1
|
Nasser A, Qdemat A, Unterweger H, Tietze R, Sun X, Landers J, Kopp J, Wu B, Appavou MS, Murmiliuk A, Gilbert EP, Petracic O, Feoktystov A. Impact of coating type on structure and magnetic properties of biocompatible iron oxide nanoparticles: insights into cluster organization and oxidation stability. Phys Chem Chem Phys 2024; 26:24912-24923. [PMID: 39291756 DOI: 10.1039/d4cp01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool for biomedical applications, including drug delivery, imaging, and magnetic hyperthermia. However, their tendency to agglomerate limits their performance efficiency. To overcome this limitation, a coating can be applied during or after synthesis. This work investigates the effect of three biocompatible coatings, namely sodium citrate, (3-aminopropyl)triethoxysilane (APTES), and dextran, on controlling the agglomeration of iron oxide nanoparticles. Various experimental techniques were used to characterize the structural and magnetic properties of the coated nanoparticles, including cryogenic transmission electron microscopy (cryo-TEM), magnetometry, Mössbauer spectroscopy, and small-angle X-ray and neutron scattering. The results indicate that the coatings effectively stabilize the nanoparticles, leading to clusters of different sizes that modify their magnetic behaviour due to magnetic inter-particle interactions. The oxidation kinetics of the nanoparticles prepared with the various coating materials were investigated to characterize their oxidation behaviour and stability over time. This research provides valuable insights into the design of an optimized nanoparticle functionalization strategy for biomedical applications.
Collapse
Affiliation(s)
- Amal Nasser
- Department of Physics, Technical University Munich (TUM), Garching, Germany
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at MLZ, Garching, Germany.
| | - Asma Qdemat
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS-2, Jülich, Germany.
| | - Harald Unterweger
- ENT Department, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Germany
| | - Rainer Tietze
- ENT Department, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Germany
| | - Xiao Sun
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Juri Kopp
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Baohu Wu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at MLZ, Garching, Germany.
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at MLZ, Garching, Germany.
| | - Anastasiia Murmiliuk
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at MLZ, Garching, Germany.
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
| | - Oleg Petracic
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS-2, Jülich, Germany.
| | - Artem Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at MLZ, Garching, Germany.
| |
Collapse
|
2
|
Dezfuli AAZ, Abu-Elghait M, Salem SS. Recent Insights into Nanotechnology in Colorectal Cancer. Appl Biochem Biotechnol 2024; 196:4457-4471. [PMID: 37751009 DOI: 10.1007/s12010-023-04696-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Colorectal cancer (CRC) is the third cancer among the known causes of cancer that impact people. Although CRC drug options are imperfect, primary detection of CRC can play a key role in treating the disease and reducing mortality. Cancer tissues show many molecular markers that can be used as a new way to advance therapeutic methods. Nanotechnology includes a wide range of nanomaterials with high diagnostic and therapeutic power. Several nanomaterials and nanoformulations can be used to treat cancer, especially CRC. In this review, we discuss recent insights into nanotechnology in colorectal cancer.
Collapse
Affiliation(s)
- Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
3
|
Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, Liu X, Ba X, Xia D, Peng E, Chen Z, Tang K. The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts. Int J Nanomedicine 2024; 19:3333-3365. [PMID: 38617796 PMCID: PMC11012801 DOI: 10.2147/ijn.s447350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
4
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, Dey A. Ligand-based active targeting strategies for cancer theranostics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3417-3441. [PMID: 37466702 DOI: 10.1007/s00210-023-02612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Synudeen Sahib
- S.S. Cottage, Njarackal,, P.O.: Perinad, Kollam, 691601, Kerala, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053, Ulrika, Sweden
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
6
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023; 9:e21227. [PMID: 37954330 PMCID: PMC10637937 DOI: 10.1016/j.heliyon.2023.e21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.
Collapse
Affiliation(s)
- Saniha Ajith
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | | | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
8
|
Chao B, Jiao J, Yang L, Wang Y, Yu T, Liu H, Zhang H, Li M, Wang W, Cui X, Du S, Wang Z, Wu M. Comprehensive evaluation and advanced modification of polymethylmethacrylate cement in bone tumor treatment. J Mater Chem B 2023; 11:9369-9385. [PMID: 37712890 DOI: 10.1039/d3tb01494k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bone tumors are invasive diseases with a tendency toward recurrence, disability, and high mortality rates due to their grievous complications. As a commercial polymeric biomaterial, polymethylmethacrylate (PMMA) cement possesses remarkable mechanical properties, injectability, and plasticity and is, therefore, frequently applied in bone tissue engineering. Numerous positive effects in bone tumor treatment have been demonstrated, including biomechanical stabilization, analgesic effects, and tumor recurrence prevention. However, to our knowledge, a comprehensive evaluation of the application of the PMMA cement in bone tumor treatment has not yet been reported. This review comprehensively evaluates the efficiency and complications of the PMMA cement in bone tumor treatment, for the first time, and introduces advanced modification strategies, providing an objective and reliable reference for the application of the PMMA cement in treating bone tumors. We have also summarized the current research on modifications to enhance the anti-tumor efficacy of the PMMA cement, such as drug carriers and magnetic hyperthermia.
