1
|
Li B, Zhang B, Cheng Z, Lou Y, Chen S. Nanomaterials targeting iron homeostasis: a promising strategy for cancer treatment. Front Bioeng Biotechnol 2025; 13:1511197. [PMID: 40144390 PMCID: PMC11937013 DOI: 10.3389/fbioe.2025.1511197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Iron is essential for vital cellular processes, including DNA synthesis, repair, and proliferation, necessitating enhanced iron uptake and intracellular accumulation. Tumor cells, in particular, exhibit a pronounced elevation in iron uptake to sustain their continuous proliferation, migration and invasion. This elevated iron acquisition is facilitated predominantly through the upregulation of transferrin receptors, which are closely associated with tumorigenesis and tumor progression. Incorporating transferrin into drug delivery systems has been shown to enhance cytotoxic effects in drug-sensitive cancer cells, offering a potential method to surpass the limitations of current cancer therapies. Intracellular iron predominantly exists as ferritin heavy chain (FTH), ferritin light chain (FTL), and labile iron pool (LIP). The innovation of nanocarriers incorporating iron chelating agents has attracted considerable interest. Iron chelators such as Deferoxamine (DFO), Deferasirox (DFX), and Dp44mT have demonstrated significant promise in cancer treatment by inducing iron deficiency within tumor cells. This review explores recent advancements in nanotechnology aimed at targeting iron metabolism in cancer cells and discusses their potential applications in cancer treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bing Zhang
- Department of Urology, Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Ziyue Cheng
- Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yantao Lou
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shuqiu Chen
- Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
2
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Dwivedi M, Jindal D, Jose S, Hasan S, Nayak P. Elements in trace amount with a significant role in human physiology: a tumor pathophysiological and diagnostic aspects. J Drug Target 2024; 32:270-286. [PMID: 38251986 DOI: 10.1080/1061186x.2024.2309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cancer has a devastating impact globally regardless of gender, age, and community, which continues its severity to the population due to the lack of efficient strategy for the cancer diagnosis and treatment. According to the World Health Organisation report, one out of six people dies due to this deadly cancer and we need effective strategies to regulate it. In this context, trace element has a very hidden and unexplored role and require more attention from investigators. The variation in concentration of trace elements was observed during comparative studies on a cancer patient and a healthy person making them an effective target for cancer regulation. The percentage of trace elements present in the human body depends on environmental exposure, food habits, and habitats and could be instrumental in the early diagnosis of cancer. In this review, we have conducted inclusive analytics on trace elements associated with the various types of cancers and explored the several methods involved in their analysis. Further, intricacies in the correlation of trace elements with prominent cancers like prostate cancer, breast cancer, and leukaemia are represented in this review. This comprehensive information on trace elements proposes their role during cancer and as biomarkers in cancer diagnosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Research Cell, Amity University Uttar Pradesh, Lucknow, India
| | - Divya Jindal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sandra Jose
- MET's School of Engineering, Thrissur, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Pradeep Nayak
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Farrell R, Pascuzzi N, Chen YL, Kim M, Torres M, Gollahon L, Chen KHE. Prolactin Drives Iron Release from Macrophages and Uptake in Mammary Cancer Cells through CD44. Int J Mol Sci 2024; 25:8941. [PMID: 39201626 PMCID: PMC11354873 DOI: 10.3390/ijms25168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Iron is an essential element for human health. In humans, dysregulated iron homeostasis can result in a variety of disorders and the development of cancers. Enhanced uptake, redistribution, and retention of iron in cancer cells have been suggested as an "iron addiction" pattern in cancer cells. This increased iron in cancer cells positively correlates with rapid tumor growth and the epithelial-to-mesenchymal transition, which forms the basis for tumor metastasis. However, the source of iron and the mechanisms cancer cells adopt to actively acquire iron is not well understood. In the present study, we report, for the first time, that the peptide hormone, prolactin, exhibits a novel function in regulating iron distribution, on top of its well-known pro-lactating role. When stimulated by prolactin, breast cancer cells increase CD44, a surface receptor mediating the endocytosis of hyaluronate-bound iron, resulting in the accumulation of iron in cancer cells. In contrast, macrophages, when treated by prolactin, express more ferroportin, the only iron exporter in cells, giving rise to net iron output. Interestingly, when co-culturing macrophages with pre-stained labile iron pools and cancer cells without any iron staining, in an iron free condition, we demonstrate direct iron flow from macrophages to cancer cells. As macrophages are one of the major iron-storage cells and it is known that macrophages infiltrate tumors and facilitate their progression, our work therefore presents a novel regulatory role of prolactin to drive iron flow, which provides new information on fine-tuning immune responses in tumor microenvironment and could potentially benefit the development of novel therapeutics.
Collapse
Affiliation(s)
- Reagan Farrell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Nicholas Pascuzzi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Mary Kim
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Miguel Torres
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Kuan-Hui Ethan Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| |
Collapse
|
5
|
Dolgova N, Uhlemann EME, Boniecki MT, Vizeacoumar FS, Ara A, Nouri P, Ralle M, Tonelli M, Abbas SA, Patry J, Elhasasna H, Freywald A, Vizeacoumar FJ, Dmitriev OY. MEMO1 binds iron and modulates iron homeostasis in cancer cells. eLife 2024; 13:e86354. [PMID: 38640016 PMCID: PMC11081632 DOI: 10.7554/elife.86354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.
