND1. Moreover, the CAND1 knockout lung cancer cells showed similar results as cells transfected with miR-33a mimic. CONCLUSIONS These results suggested that the data mining based on online databases was an effective method in finding novel target in cancer research, and the miR-33a and CAND1 played an important role in lung cancer proliferation and cell migration.
Collapse
Affiliation(s)
- M Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Li
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Zhao
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - S He
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| | - J Shi
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
45
|
Zhou L, Wu F, Jin W, Yan B, Chen X, He Y, Yang W, Du W, Zhang Q, Guo Y, Yuan Q, Dong X, Yu W, Zhang J, Xiao L, Tong P, Shan L, Efferth T. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism. Front Pharmacol 2017; 8:75. [PMID: 28289384 PMCID: PMC5326752 DOI: 10.3389/fphar.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural products for lung cancer therapy and new development of anti-cancer agent.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Wangdong Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bo Yan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xin Chen
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Yingfei He
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Weiji Yang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wenlin Du
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Yonghua Guo
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Yuan
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | | | - Wenhua Yu
- Hangzhou First People’s HospitalHangzhou, China
| | | | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of MainzMainz, Germany
| |
Collapse
|
46
|
Wu F, Zhou L, Jin W, Yang W, Wang Y, Yan B, Du W, Zhang Q, Zhang L, Guo Y, Zhang J, Shan L, Efferth T. Anti-Proliferative and Apoptosis-Inducing Effect of Theabrownin against Non-small Cell Lung Adenocarcinoma A549 Cells. Front Pharmacol 2016; 7:465. [PMID: 27994550 PMCID: PMC5133245 DOI: 10.3389/fphar.2016.00465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022] Open
Abstract
With the highest cancer incidence rate, lung cancer, especially non-small cell lung cancer (NSCLC), is the leading cause of cancer death in the world. Tea (leaves of Camellia sinensis) has been widely used as a traditional beverage beneficial to human health, including anti-NSCLC activity. Theabrownin (TB) is one major kind of tea pigment responsible for the beneficial effects of tea liquor. However, its effect on NSCLC is unknown. The aim of the present study was to evaluate anti-proliferative and apoptosis-inducing effect of TB on NSCLC (A549) cells, using MTT assay, morphological observation (DAPI staining), in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and annexin-V/PI flow cytometry. Subsequently, the expression of several genes associated with cell proliferation and apoptosis were detected by real time PCR assay to explore its potential underlying mechanism. TB was revealed to inhibit cell proliferation of A549 cells in a concentration-dependent and time-dependent manner. Morphological observation, TUNEL assay and flow cytometric analysis evidenced an apoptosis-inducing effect of TB on A549 cells in a concentration-dependent manner. The real time PCR assay demonstrated that TB down-regulated the expression of TOPO I, TOPO II, and BCL-2, and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which suggests an activation of P53-mediated apoptotic (caspase-dependent) pathway in response to TB treatment. The western blot analysis showed a similar trend for the corresponding protein expression (P53, Bax, Bcl-2, caspase 3,9, and PARP) and further revealed DNA damage as a trigger of the apoptosis (phosphorylation of histone H2A.X). Accordingly, TB can be speculated as a DNA damage inducer and topoisomerase (Topo I and Topo II) inhibitor that can up-regulate P53 expression and subsequently modulate the expression of the downstream genes to induce cell proliferation inhibition and apoptosis of A549 cells. Our results indicate that TB exhibits its anti-NSCLC activity via a P53-dependent mechanism, which may be a promising candidate of natural product for anti-cancer drug development in the treatment of NSCLC.
Collapse
Affiliation(s)
- Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Ltd.Hangzhou, China
| | - Li Zhou
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wangdong Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Weiji Yang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Ying Wang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bo Yan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wenlin Du
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Ltd.Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Ltd.Hangzhou, China
| | - Lei Zhang
- School of Medicine, Zhejiang UniversityHangzhou, China
| | - Yonghua Guo
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Ltd.Hangzhou, China
| | | | - Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|
47
|
De Miguel D, Gallego-Lleyda A, Ayuso JM, Erviti-Ardanaz S, Pazo-Cid R, del Agua C, Fernández LJ, Ochoa I, Anel A, Martinez-Lostao L. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. NANOTECHNOLOGY 2016; 27:185101. [PMID: 27001952 DOI: 10.1088/0957-4484/27/18/185101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. METHODS/PATIENTS LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. RESULTS LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. CONCLUSION The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Diego De Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Essential oil of Curcuma aromatica induces apoptosis in human non-small-cell lung carcinoma cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Wang H, Zhu X, Huang J, Chen P, Han S, Yan X. Nedaplatin sensitization of cisplatin-resistant human non-small cell lung cancer cells. Oncol Lett 2016; 11:2566-2572. [PMID: 27073518 DOI: 10.3892/ol.2016.4276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (DDP) has been one of the most widely used chemotherapy drugs for advanced non-small cell lung cancer. However, the increase in the number of DDP-resistant cancer cells has become a major impediment in the clinical management of cancer. In the present study, for the first time, the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay was used to demonstrate that nedaplatin (NDP) could have a stronger inhibitory effect than DDP alone in DDP-resistant A549 (A549DDP) cells and that it could attenuate the resistance of these cells. Additionally, flow cytometry analysis showed that the apoptosis rate of these resistant cells when exposed to NDP was markedly increased and the number of cells in the G2 stage of the cell cycle was significantly increased. Furthermore, western blot analysis indicated that NDP decreased the protein expression of P-glycoprotein, tumor protein p53 and B-cell lymphoma 2, and increased the expression of Bcl-2-associated X protein, all of which could possibly improve the NDP intracellular drug concentration and promote cell apoptosis. These observations suggested that NDP could have higher efficacy in DDP-resistant lung cancer cells, and further studies applying more detailed analyses are warranted to elucidate the mechanism(s) behind this effect.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Huang
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuhua Han
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xing Yan
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
50
|
Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 2016; 110:1-7. [PMID: 26882972 DOI: 10.1016/j.fitote.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|