Collapse
Affiliation(s)
- Bo Chao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jianhang Jiao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Lili Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Tong Yu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Han Zhang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Mufeng Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Wenjie Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Xiangran Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Shangyu Du
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Minfei Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
9
|
Bao C, Xiang H, Chen Q, Zhao Y, Gao Q, Huang F, Mao L. A Review of Labeling Approaches Used in Small Extracellular Vesicles Tracing and Imaging. Int J Nanomedicine 2023; 18:4567-4588. [PMID: 37588627 PMCID: PMC10426735 DOI: 10.2147/ijn.s416131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Small extracellular vesicles (sEVs), a subset of extracellular vesicles (EVs) originating from the endosomal compartment, are a kind of lipid bilayer vesicles released by almost all types of cells, serving as natural carriers of nucleic acids, proteins, and lipids for intercellular communication and transfer of bioactive molecules. The current findings suggest their vital role in physiological and pathological processes. Various sEVs labeling techniques have been developed for the more advanced study of the function, mode of action, bio-distribution, and related information of sEVs. In this review, we summarize the existing and emerging sEVs labeling techniques, including fluorescent labeling, radioisotope labeling, nanoparticle labeling, chemical contrast agents labeling, and label-free technique. These approaches will pave the way for an in-depth study of sEVs. We present a systematic and comprehensive review of the principles, advantages, disadvantages, and applications of these techniques, to help promote applications of these labeling approaches in future research on sEVs.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yuxue Zhao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Feng Huang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
10
|
Burmatova A, Khannanov A, Gerasimov A, Ignateva K, Khaldeeva E, Gorovaia A, Kiiamov A, Evtugyn V, Kutyreva M. A Hyperbranched Polyol Process for Designing and Manufacturing Nontoxic Cobalt Nanocomposite. Polymers (Basel) 2023; 15:3248. [PMID: 37571141 PMCID: PMC10421248 DOI: 10.3390/polym15153248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35-50 nm with immobilized cobalt nanoparticles of 5-7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms-1 × 10-5 and 4.14 mM·ms-1 × 10-5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal-polymer nanocomposites for theranostics.
Collapse
Affiliation(s)
- Anastasia Burmatova
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Artur Khannanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Alexander Gerasimov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Klara Ignateva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Elena Khaldeeva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
- Kazan Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya Str., 420015 Kazan, Russia
| | - Arina Gorovaia
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Airat Kiiamov
- Quantum Simulators Lab, Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
| | - Vladimir Evtugyn
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Marianna Kutyreva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| |
Collapse
|
11
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
12
|
Tyagi N, Gupta P, Khan Z, Neupane YR, Mangla B, Mehra N, Ralli T, Alhalmi A, Ali A, Al Kamaly O, Saleh A, Nasr FA, Kohli K. Superparamagnetic Iron-Oxide Nanoparticles Synthesized via Green Chemistry for the Potential Treatment of Breast Cancer. Molecules 2023; 28:molecules28052343. [PMID: 36903587 PMCID: PMC10005561 DOI: 10.3390/molecules28052343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 μM and 6.29 ± 0.21 μM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.
Collapse
Affiliation(s)
- Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Bharti Mangla
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Nikita Mehra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- Innovation and Science, Amway Global Services India, Gurugram 122001, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmaceutics, Lloyd Institute of Management and Technology (Pharm.), Greater Noida 201306, India
- Correspondence:
| |
Collapse
|
13
|
Karageorgou MA, Bouziotis P, Stiliaris E, Stamopoulos D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:503. [PMID: 36770463 PMCID: PMC9919131 DOI: 10.3390/nano13030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During the last decades, the utilization of imaging modalities such as single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) in every day clinical practice has enabled clinicians to diagnose diseases accurately at early stages. Radiolabeled iron oxide nanoparticles (RIONs) combine their intrinsic magnetic behavior with the extrinsic character of the radionuclide additive, so that they constitute a platform of multifaceted physical properties. Thus, at a practical level, RIONs serve as the physical parent of the so-called dual-modality contrast agents (DMCAs) utilized in SPECT/MRI and PET/MRI applications due to their ability to combine, at real time, the high sensitivity of SPECT or PET together with the high spatial resolution of MRI. This review focuses on the synthesis and in vivo investigation of both biodistribution and imaging efficacy of RIONs as potential SPECT/MRI or PET/MRI DMCAs.