Collapse
Affiliation(s)
- Natalia Dolgova
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Michal T Boniecki
- Protein Characterization and Crystallization Facility, University of SaskatchewanSaskatoonCanada
| | | | - Anjuman Ara
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Paria Nouri
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences UniversityPortlandUnited States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of WisconsinMadisonUnited States
| | - Syed A Abbas
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Jaala Patry
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Hussain Elhasasna
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Franco J Vizeacoumar
- Cancer Research Department, Saskatchewan Cancer AgencySaskatoonCanada
- Division of Oncology, University of SaskatchewanSaskatoonCanada
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| |
Collapse
|
6
|
Zhong L, Fu D, Xu J, Tan L, Wu H, Wang M. Rational design of a lysosome-targeted fluorescent probe for monitoring the generation of hydroxyl radicals in ferroptosis pathways. RSC Adv 2024; 14:12864-12872. [PMID: 38650686 PMCID: PMC11033609 DOI: 10.1039/d4ra00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Ferroptosis is a newly discovered iron-dependent form of regulated cell death associated with high levels of hydroxyl radical (˙OH) production. Meanwhile, lysosome dysfunction has been shown to be one of the causes of ferroptosis. Although a variety of ˙OH-responsive fluorescent probes have been developed for detecting intracellular ˙OH in living cells, there are still only few lysosome-targeted probes to monitor the variation in lysosomal ˙OH levels during ferroptosis. Herein, we report a novel ˙OH-specific fluorescent probe HCy-Lyso, which is composed of the hydrocyanine and morpholine moiety. Upon treatment with ˙OH, its hydrocyanine unit was converted to the corresponding cyanine group, thus leading to a large π-conjugation extension of HCy-Lyso, accompanied by a significant fluorescence off-on response. Moreover, after reacting with ˙OH in an acidic environment, the protonation product of HCy-Lyso exhibits a higher fluorescence enhancement, which is suitable for detecting lysosomal ˙OH variation. HCy-Lyso has been utilized for imaging endogenous ˙OH in living cells under phorbol myristate acetate (PMA) stimuli and monitoring the changes in lysosomal ˙OH levels during ferroptosis. Thus, our study proposes a new strategy to design lysosome-targeted and ˙OH-responsive fluorescent probes to investigate the relationship between lysosomes and ferroptosis.
Collapse
Affiliation(s)
- Lili Zhong
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Datian Fu
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570312 China
| | - Jin Xu
- Pharmaceutical and Bioengineering School, Hunan Chemical Vocational Technology College Zhuzhou 412006 China
| | - Linyan Tan
- Department of Pharmacy, Tropical Agricultural Technology College, Hainan Vocational University Haikou Hainan 570216 China
| | - Haimei Wu
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou Hainan 570100 China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| |
Collapse
|
7
|
Fontana F, Esser AK, Egbulefu C, Karmakar P, Su X, Allen JS, Xu Y, Davis JL, Gabay A, Xiang J, Kwakwa KA, Manion B, Bakewell S, Li S, Park H, Lanza GM, Achilefu S, Weilbaecher KN. Transferrin receptor in primary and metastatic breast cancer: Evaluation of expression and experimental modulation to improve molecular targeting. PLoS One 2023; 18:e0293700. [PMID: 38117806 PMCID: PMC10732420 DOI: 10.1371/journal.pone.0293700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models. METHODS Gene expression was investigated by datamining in twelve publicly-available datasets. Dedicated Tissue microarrays (TMAs) were generated to evaluate matched primary and bone metastases as well as and pre and post chemotherapy tumors from the same patient. TMA were stained with the FDA-approved MRQ-48 antibody against TfR and graded by staining intensity (H-score). Patient-derived xenografts (PDX) and isogenic metastatic mouse models were used to study in vivo TfR expression and uptake of transferrin. RESULTS TFRC gene and protein expression were high in breast cancer of all subtypes and stages, and in 60-85% of bone metastases. TfR was detectable after neoadjuvant chemotherapy, albeit with some variability. Fluorophore-conjugated transferrin iron chelator deferoxamine (DFO) enhanced TfR uptake in human breast cancer cells in vitro and proved transferrin localization at metastatic sites and correlation of tumor burden relative to untreated tumor mice. CONCLUSIONS TfR is expressed in breast cancer, primary, metastatic, and after neoadjuvant chemotherapy. Variability in expression of TfR suggests that evaluation of the expression of TfR in individual patients could identify the best candidates for targeting. Further, systemic iron chelation with DFO may upregulate receptor expression and improve uptake of therapeutics or tracers that use transferrin as a homing ligand.
Collapse
Affiliation(s)
- Francesca Fontana
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K. Esser
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Christopher Egbulefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Partha Karmakar
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Xinming Su
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - John S. Allen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yalin Xu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jennifer L. Davis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ariel Gabay
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jingyu Xiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kristin A. Kwakwa
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Brad Manion
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Suzanne Bakewell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Shunqiang Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Haeseong Park
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Gregory M. Lanza
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Katherine N. Weilbaecher
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
8
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Pessanha S, Braga D, Ensina A, Silva J, Vilchez J, Montenegro C, Barbosa S, Carvalho ML, Dias A. A non-destructive X-ray fluorescence method of analysis of formalin fixed-paraffin embedded biopsied samples for biomarkers for breast and colon cancer. Talanta 2023; 260:124605. [PMID: 37146458 DOI: 10.1016/j.talanta.2023.124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
In this work we present a methodology for the non-destructive elemental determination of formalin-fixed paraffin-embedded (FFPE) human tissue samples based on the Fundamental Parameters method for the quantification of micro Energy Dispersive X Ray Fluorescence (micro-EDXRF) area scans. This methodology intended to overcome two major constraints in the analysis of paraffin embedded tissue samples - retrieval of optimal region of analysis of the tissue within the paraffin block and the determination of the dark matrix composition of the biopsied sample. This way, an image treatment algorithm, based on R® tool to select the regions of the micro-EDXRF area scans was developed. Also, different dark matrix compositions were evaluated using varying combinations of H, C, N and O until the most accurate matrix was found: 8% H, 15% C, 1% N and 60% O for breast FFPE samples and 8% H, 23% C, 2% N and 55% O for colon. The developed methodology was applied to paired normal-tumour samples of breast and colon biopsied tissues in order to gauge potential elemental biomarkers for carcinogenesis in these tissues. The obtained results showed distinctive biomarkers for breast and for colon: there was a significant increase of P, S, K and Fe in both tissues, while a significant increase of Ca an Zn concentrations was also determined for breast tumour samples.