Collapse
Affiliation(s)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
14
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
15
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
16
|
Green synthesized zinc oxide nanoparticles from Cinnamomum verum bark extract inhibited cell growth and induced caspase-mediated apoptosis in oral cancer KB cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Pulvirenti L, Monforte F, Lo Presti F, Li Volti G, Carota G, Sinatra F, Bongiorno C, Mannino G, Cambria MT, Condorelli GG. Synthesis of MIL-Modified Fe 3O 4 Magnetic Nanoparticles for Enhancing Uptake and Efficiency of Temozolomide in Glioblastoma Treatment. Int J Mol Sci 2022; 23:2874. [PMID: 35270016 PMCID: PMC8911361 DOI: 10.3390/ijms23052874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
A nanometric hybrid system consisting of a Fe3O4 magnetic nanoparticles modified through the growth of Fe-based Metal-organic frameworks of the MIL (Materials Institute Lavoiser) was developed. The obtained system retains both the nanometer dimensions and the magnetic properties of the Fe3O4 nanoparticles and possesses increased the loading capability due to the highly porous Fe-MIL. It was tested to load, carry and release temozolomide (TMZ) for the treatment of glioblastoma multiforme one of the most aggressive and deadly human cancers. The chemical characterization of the hybrid system was performed through various complementary techniques: X-ray-diffraction, thermogravimetric analysis, FT-IR and X-ray photoelectron spectroscopies. The nanomaterial showed low toxicity and an increased adsorption capacity compared to bare Fe3O4 magnetic nanoparticles (MNPs). It can load about 12 mg/g of TMZ and carry the drug into A172 cells without degradation. Our experimental data confirm that, after 48 h of treatment, the TMZ-loaded hybrid nanoparticles (15 and 20 μg/mL) suppressed human glioblastoma cell viability much more effectively than the free drug. Finally, we found that the internalization of the MIL-modified system is more evident than bare MNPs at all the used concentrations both in the cytoplasm and in the nucleus suggesting that it can be capable of overcoming the blood-brain barrier and targeting brain tumors. In conclusion, these results indicate that this combined nanoparticle represents a highly promising drug delivery system for TMZ targeting into cancer cells.
Collapse
Affiliation(s)
- Luca Pulvirenti
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (L.P.); (F.M.); (F.L.P.)
| | - Francesca Monforte
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (L.P.); (F.M.); (F.L.P.)
| | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (L.P.); (F.M.); (F.L.P.)
| | - Giovanni Li Volti
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica, Università di Catania, Via S. Sofia 92, 95125 Catania, Italy; (G.L.V.); (G.C.); (F.S.)
| | - Giuseppe Carota
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica, Università di Catania, Via S. Sofia 92, 95125 Catania, Italy; (G.L.V.); (G.C.); (F.S.)
| | - Fulvia Sinatra
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica, Università di Catania, Via S. Sofia 92, 95125 Catania, Italy; (G.L.V.); (G.C.); (F.S.)
| | - Corrado Bongiorno
- CNR-IMM, Strada VIII no. 5 Zona Industriale, 95121 Catania, Italy; (C.B.); (G.M.)
| | - Giovanni Mannino
- CNR-IMM, Strada VIII no. 5 Zona Industriale, 95121 Catania, Italy; (C.B.); (G.M.)
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica, Università di Catania, Via S. Sofia 92, 95125 Catania, Italy; (G.L.V.); (G.C.); (F.S.)
| | - Guglielmo Guido Condorelli
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (L.P.); (F.M.); (F.L.P.)
| |
Collapse
|
18
|
Saqezi AS, Kermanian M, Ramazani A, Sadighian S. Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Fani A, Varmazyar S, Akbari F, Garfami M, Mohaghegh R, Balkhi S, Mojdehi SR, Tabassi NR, Hosseinpour T, Ghanbari Z, Salehzadeh A. Green Synthesis of a Novel PtFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Anti-Cancer Studies in Gastric Cancer Cell Line. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
22
|
Zhang S, Zhang S, Luo S, Wu D. Therapeutic agent-based infinite coordination polymer nanomedicines for tumor therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202104199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractNanomaterials with cancer‐imaging and therapeutic properties have emerged as the principal focus of nanotheranostics. The past decade has experienced a significant increase in research in the design, formulation, and preclinical and clinical trials of theranostic nanosystems. However, current theranostic nanoformulations have yet to be approved by the FDA for clinical use. Consequently, the present review focuses on the importance of the careful examination of the in vivo preclinical status of specific nanotheranostic materials as a prerequisite for their clinical translation. The scope of coverage is structured according to all of the major organic, inorganic, 2D, and hybrid nanotheranostic materials and their in vivo preclinical status. The therapeutic advantages and limitations of these materials in animal models are considered and the various strategies to enhance the biocompatibility of theranostic nanoparticles are summarized.
Collapse
Affiliation(s)
- Kochurani K. Johnson
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Pramod Koshy
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Jia‐Lin Yang
- Prince of Wales Clinical School Faculty of Medicine UNSW Sydney Sydney New South Wales 2052 Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
24
|
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.735434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Currently, cancer is among the most challenging diseases due to its ability to continuously evolve into a more complex muldimentional system, in addition to its high capability to spread to other organs and tissues. In this context, the relevance of nanobiomaterials (NBMs) for the development of new more effective and less harmful treatments is increasing. NBMs provide the possibility of combining several functionalities on a single system, expectedly in a synergic way, to better perform the treatment and cure. However, the control of properties such as colloidal stability, circulation time, pharmacokinetics, and biodistribution, assuring the concentration in specific target tissues and organs, while keeping all desired properties, tends to be dependent on subtle changes in surface chemistry. Hence, the behavior of such materials in different media/environments is of uttermost relevance and concern since it can compromise their efficiency and safety on application. Given the bright perspectives, many efforts have been focused on the development of nanomaterials fulfilling the requirements for real application. These include robust and reproducible preparation methods to avoid aggregation while preserving the interaction properties. The possible impact of nanomaterials in different forms of diagnosis and therapy has been demonstrated in the past few years, given the perspectives on how revolutionary they can be in medicine and health. Considering the high biocompatibility and suitability, this review is focused on titanium dioxide– and iron oxide–based nanoagents highlighting the current trends and main advancements in the research for cancer therapies. The effects of phenomena, such as aggregation and agglomeration, the formation of the corona layer, and how they can compromise relevant properties of nanomaterials and their potential applicability, are also addressed. In short, this review summarizes the current understanding and perspectives on such smart nanobiomaterials for diagnostics, treatment, and theranostics of diseases.
Collapse
|
25
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
26
|
|
27
|
Preparation of Zinc Oxide Nanoparticles using Aspergillus niger as Antimicrobial and Anticancer Agents. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the current study, zinc oxide nanoparticles (ZnO-NP) were prepared using extracellular extracts of Aspergillus niger. Hence, the morphological structure, optical, and surface features of the synthesized nanoparticles were studied by X-ray diffraction, transmission electron microscopy, ultraviolet-visible and infrared absorption by Fourier transform. Use dynamic light scattering and zeta potential measurements to assess colloidal stability. The mean size of the synthetic particles is approximately 20 ± 5 nm and they have a hexagonal crystal structure. In addition, the prepared nanoparticles have strong light absorption in the ultraviolet region of λ = 265 and 370 nm. To achieve the goal of this study, the efficiency of ZnO-NP was determined as an antibacterial and antifungal against different bacterial and fungal strains. It was found that ZnO-NP showed significant antibacterial activity, where the inhibition zones were varied from 21 to 35mm in diameter against six bacterial species (i.e. K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus). In such a case, the minimal inhibitory concentration of zinc oxide nanoparticles against bacterial strains were 50, 12.5, 12.5, 50, 12.5, and 12.5μg/ml for K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus, respectively. Furthermore, ZnO-NP exhibits an antifungal behaviour against four fungal species (i.e., A. niger, P. marneffei, C. glabrata, and C. parapsilosis) with inhibition zone from 18 to 35mm in diameter. Whereas, the MICs for fungal isolates were 12.5μg/ml except A. niger was at 25μg/ml. Wi-38 cells were treated with ZnO-NPs exhibited different levels of cytotoxicity dependent upon the concentration of ZnO NPs using the MTT assay with IC50~800.42. Therefore, the present study introduces a facile and cost-effective extracellular green-synthesis of ZnO-NP to be used as antimicrobial and anticancer agents.