Collapse
Affiliation(s)
- Sofia Pessanha
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, Campus Caparica, 2829-516, Caparica, Portugal.
| | - Daniel Braga
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal
| | - Ana Ensina
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal
| | - João Silva
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal
| | - José Vilchez
- Centro Hospitalar Barreiro- Montijo, Av. Movimento das Forças Armadas 79C, 2830-003, Barreiro, Portugal
| | - Carlos Montenegro
- Centro Hospitalar Barreiro- Montijo, Av. Movimento das Forças Armadas 79C, 2830-003, Barreiro, Portugal
| | - Sofia Barbosa
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal; GeoBioTec, Campus Caparica, 2829-516, Caparica, Portugal
| | - Maria Luísa Carvalho
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, Campus Caparica, 2829-516, Caparica, Portugal
| | - António Dias
- NOVA School of Sciences and Technology, Campus Caparica, 2829-516, Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, Campus Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
10
|
Yin J, Zhan J, Hu Q, Huang S, Lin W. Fluorescent probes for ferroptosis bioimaging: advances, challenges, and prospects. Chem Soc Rev 2023; 52:2011-2030. [PMID: 36880388 DOI: 10.1039/d2cs00454b] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Ferroptosis is a form of regulatory cell death distinct from caspase-dependent apoptosis and plays an important role in life entities. Since ferroptosis involves a variety of complex regulatory factors, the levels of certain biological species and microenvironments would change during this process. Thus, the investigation of the level fluctuation of key target analytes during ferroptosis is of great significance for disease treatment and drug design. Toward this aim, multiple organic fluorescent probes with simple preparation and non-destructive detection have been developed, and research over the past decade has uncovered a vast array of homeostasis and other physiological characteristics of ferroptosis. However, this significant and cutting-edge topic has not yet been reviewed. In this work, we aim to highlight the latest breakthrough results of fluorescent probes for monitoring various bio-related molecules and microenvironments during ferroptosis at the cellular, tissue and in vivo levels. Accordingly, this tutorial review has been organized according to the target molecules identified by the probes including ionic species, reactive sulfur species, reactive oxygen species, biomacromolecules, microenvironment, and others. In addition to providing new insights into the findings of each fluorescent probe in ferroptosis studies, we also discuss the defects and limitations of the probes developed, and highlight the potential challenges and further prospects in this domain. We anticipate that this review will convey profound implications for designing powerful fluorescent probes to decrypt changes in key molecules and microenvironments during ferroptosis.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Jingting Zhan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Qingxia Hu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
11
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
12
|
Yang M, Li M, Lyu Z, Yang Z. Implication of Ferroptosis in Cholangiocarcinoma: A Potential Future Target? Cancer Manag Res 2023; 15:335-342. [PMID: 37063167 PMCID: PMC10093512 DOI: 10.2147/cmar.s406150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Cholangiocarcinoma (CCA), the second most common liver neoplasm, has a poor overall 5-year survival rate of less than 10%. A deeper understanding of the molecular pathogenesis contributing to CCA progression is essential for developing better therapeutic approaches to manage this disease. Ferroptosis, an oxidative iron-dependent form of regulated cell death, has been reported to be involved in tumorigenesis and progression. In particular, ferroptosis and inflammation, which are common issues in cholangiocarcinogenesis and CCA development, might be in concert with disease progression. Notably, the key feature of cancer cells is "iron addiction", which is crucial for the high metabolic demand in carcinogenesis and cancer progression. Additionally, iron metabolism is of great importance in ferroptosis. Moreover, that cancer cells are vulnerable to ferroptosis might be a possible mechanism of CCA development. Although the underlying mechanism of how ferroptosis is implicated in CCA development requires further investigation, developing a new strategy combined with a pro-ferroptotic treatment would be an exciting CCA treatment approach in the future.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhuozhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
- Correspondence: Zhen Yang, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, JingWu Road, Jinan, Shandong, 25000, People’s Republic of China, Tel +86 15168867123, Email
| |
Collapse
|
13
|
Chaib M, Hafeez BB, Mandil H, Daria D, Pingili AK, Kumari S, Sikander M, Kashyap VK, Chen GY, Anning E, Tripathi MK, Khan S, Behrman S, Yallapu MM, Jaggi M, Makowski L, Chauhan SC. Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore. Commun Biol 2022; 5:1181. [PMID: 36333531 PMCID: PMC9636404 DOI: 10.1038/s42003-022-04102-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| | - Hassan Mandil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Deidre Daria
- Department of Microbiology, Immunology and Biochemistry, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, Memphis, TN, 38163, USA
| | - Emmanuel Anning
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Manish K Tripathi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Sheema Khan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | | | - Murali M Yallapu
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology and the UTHSC Center for Cancer Research, Memphis, TN, 38103, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
14
|
Abstract
Ferroptosis is an iron−dependent form of regulated cell death. It has attracted more and more research interests since it was found because of its potential physiological and pathological roles. In recent years, many efforts have been made for the developments and applications of selective fluorescence probes for real−time and in situ tracking of bioactive species during ferroptosis process, which is necessary and significant to further study the modulation mechanisms and pathological functions of ferroptosis. In this review, we will focus on summarizing the newly developed fluorescence probes that have been applied for ferroptosis imaging in the recent years, and comprehensively discussing their design strategies, including the probes for iron, reactive oxygen species, biothiols and intracellular microenvironmental factors.