Collapse
|
28
|
Liu J, Sun L, Li L, Zhang R, Xu ZP. Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7115-7126. [PMID: 33543935 DOI: 10.1021/acsami.0c23143] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The success of cancer therapy is always accompanied by severe side effects due to the high amount of toxic antitumor drugs that off-target normal organs/tissues. Herein, we report the development of a trifunctional layered double hydroxide (LDH) nanosystem for combined photochemotherapy of skin cancer at very low therapeutic doses. This nanosystem (ICG/Cu-LDH@BSA-DOX) is composed of acid-responsive bovine serum albumin-doxorubicin prodrug (BSA-DOX) and indocyanine green (ICG)-intercalated Cu-doped LDH nanoparticle. ICG/Cu-LDH@BSA-DOX is able to release DOX in an acid-triggered manner, efficiently and simultaneously generates heating and reactive oxygen species (ROS) upon 808 nm laser irradiation, and synergistically induces apoptosis of skin cancer cells. In vivo therapeutic evaluations demonstrate that ICG/Cu-LDH@BSA-DOX nearly eradicated the tumor tissues upon one-course treatment using very low doses of therapeutic agents (0.175 mg/kg DOX, 0.5 mg/kg Cu, and 0.25 mg/kg ICG) upon very mild 808 nm laser irradiation (0.3 W/cm2 for 2 min). This work thus provides a novel strategy to design anticancer nanomedicine for efficient combination cancer treatment with minimal side effects in clinical applications.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
29
|
Khoee S, Jalaeian Bashirzadeh M. Preparation of Janus‐type superparamagnetic iron oxide nanoparticles modified with functionalized
PCL
/
PHEMA
via photopolymerization for dual drug delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.49627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science University of Tehran Tehran Iran
| | | |
Collapse
|
30
|
Luo H, Jie T, Zheng L, Huang C, Chen G, Cui W. Electrospun Nanofibers for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:163-190. [PMID: 33543460 DOI: 10.1007/978-3-030-58174-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lately, a remarkable progress has been recorded in the field of electrospinning for the preparation of numerous types of nanofiber scaffolds. These scaffolds present some remarkable features including high loading capacity and encapsulation efficiency, superficial area and porosity, potential for modification, structure for the co-delivery of various therapies, and cost-effectiveness. Their present and future applications for cancer diagnosis and treatment are promising and pioneering. In this chapter we provide a comprehensive overview of electrospun nanofibers (ESNFs) applications in cancer diagnosis and treatment, covering diverse types of drug-loaded electrospun nanofibers.
Collapse
Affiliation(s)
- Huanhuan Luo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tianyang Jie
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- The central laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Sayed HM, Said MM, Morcos NYS, El Gawish MA, Ismail AFM. Antitumor and Radiosensitizing Effects of Zinc Oxide-Caffeic Acid Nanoparticles against Solid Ehrlich Carcinoma in Female Mice. Integr Cancer Ther 2021; 20:15347354211021920. [PMID: 34105411 PMCID: PMC8193661 DOI: 10.1177/15347354211021920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the anticancer and radio-sensitizing efficacy of Zinc Oxide-Caffeic Acid Nanoparticles (ZnO-CA NPs). ZnO-CA NPs were formulated by the conjugation of Zinc Oxide nanoparticles (ZnO NPs) with caffeic acid (CA) that were characterized by Fourier Transform Infrared Spectra (FT-IR), X-ray Diffractometer (XRD), and Transmission Electron Microscopy (TEM). In vitro anticancer potential of ZnO-CA NPs was evaluated by assessing cell viability in the human breast (MCF-7) and hepatocellular (HepG2) carcinoma cell lines. In vivo anticancer and radio-sensitizing effects of ZnO-CA NPs in solid Ehrlich carcinoma-bearing mice (EC mice) were also assessed. Treatment of EC mice with ZnO-CA NPs resulted in a considerable decline in tumor size and weight, down-regulation of B-cell lymphoma 2 (BCL2) and nuclear factor kappa B (NF-κB) gene expressions, decreased vascular cell adhesion molecule 1 (VCAM-1) level, downregulation of phosphorylated-extracellular-regulated kinase 1 and 2 (p-ERK1/2) protein expression, DNA fragmentation and a recognizable peak at sub-G0/G1 indicating dead cells' population in cancer tissues. Combined treatment of ZnO-CA NPs with γ-irradiation improved these effects. In conclusion: ZnO-CA NPs exhibit in-vitro as well as in-vivo antitumor activity, which is augmented by exposure of mice to γ-irradiation. Further explorations are warranted previous to clinical application of ZnO-CA NPs.
Collapse
Affiliation(s)
- Hayam M. Sayed
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Mahmoud M. Said
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Nadia Y. S. Morcos
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Mona A. El Gawish
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Amel F. M. Ismail
- Drug Radiation Research Department,
National Center for Radiation Research and Technology, Egyptian Atomic Energy
Authority, Cairo, Egypt
| |
Collapse
|
32
|
Zhang X, Xu X, Ren Y, Yan Y, Wu A. Numerical simulation of circulating tumor cell separation in a dielectrophoresis based Y-Y shaped microfluidic device. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020; 13:E24. [PMID: 33374391 PMCID: PMC7823416 DOI: 10.3390/pharmaceutics13010024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Early detection, right therapeutic intervention, and simultaneous effectiveness mapping are considered the critical factors in successful cancer therapy. Nevertheless, these factors experience the limitations of conventional cancer diagnostics and therapeutics delivery approaches. Along with providing the targeted therapeutics delivery, advances in nanomedicines have allowed the combination of therapy and diagnostics in a single system (called cancer theranostics). This paper discusses the progress in the pre-clinical and clinical development of therapeutics, diagnostics, and theranostics cancer nanomedicines. It has been well evident that compared to the overabundance of works that claimed success in pre-clinical studies, merely 15 and around 75 cancer nanomedicines are approved, and currently under clinical trials, respectively. Thus, we also brief the critical bottlenecks in the successful clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; or
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK;
| | - Wael Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
34
|
Gräfe C, Müller EK, Gresing L, Weidner A, Radon P, Friedrich RP, Alexiou C, Wiekhorst F, Dutz S, Clement JH. Magnetic hybrid materials interact with biological matrices. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Magnetic hybrid materials are a promising group of substances. Their interaction with matrices is challenging with regard to the underlying physical and chemical mechanisms. But thinking matrices as biological membranes or even structured cell layers they become interesting with regard to potential biomedical applications. Therefore, we established in vitro blood-organ barrier models to study the interaction and processing of superparamagnetic iron oxide nanoparticles (SPIONs) with these cellular structures in the presence of a magnetic field gradient. A one-cell-type–based blood-brain barrier model was used to investigate the attachment and uptake mechanisms of differentially charged magnetic hybrid materials. Inhibition of clathrin-dependent endocytosis and F-actin depolymerization led to a dramatic reduction of cellular uptake. Furthermore, the subsequent transportation of SPIONs through the barrier and the ability to detect these particles was of interest. Negatively charged SPIONs could be detected behind the barrier as well as in a reporter cell line. These observations could be confirmed with a two-cell-type–based blood-placenta barrier model. While positively charged SPIONs heavily interact with the apical cell layer, neutrally charged SPIONs showed a retarded interaction behavior. Behind the blood-placenta barrier, negatively charged SPIONs could be clearly detected. Finally, the transfer of the in vitro blood-placenta model in a microfluidic biochip allows the integration of shear stress into the system. Even without particle accumulation in a magnetic field gradient, the negatively charged SPIONs were detectable behind the barrier. In conclusion, in vitro blood-organ barrier models allow the broad investigation of magnetic hybrid materials with regard to biocompatibility, cell interaction, and transfer through cell layers on their way to biomedical application.
Collapse
Affiliation(s)
- Christine Gräfe
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Elena K. Müller
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Lennart Gresing
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt , Berlin , Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | | | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Joachim H. Clement
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| |
Collapse
|
35
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
36
|
Anık Ü, Timur S, Dursun Z. Recent pros and cons of nanomaterials in drug delivery systems. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1655753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ülkü Anık
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Suna Timur
- Faculty of Science, Biochemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Zekerya Dursun
- Faculty of Science, Chemistry Department, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
37
|
Cambria MT, Villaggio G, Laudani S, Pulvirenti L, Federico C, Saccone S, Condorelli GG, Sinatra F. The Interplay between Fe 3O 4 Superparamagnetic Nanoparticles, Sodium Butyrate, and Folic Acid for Intracellular Transport. Int J Mol Sci 2020; 21:ijms21228473. [PMID: 33187164 PMCID: PMC7697628 DOI: 10.3390/ijms21228473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
Combined treatments which use nanoparticles and drugs could be a synergistic strategy for the treatment of a variety of cancers to overcome drug resistance, low efficacy, and high-dose-induced systemic toxicity. In this study, the effects on human colon adenocarcinoma cells of surface modified Fe3O4 magnetic nanoparticles (MNPs) in combination with sodium butyrate (NaBu), added as a free formulation, were examined demonstrating that the co-delivery produced a cytotoxic effect on malignant cells. Two different MNP coatings were investigated: a simple polyethylene glycol (PEG) layer and a mixed folic acid (FA) and PEG layer. Our results demonstrated that MNPs with FA (FA-PEG@MNPs) have a better cellular uptake than the ones without FA (PEG@MNPs), probably due to the presence of folate that acts as an activator of folate receptors (FRs) expression. However, in the presence of NaBu, the difference between the two types of MNPs was reduced. These similar behaviors for both MNPs likely occurred because of the differentiation induced by butyrate that increases the uptake of ferromagnetic nanoparticles. Moreover, we observed a strong decrease of cell viability in a NaBu dose-dependent manner. Taking into account these results, the cooperation of multifunctional MNPs with NaBu, taking into consideration the particular cancer-cell properties, can be a valuable tool for future cancer treatment.
Collapse
Affiliation(s)
- Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95125 Catania, Italy; (G.V.); (S.L.); (F.S.)