Collapse
|
15
|
Zhang Y, He J, Jin J, Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022; 14:6596881. [PMID: 35648480 DOI: 10.1093/mtomcs/mfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
Metals play a critical role in human health and diseases. In recent years, metallomics has been introduced and extensively applied to investigate the distribution, regulation, function, and crosstalk of metal(loid) ions in various physiological and pathological processes. Based on high-throughput multielemental analytical techniques and bioinformatics methods, it is possible to elucidate the correlation between the metabolism and homeostasis of diverse metals and complex diseases, in particular for cancer. This review aims to provide an overview of recent progress made in the application of metallomics in cancer research. We mainly focuses on the studies about metallomic profiling of different human biological samples for several major types of cancer, which reveal distinct and dynamic patterns of metal ion contents and the potential benefits of using such information in the detection and prognosis of these malignancies. Elevated levels of copper appear to be a significant risk factor for various cancers, and each type of cancer has a unique distribution of metals in biofluids, hair/nails, and tumor-affected tissues. Furthermore, associations between genetic variations in representative metalloprotein genes and cancer susceptibility have also been demonstrated. Overall, metallomics not only offers a better understanding of the relationship between metal dyshomeostasis and the development of cancer but also facilitates the discovery of new diagnostic and prognostic markers for cancer translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie He
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Cihan Ren
- Experimental High School Attached to Beijing Normal University, Beijing 100052, P. R. China
| |
Collapse
|
16
|
Huang S, Le H, Hong G, Chen G, Zhang F, Lu L, Zhang X, Qiu Y, Wang Z, Zhang Q, Ouyang G, Shen J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater 2022; 148:244-257. [PMID: 35709941 DOI: 10.1016/j.actbio.2022.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
|
17
|
Zeng H, Hu Y, Luo Y, Ye Y, Song C, Yu G, Chen Z, Liu S, Liang Y, Liu L, Wan H, Shen J. The Association of Thyroid Nodules With Blood Trace Elements Identified in a Cross-Section Study. Front Nutr 2022; 9:870873. [PMID: 35571937 PMCID: PMC9096353 DOI: 10.3389/fnut.2022.870873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background The association between occurrence of thyroid nodules (TNs) and trace elements detectable in blood are still inconclusive. The present study sought to determine the relationship between selected trace elements and TNs in the iodine-adequate area of Guangdong, China. Methods A total of 1,048 participants from four communities were enrolled. A number of medical checkups were conducted to collect relevant data on anthropometric parameters, blood pressure, glucose blood levels and lipid profiles, as well as data on thyroid function, presence of thyroid autoantibodies, and trace elements. Presence of TN was diagnosed by ultrasonography. Results Of the 1048 participants (49.5 ± 14.4 years old), 543 participants (51.8%) had TNs. Serum copper, magnesium and zinc levels are associated with the presence of TNs among healthy subjects. Subjects with higher levels of zinc, magnesium and copper had 1.23-fold, 1.04-fold, and 1.007-fold increased risks of the prevalence of TNs (P = 0.013, 0.017, and < 0.001, resp). Compared with the first quartile of copper content in serum, participants in the fourth quartile had the highest prevalence of TNs with an odds ratio of 8.90 (95% confidence interval (CI) 5.41, 14.94) among all participants. Women in the third quartile of magnesium level had a 1.86-fold (95%CI 1.05, 3.31) risk of the prevalence of TNs. Subjects in the highest quartile of zinc level had a 1.82-fold (95%CI 1.06, 3.16) risk of the prevalence of TNs in females. Conclusion TNs were found highly prevalent in females in the investigated population from an iodine-adequate area of Guangdong, China. The imbalance of selected trace elements (copper, magnesium and zinc) in the body is related to the presence of TNs among healthy subjects. The observed correlation of copper on TNs warrants further studies.
Collapse
Affiliation(s)
- Huixian Zeng
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yuanyuan Hu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yaosheng Luo
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yanshi Ye
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Zhi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Siyang Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Lingling Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Heng Wan
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
- *Correspondence: Jie Shen
| |
Collapse
|
18
|
Arora C, Kaur D, Naorem LD, Raghava GPS. Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway. PLoS One 2021; 16:e0259534. [PMID: 34767591 PMCID: PMC8589158 DOI: 10.1371/journal.pone.0259534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant expressions of apoptotic genes have been associated with papillary thyroid carcinoma (PTC) in the past, however, their prognostic role and utility as biomarkers remains poorly understood. In this study, we analysed 505 PTC patients by employing Cox-PH regression techniques, prognostic index models and machine learning methods to elucidate the relationship between overall survival (OS) of PTC patients and 165 apoptosis related genes. It was observed that nine genes (ANXA1, TGFBR3, CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1, BNIP3L) showed significant association with OS of PTC patients. Five out of nine genes were found to be positively correlated with OS of the patients, while the remaining four genes were negatively correlated. These genes were used for developing risk prediction models, which can be utilized to classify patients with a higher risk of death from the patients which have a good prognosis. Our voting-based model achieved highest performance (HR = 41.59, p = 3.36x10-4, C = 0.84, logrank-p = 3.8x10-8). The performance of voting-based model improved significantly when we used the age of patients with prognostic biomarker genes and achieved HR = 57.04 with p = 10−4 (C = 0.88, logrank-p = 1.44x10-9). We also developed classification models that can classify high risk patients (survival ≤ 6 years) and low risk patients (survival > 6 years). Our best model achieved AUROC of 0.92. Further, the expression pattern of the prognostic genes was verified at mRNA level, which showed their differential expression between normal and PTC samples. Also, the immunostaining results from HPA validated these findings. Since these genes can also be used as potential therapeutic targets in PTC, we also identified potential drug molecules which could modulate their expression profile. The study briefly revealed the key prognostic biomarker genes in the apoptotic pathway whose altered expression is associated with PTC progression and aggressiveness. In addition to this, risk assessment models proposed here can help in efficient management of PTC patients.