- Correspondence: (M.T.C.); (G.G.C.)
| | - Giusy Villaggio
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95125 Catania, Italy; (G.V.); (S.L.); (F.S.)
| | - Samuele Laudani
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95125 Catania, Italy; (G.V.); (S.L.); (F.S.)
| | - Luca Pulvirenti
- Dipartimento di Scienze Chimiche, Università di Catania, 95125 Catania, Italy;
| | - Concetta Federico
- Dipartimento di Scienze Geologiche, Biologiche e Ambientali, Università di Catania, 95125 Catania, Italy; (C.F.); (S.S.)
| | - Salvatore Saccone
- Dipartimento di Scienze Geologiche, Biologiche e Ambientali, Università di Catania, 95125 Catania, Italy; (C.F.); (S.S.)
| | - Guglielmo Guido Condorelli
- Dipartimento di Scienze Chimiche, Università di Catania, 95125 Catania, Italy;
- Consorzio Interuniversitario di Scienza e Tecnologia dei Materiali (INSTM) UdR di Catania, 95125 Catania, Italy
- Correspondence: (M.T.C.); (G.G.C.)
| | - Fulvia Sinatra
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95125 Catania, Italy; (G.V.); (S.L.); (F.S.)
| |
Collapse
|
38
|
Yadav A, Rao C, Verma NC, Mishra PM, Nandi CK. Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging. Mol Imaging 2020; 19:1536012120969477. [PMID: 33112721 PMCID: PMC8865915 DOI: 10.1177/1536012120969477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.
Collapse
Affiliation(s)
- Aditya Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Chethana Rao
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Navneet Chandra Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.,BioX Centre, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Chayan Kanti Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.,BioX Centre, Indian Institute of Technology, Mandi, Himachal Pradesh, India.,Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh, India
| |
Collapse
|
39
|
Philip S, Kuriakose S. Synthesis, Characterization and Antimicrobial Properties of Superparamagnetic α-Fe2O3 Nanoparticles Stabilized by Biocompatible Starch. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01898-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
41
|
Xu X, Jiang Z, Wang J, Ren Y, Wu A. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Electrophoresis 2020; 41:933-951. [PMID: 32144938 DOI: 10.1002/elps.201900402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Xiawei Xu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China.,Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|
42
|
Cardoso RM, Deda DK, Toma SH, Baptista MS, Araki K. Beyond electrostatic interactions: Ligand shell modulated uptake of bis-conjugated iron oxide nanoparticles by cells. Colloids Surf B Biointerfaces 2020; 186:110717. [DOI: 10.1016/j.colsurfb.2019.110717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/01/2022]
|
43
|
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J. FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 2020; 4:26-39. [PMID: 31911892 PMCID: PMC6940204 DOI: 10.7150/ntno.38092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized with abundant tumor stroma, is a highly malignant tumor with poor prognosis. The tumor stroma largely consists of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), and is known to promote tumor growth and progression as well as acts as a barrier to chemotherapy. Inhibition of tumor stroma is highly crucial to induce the effect of chemotherapy. In this study, we delivered fibroblast growth factor 2 (FGF2) to human pancreatic stellate cells (hPSCs), the precursors of CAFs, using superparamagnetic iron oxide nanoparticles (SPIONs). FGF2 was covalently conjugated to functionalized PEGylated dextran-coated SPIONs. FGF2-SPIONs significantly reduced TGF-β induced hPSCs differentiation (α-SMA and collagen-1 expression) by inhibiting pSmad2/3 signaling and inducing ERK1/2 activity, as shown with western blot analysis. Then, we established a stroma-rich self-assembling 3D heterospheroid model by co-culturing PANC-1 and hPSCs in 3D environment. We found that FGF2-SPIONs treatment alone inhibited the tumor stroma-induced spheroid growth. In addition, they also potentiated the effect of gemcitabine, as shown by measuring the spheroid size and ATP content. These effects were attributed to the reduced expression of the hPSC activation and differentiation marker, α-SMA. Furthermore, to demonstrate an application of SPIONs, we applied an external magnetic field to spheroids while incubated with FGF2-SPIONs. This resulted in an enhanced effect of gemcitabine in our 3D model. In conclusion, this study presents a novel approach to target FGF2 to tumor stroma using SPIONs and thereby enhancing the effect of gemcitabine as demonstrated in the complex 3D tumor spheroid model.
Collapse
Affiliation(s)
- Deby Fajar Mardhian
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Aggelos Vrynas
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
44
|
Palanisamy S, Wang YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48:9490-9515. [PMID: 31211303 DOI: 10.1039/c9dt00459a] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | | |
Collapse
|
45
|
Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 2019; 8:223-237. [PMID: 31768895 PMCID: PMC6930319 DOI: 10.1007/s40204-019-00125-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Nowadays, bone diseases and defects as a result of trauma, cancers, infections and degenerative and inflammatory conditions are increasing. Consequently, bone repair and replacement have been developed with improvement of orthopedic technologies and biomaterials of superior properties. This review paper is intended to sum up and discuss the most relevant studies performed in the field of bone biology and bone regeneration approaches. Therefore, the bone tissue regeneration was investigated by synthetic substitutes, scaffolds incorporating active molecules, nanomedicine, cell-based products, biomimetic fibrous and nonfibrous substitutes, biomaterial-based three-dimensional (3D) cell-printing substitutes, bioactive porous polymer/inorganic composites, magnetic field and nano-scaffolds with stem cells and bone-biomaterials interface studies.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| |
Collapse
|
46
|
Wallyn J, Anton N, Vandamme TF. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics 2019; 11:E601. [PMID: 31726769 PMCID: PMC6920893 DOI: 10.3390/pharmaceutics11110601] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.
Collapse
Affiliation(s)
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
| | | |
Collapse
|
47
|
Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ. Advances in the Application of Magnetic Nanoparticles for Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904385. [PMID: 31538371 DOI: 10.1002/adma.201904385] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Indexed: 05/18/2023]
Abstract
Magnetic nanoparticles (MNPs) are of high significance in sensing as they provide viable solutions to the enduring challenges related to lower detection limits and nonspecific effects. The rapid expansion in the applications of MNPs creates a need to overview the current state of the field of MNPs for sensing applications. In this review, the trends and concepts in the literature are critically appraised in terms of the opportunities and limitations of MNPs used for the most advanced sensing applications. The latest progress in MNP sensor technologies is overviewed with a focus on MNP structures and properties, as well as the strategies of incorporating these MNPs into devices. By looking at recent synthetic advancements, and the key challenges that face nanoparticle-based sensors, this review aims to outline how to design, synthesize, and use MNPs to make the most effective and sensitive sensors.
Collapse
Affiliation(s)
- Lucy Gloag
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Milad Mehdipour
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dongfei Chen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
48
|
Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
A green chemistry to produce iron oxide - Chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities - Supra molecular nanoformulation against drug-resistant pathogens and malignant growth. Int J Biol Macromol 2019; 138:1109-1129. [PMID: 31362021 DOI: 10.1016/j.ijbiomac.2019.07.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022]
Abstract
The logical research on fundamentally adjusted iron oxide nanoparticles has turned out to expanded in biomedicine because of the improved activity and best biocompatibility. In this present work upgraded bio-restorative and pharmacotherapeutic property of chitosan‑iron oxide nanocomposite, which was set up by eco-friendly in situ substance technique. Characterisation of the synthesised nanocomposite by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction,(XRD) and Vibrating test magnetometer (VSM) studies reveals that highly stable spherical, electron-dense core shelled rough particles of 50-60 nm. Particle morphology of the synthesised nanocomposite utilising scanning electron microscopy (SEM) uncovers spherical; thick electron centre shelled harsh particles with the size scope of 50-60 nm. FTIR studies show that the specific interaction of practical gatherings of chitosan with iron oxide nanoparticles. Crystalline phase and magnetisation impact of the composite resolved from XRD and VSM studies. Anti-bacterial activity of the nanocomposite examined against human bacterial pathogens which suggest that the readied nanocomposite successfully restrained the development of the tried bacterial strains by recording maximum zone of inhibition, least minimum inhibition concentration (MIC) and biofilm damage against the both tested strains. 100 μg dosages of nanocomposites recorded 20.0 and 21.0 mm of the zone of inhibition against E. coli and S. aureus respectively. Biofilm restraint was additionally observed to be high in nanocomposite treatment by recording lower optical density of ethanol solubilised biofilm of both tested strains. Anticancer activity was examined against the A549 cell line by the assurance of cell feasibility as opposed to oxidative proteins, articulation example of TNF-α, Bax, PARP qualities and apoptosis. Composite prompted 50% of cytotoxicity at 80 μg/mL unmistakably uncovers cytotoxicity against A549 cells. Nanocomposite treatment revealed a high decrease of cell feasibility at all the fixation and most extreme impact seen in 100 μg. Nanocomposite treated cells demonstrated striking changes in cell morphology, the build-up of atomic material related to trademark changes in against oxidative enzymes, quality articulation design which brought about apoptosis-like necrotic cell death. The present findings would propose the conceivable usage of chitosan‑iron oxide nanocomposite as a viable remedial against safe medication pathogens and malignant growth cells.
Collapse
|
50
|
Balachandran B, Yuana Y. Extracellular vesicles-based drug delivery system for cancer treatment. COGENT MEDICINE 2019. [DOI: 10.1080/2331205x.2019.1635806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Banuja Balachandran
- Division of Imaging, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yuana Yuana
- Division of Imaging, University Medical Centre Utrecht, Utrecht, The Netherlands
- Faculty of Biomedical Engineering, Technical University Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|