Collapse
Affiliation(s)
- Chakit Arora
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Dilraj Kaur
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Leimarembi Devi Naorem
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
| | - Gajendra P. S. Raghava
- Indraprastha Institute of Information Technology-Delhi, Department of Computational Biology, New Delhi, India
- * E-mail:
| |
Collapse
|
19
|
Kucukkaya B, Erdag D, Akbas F, Yalcintepe L. The effect of iron on the expression levels of calcium related gene in cisplatin resistant epithelial ovarian cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:309-322. [PMID: 36046755 PMCID: PMC9400721 DOI: 10.37349/etat.2021.00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Aim: Anticancer drugs (chemotherapeutics) used in cancer treatment (chemotherapy) lead to drug resistance. This study was conducted to investigate the possible effect of iron on calcium homeostasis in epithelial ovarian cancer cells (MDAH-2774) and cisplatin-resistant cells of the same cell line (MDAH-2774/DDP).
Methods: To develop MDAH-2774/DDP cells, MDAH-2774 (MDAH) cells were treated with cisplatin in dose increases of 5 μM between 0 μM and 70 μM. The effect of iron on the viability of MDAH and MDAH/DDP cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test at the end of 24 h incubation.
Results: At increasing iron concentrations in MDAH and MDAH/DDP cells, the mRNA gene of fifteen genes [inositol 1,4,5-triphosphate receptor (IP3R)1/2/3, ryanodine receptor (RYR)1/2, sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)1/2/3, Na+/Ca2+ exchange (NCX)1/2/3, and plasma membrane Ca2+ ATPase (PMCA)1/2/3/4] associated with Ca2+ differences in expression were determined by quantitative reverse transcription-polymerase chain reaction. Changes in IP3R2, RYR1, SERCA2, NCX3, PMCA1, and PMCA3 gene expressions were observed in iron treatment of MDAH/DDP cells, while changes were detected in iron treatment of MDAH cells in IP3R1/2/3, RYR1/2, SERCA1/2/3, NCX2/3, and PMCA1 expressions.
Conclusions: This changes in the expression of calcium channels, pumps, and exchange proteins in the epithelial ovarian cancer cell line and in cisplatin-resistant epithelial ovarian cancer cells suggest that iron may have an important role in regulating calcium homeostasis. Due to differences in the expression of genes that play of an important role in the regulation of calcium homeostasis in the effect of iron, drug resistance can be prevented by introducing a new perspective on the use of inhibitors and activators of these genes and thus cytostatic treatment strategies.
Collapse
Affiliation(s)
- Bahire Kucukkaya
- Department of Biophysics, Faculty of Medicine, Istanbul Yeni Yuzyil University, 34010 Istanbul, Turkey
| | - Demet Erdag
- Department of Computer programming, Vocational School, Biruni University, 34010 Istanbul, Turkey; Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Fahri Akbas
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Leman Yalcintepe
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
20
|
Skrajnowska D, Tokarz A, Makowska J, Bobrowska-Korczak B. Changes in the Mineral Composition of Rat Tissues Induced by Breast Cancer and Dietary Supplementation. In Vivo 2021; 35:259-266. [PMID: 33402472 DOI: 10.21873/invivo.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The aim of the study was to determine the effect of various diets with zinc or zinc in combination with resveratrol or genistein on mineral contents of the serum, urine, liver, kidney and heart in rats with chemically-induced mammary carcinoma. MATERIALS AND METHODS The manuscript presents the tissues and body fluids content of iron, calcium, zinc, magnesium and copper in control rats or rats treated with 7,12-dimethyl-1,2-benz[a]anthracene to induce mammary carcinogenesis, under four dietary conditions: standard feed, Zn supplemented feed (6.9 mg Zn/ml), Zn and resveratrol (0.2 mg/kg body) supplemented feed, or Zn and genistein (0.2 mg/kg body) supplemented feed. RESULTS The content of calcium and copper highly varied depending on the tissue and the type of dietary supplement (no change for zinc and magnesium). Irrespective of the diet used, the chemical induction of mammary cancer caused a decrease in iron concentration in most samples analysed. Only supplementation of the rats' diet with zinc and genistein induced no changes in iron distribution in the serum, urine, liver, kidney and heart. CONCLUSION Further research using various levels of zinc and genistein in the diet should be conducted to determine how the development and progression of cancer is linked to iron content in cells and its ability to accumulate in tumour tissue.
Collapse
Affiliation(s)
| | - Andrzej Tokarz
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Makowska
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
21
|
Lossow K, Schwarz M, Kipp AP. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol 2021; 42:101900. [PMID: 33642247 PMCID: PMC8113050 DOI: 10.1016/j.redox.2021.101900] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in cancer research, cancer is still one of the leading causes of death worldwide. An early diagnosis substantially increases the survival rate and treatment success. Thus, it is important to establish biomarkers which could reliably identify cancer patients. As cancer is associated with changes in the systemic trace element status and distribution, serum concentrations of selenium, iron, copper, and zinc could contribute to an early diagnosis. To test this hypothesis, case control studies measuring trace elements in cancer patients vs. matched controls were selected and discussed focusing on lung, prostate, breast, and colorectal cancer. Overall, cancer patients had elevated serum copper and diminished zinc levels, while selenium and iron did not show consistent changes for all four cancer types. Within the tumor tissue, mainly copper and selenium are accumulating. Whether these concentrations also predict the survival probability of cancer patients needs to be further investigated.
Collapse
Affiliation(s)
- Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|
22
|
Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung ELH. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021; 34:1108-1127. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.
Collapse
Affiliation(s)
- Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- Membrane Biophysics Emeritus Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
23
|
Liao HY, Liao B, Zhang HH. CISD2 plays a role in age-related diseases and cancer. Biomed Pharmacother 2021; 138:111472. [PMID: 33752060 DOI: 10.1016/j.biopha.2021.111472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
CDGSH iron-sulfur domain 2 (Cisd2) is an evolutionarily conserved protein that plays an important regulatory role in aging-related diseases and cancers. Since its discovery, Cisd2 has been identified as a regulatory factor for the aging of the human body and the regulation of mammalian lifespan. Cisd2 is also an oncoprotein that regulates the occurrence and development of cancer. Cisd2 mediates the occurrence of diseases related to human aging and the proliferation, differentiation, metastasis, and invasion of various cancer cells through various mechanisms. Multiple studies have shown that Cisd2 expression is related to the clinical characteristics of aging-related diseases and patients with cancer, and its expression profile is a novel diagnostic and prognostic biomarker for a variety of human diseases. Modulating the expression or function of Cisd2 may be a potential treatment strategy for different diseases. In this review, we summarize the role of Cisd2 in human aging-related diseases and various cancers, as well as the biological functions, underlying mechanisms, and potential clinical significance.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Bei Liao
- Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China; The First Clinical Medical College of Lanzhou University, 1 Donggang Road, Lanzhou 730000, PR China.
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
24
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
25
|
Pan Z, Tan C, Rao L, Zhang H, Zheng Y, Hao L, Ji L, Mao Z. Recoding the Cancer Epigenome by Intervening in Metabolism and Iron Homeostasis with Mitochondria‐Targeted Rhenium(I) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng‐Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lu‐Si Rao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liang‐Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
26
|
Pan ZY, Tan CP, Rao LS, Zhang H, Zheng Y, Hao L, Ji LN, Mao ZW. Recoding the Cancer Epigenome by Intervening in Metabolism and Iron Homeostasis with Mitochondria-Targeted Rhenium(I) Complexes. Angew Chem Int Ed Engl 2020; 59:18755-18762. [PMID: 32634290 DOI: 10.1002/anie.202008624] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/16/2022]
Abstract
The development and malignancy of cancer cells are closely related to the changes of the epigenome. In this work, a mitochondria-targeted rhenium(I) complex (DFX-Re3), integrating the clinical iron chelating agent deferasirox (DFX), has been designed. By relocating iron to the mitochondria and changing the key metabolic species related to epigenetic modifications, DFX-Re3 can elevate the methylation levels of histone, DNA, and RNA. As a consequence, DFX-Re3 affects the events related to apoptosis, RNA polymerases, and T-cell receptor signaling pathways. Finally, it is shown that DFX-Re3 induces immunogenic apoptotic cell death and exhibits potent antitumor activity in vivo. This study provides a new approach for the design of novel epigenetic drugs that can recode the cancer epigenome by intervening in mitochondrial metabolism and iron homeostasis.
Collapse
Affiliation(s)
- Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu-Si Rao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
27
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
28
|
Li L, Huang K, Zhao H, Chen B, Ye Q, Yue J. CDK1-PLK1/SGOL2/ANLN pathway mediating abnormal cell division in cell cycle may be a critical process in hepatocellular carcinoma. Cell Cycle 2020; 19:1236-1252. [PMID: 32275843 PMCID: PMC7217380 DOI: 10.1080/15384101.2020.1749471] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/13/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
This study aims to investigate the potential mechanisms and identify core biomarkers of Hepatocellular carcinoma (HCC). The profile GSE113850 was downloaded to analyze the differentially expressed genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction network analysis were used to reveal the main signal pathways of the differentially expressed genes (DEGs) and hub genes. The correlation between core gene expression and pathological stages, the disease-free survival analysis, the overall survival analysis were analyzed by Gene Expression Profiling Interactive Analysis. Furthermore, we reidentified the expression level of core genes of carcinoma tissues and para-carcinoma tissues from 14 HCC patients with real-time reverse transcription-polymerase chain reaction analysis (RT-PCR) and western blotting. After SK-Hep1 cell was treated with cyclin-dependent kinase 1 (CDK1) siRNA for 72 h, we detected the expression of the core genes and fluorescence-activated cell sorting analysis. A total of 378 DEGs were found. GO and KEGG analysis revealed that the DEGs were mainly enriched in the cell cycle. There were positive correlations among CDK1, polo-like kinase 1, shugoshin2 and anillin actin-binding protein. Moreover, the expression levels of four core genes were related to the HCC occurrence, pathological stages, and survivorship curve. The clinical HCC specimens verified the higher expression level of core genes by real-time RT-PCR. The transfection of siCDK1 in SK-Hep1 resulted in a disordered cell cycle. Furthermore, CDK1 knockdown suppressed the expression of PLK1, ANLN, and SGOL2. The CDK1-PLK1/SGOL2/ANLN pathway mediating abnormal cell division in the cell cycle might be a critical process in HCC.
Collapse
Affiliation(s)
- Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, RP China
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, Hubei, RP China
| | - Kang Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, RP China
| | - Huijia Zhao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, RP China
| | - Binyao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, RP China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, RP China
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, Hubei, RP China
| | - Jiang Yue
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, Hubei, RP China
| |
Collapse
|
29
|
Chang VC, Cotterchio M, Bondy SJ, Kotsopoulos J. Iron intake, oxidative stress‐related genes and breast cancer risk. Int J Cancer 2020; 147:1354-1373. [DOI: 10.1002/ijc.32906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Vicky C. Chang
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Prevention and Cancer Control Cancer Care Ontario, Ontario Health Toronto ON Canada
| | - Michelle Cotterchio
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Prevention and Cancer Control Cancer Care Ontario, Ontario Health Toronto ON Canada
| | - Susan J. Bondy
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
| | - Joanne Kotsopoulos
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Women's College Research Institute, Women's College Hospital Toronto ON Canada
| |
Collapse
|
30
|
Sanagoo A, Kiani F, Saei Gharenaz M, Sayehmiri F, Koohi F, Jouybari L, Dousti M. A systematic review and meta-analysis on the association of serum and tumor tissue iron and risk of breast cancer. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:1-11. [PMID: 32042380 PMCID: PMC6992715 DOI: 10.22088/cjim.11.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Some studies have investigated the effects of iron on breast carcinogenesis and reported different findings about the association between Fe and breast cancer risk. This study was conducted to estimate this effect using meta-analysis method. METHODS A total of 20 articles published between 1984 and 2017 worldwide were selected through searching PubMed, Scopus, Embase, Web of Science, and Cochrane Library. Keywords such Breast Cancer, Neoplasm, Trace elements, Iron, Breast tissue concentration, Plasma concentration, Scalp hair concentration, toenail concentration and their combination were used in the search. RESULTS The total number of participants was 4,110 individuals comprising 1,624 patients with breast cancer and 2,486 healthy subjects. Fe concentration was measured in the various subgroups in both case and control groups. There were significant correlations between Fe concentration and breast cancer in breast tissue subgroup (SMD: 0.67 [95% CI: 0.17 to 1.17; P=0.009]). Whereas, there was no meaningful difference in Fe status between women with and without breast cancer related to scalp hair and plasma subgroups; (SMD: -3.74 [95% CI: -7.58 to 0.10; P=0.056] and (SMD:-1.14[95% CI: -2.30 to 0.03; P=0.055], respectively. CONCLUSION The present meta-analysis indicated a positive and straight association between iron concentrations and risk of breast cancer but because of high heterogeneity we recommend more accurate future studies.
Collapse
Affiliation(s)
- Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Saei Gharenaz
- Students Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Koohi
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majjid Dousti
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
31
|
Rehwald C, Schnetz M, Urbschat A, Mertens C, Meier JK, Bauer R, Baer P, Winslow S, Roos FC, Zwicker K, Huard A, Weigert A, Brüne B, Jung M. The iron load of lipocalin-2 (LCN-2) defines its pro-tumour function in clear-cell renal cell carcinoma. Br J Cancer 2019; 122:421-433. [PMID: 31772326 PMCID: PMC7000824 DOI: 10.1038/s41416-019-0655-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND We aimed at clarifying the role of lipocalin-2 (LCN-2) in clear-cell renal cell carcinoma (ccRCC). Since LCN-2 was recently identified as a novel iron transporter, we explored its iron load as a decisive factor in conferring its biological function. METHODS LCN-2 expression was analysed at the mRNA and protein level by using immunohistochemistry, RNAscope® and qRT-PCR in patients diagnosed with clear-cell renal cell carcinoma compared with adjacent healthy tissue. We measured LCN-2-bound iron by atomic absorption spectrometry from patient-derived samples and applied functional assays by using ccRCC cell lines, primary cells, and 3D tumour spheroids to verify the role of the LCN-2 iron load in tumour progression. RESULTS LCN-2 was associated with poor patient survival and LCN-2 mRNA clustered in high- and low-expressing ccRCC patients. LCN-2 protein was found overexpressed in tumour compared with adjacent healthy tissue, whereby LCN-2 was iron loaded. In vitro, the iron load determines the biological function of LCN-2. Iron-loaded LCN-2 showed pro-tumour functions, whereas iron-free LCN-2 produced adverse effects. CONCLUSIONS We provide new insights into the pro-tumour function of LCN-2. LCN-2 donates iron to cells to promote migration and matrix adhesion. Since the iron load of LCN-2 determines its pro-tumour characteristics, targeting either its iron load or its receptor interaction might represent new therapeutic options.
Collapse
Affiliation(s)
- Claudia Rehwald
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matthias Schnetz
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Anja Urbschat
- Institute for Biomedicine, Aarhus University, C. F. Møllers Allé 6, 8000, Aarhus, Denmark.,Clinic of Urology and Pediatric Urology, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Christina Mertens
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia K Meier
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Patrick Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sofia Winslow
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frederik C Roos
- Clinic of Urology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596, Frankfurt, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Li H, Shi W, Li X, Hu Y, Fang Y, Ma H. Ferroptosis Accompanied by •OH Generation and Cytoplasmic Viscosity Increase Revealed via Dual-Functional Fluorescence Probe. J Am Chem Soc 2019; 141:18301-18307. [PMID: 31644876 DOI: 10.1021/jacs.9b09722] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ferroptosis, a new form of regulated cell death, results from the iron-dependent accumulation of lipid peroxides that are associated with reactive oxygen species. However, it remains unclear how hydroxyl radical (•OH) and cellular microenvironments such as viscosity alter in this process. Herein, we characterize for the first time the changing behavior of •OH and cytoplasmic viscosity during ferroptosis using a dual-functional fluorescence probe (H-V) that is designed via the molecular rotor strategy and the unique aromatic hydroxylation of •OH. Probe H-V shows completely separate spectral responses to •OH and viscosity with high sensitivity and selectivity, thereby achieving the detection of •OH and viscosity in two independent channels without spectral cross-interference. With the probe we find that ferroptosis is accompanied by significant •OH generation and cytoplasmic viscosity increase. Most notably, the raised •OH comprises the majority of the total reactive oxygen species in ferroptosis. H-V is biocompatible, ready to prepare, and may be expected to be used in the study of viscosity and •OH detection in more biosystems.
Collapse
Affiliation(s)
- Hongyu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yiming Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
33
|
Chen C, Wang S, Liu P. Deferoxamine Enhanced Mitochondrial Iron Accumulation and Promoted Cell Migration in Triple-Negative MDA-MB-231 Breast Cancer Cells Via a ROS-Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20194952. [PMID: 31597263 PMCID: PMC6801410 DOI: 10.3390/ijms20194952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
In our previous study, Deferoxamine (DFO) increased the iron concentration by upregulating the expression levels of TfR1 and DMT1 and exacerbated the migration of triple-negative breast cancer cells. However, the mechanisms of iron distribution and utilization in triple-negative breast cancer cells with a DFO-induced iron deficiency are still unclear. In this study, triple-negative MDA-MB-231 and estrogen receptor (ER)-positive MCF-7 breast cancer cells were used to investigate the mechanisms of iron distribution and utilization with a DFO-induced iron deficiency. We found that the mitochondrial iron concentration was elevated in MDA-MB-231 cells, while it was decreased in MCF-7 cells after DFO treatment. The cellular and mitochondrial reactive oxygen species (ROS) levels increased in both breast cancer cell types under DFO-induced iron-deficient conditions. However, the increased ROS levels had different effects on the different breast cancer cell types: Cell viability was inhibited and apoptosis was enhanced in MCF-7 cells, but cell viability was maintained and cell migration was promoted in MDA-MB-231 cells through the ROS/NF-κB and ROS/TGF-β signaling pathways. Collectively, this study suggests that under DFO-induced iron-deficient conditions, the increased mitochondrial iron levels in triple-negative MDA-MB-231 breast cancer cells would generate large amounts of ROS to activate the NF-κB and TGF-β signaling pathways to promote cell migration.
Collapse
Affiliation(s)
- Chunli Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| | - Shicheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| |
Collapse
|
34
|
Chang VC, Cotterchio M, Khoo E. Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 2019; 19:543. [PMID: 31170936 PMCID: PMC6555759 DOI: 10.1186/s12885-019-5642-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Iron has been shown to promote breast carcinogenesis in animal models through generation of oxidative stress and interaction with estrogen. Heme iron, which is found exclusively in animal-sourced foods, is suggested to have a more detrimental effect. Epidemiological evidence of the association between iron and breast cancer risk remains inconclusive and has not been comprehensively summarized. This systematic review and meta-analysis evaluated associations between both iron intake and body iron status and breast cancer risk. METHODS Four electronic databases (MEDLINE, EMBASE, CINAHL, and Scopus) were searched up to December 2018 for studies assessing iron intake and/or biomarkers of iron status in relation to breast cancer risk. Using random-effects meta-analyses, pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated comparing the highest vs. lowest category of each iron measure. Dose-response meta-analyses were also performed to investigate linear and nonlinear associations. RESULTS A total of 27 studies were included in the review, of which 23 were eligible for meta-analysis of one or more iron intake/status measures. Comparing the highest vs. lowest category, heme iron intake was significantly associated with increased breast cancer risk, with a pooled RR of 1.12 (95% CI: 1.04-1.22), whereas no associations were found for dietary (1.01, 95% CI: 0.89-1.15), supplemental (1.02, 95% CI: 0.91-1.13), or total (0.97, 95% CI: 0.82-1.14) iron intake. Associations of iron status indicators with breast cancer risk were generally in the positive direction; however, a significant pooled RR was found only for serum/plasma levels (highest vs. lowest) of iron (1.22, 95% CI: 1.01-1.47), but not for ferritin (1.13, 95% CI: 0.78-1.62), transferrin saturation (1.16, 95% CI: 0.91-1.47), or total iron-binding capacity (1.10, 95% CI: 0.97-1.25). In addition, a nonlinear dose-response was observed for heme iron intake and serum iron (both Pnonlinearity < 0.05). CONCLUSIONS Heme iron intake and serum iron levels may be positively associated with breast cancer risk. Although associations were modest, these findings may have public health implications given the widespread consumption of (heme) iron-rich foods. In light of methodological and research gaps identified, further research is warranted to better elucidate the relationship between iron and breast cancer risk.
Collapse
Affiliation(s)
- Vicky C Chang
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3M7, Canada. .,Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, ON, M5G 2L7, Canada.
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3M7, Canada.,Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, ON, M5G 2L7, Canada
| | - Edwin Khoo
- Analytics and Informatics, Cancer Care Ontario, Toronto, ON, Canada
| |
Collapse
|
35
|
Chen C, Liu P, Duan X, Cheng M, Xu LX. Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway. Onco Targets Ther 2019; 12:4359-4377. [PMID: 31213851 PMCID: PMC6549404 DOI: 10.2147/ott.s193507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Deferoxamine (DFO) is a commonly used iron chelator, which can reduce the iron levels in cells. DFO is normally used to treat iron-overload disease, including some types of cancer. However, our previous studies revealed that DFO treatment significantly increased the iron concentrations in triple-negative breast cancer cells (TNBCs) resulting in enhanced cell migration. But the mechanism of DFO-induced increasing iron uptake in aggressive TNBCs still remained unclear. Materials and methods: Iron metabolism-related proteins in aggressive breast cancer MDA-MB-231, HS578T and BT549 cells and nonaggressive breast cancer MCF-7 and T47D cells were examined by immunofluorescence and Western blotting. The possible regulatory mechanism was explored by Western blotting, co-incubation with neutralizing antibodies or inhibitors, and transwell assay. Results: In this study, we found that DFO treatment significantly increased the levels of iron uptake proteins, DMT1 and TfR1, in aggressive TNBCs. Moreover, both TfR1 and DMT1 expressed on cell membrane were involved in high iron uptake in TNBCs under DFO-induced iron deficient condition. For the possible regulatory mechanism, we found that DFO treatment could promote a high expression level of IL-6 in aggressive MDA-MB-231 cells. The activated IL-6/PI3K/AKT pathway upregulated the expression of iron-uptake related proteins, TfR1 and DMT1, leading to increased iron uptakes. Conclusion: We demonstrated that DFO could upregulate expression of TfR1 and DMT1 , which enhanced iron uptake via activating IL-6/PI3K/AKT signaling pathway in aggressive TNBCs.
Collapse
Affiliation(s)
- Chunli Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyue Duan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Man Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Mittler R, Darash-Yahana M, Sohn YS, Bai F, Song L, Cabantchik IZ, Jennings PA, Onuchic JN, Nechushtai R. NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxid Redox Signal 2019; 30:1083-1095. [PMID: 29463105 PMCID: PMC10625470 DOI: 10.1089/ars.2018.7502] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Cancer cells accumulate high levels of iron and reactive oxygen species (ROS) to promote their high metabolic activity and proliferation rate. However, high levels of iron and ROS can also lead to enhanced oxidative stress and the activation of cell death pathways such as apoptosis and ferroptosis. This has led to the proposal that different drugs that target iron and/or ROS metabolism could be used as anticancer drugs. However, due to the complex role iron and ROS play in cells, the majority of these drugs yielded mixed results, highlighting a critical need to identify new players in the regulation of iron and ROS homeostasis in cancer cells. Recent Advances: NEET proteins belong to a newly discovered class of iron-sulfur proteins (2Fe-2S) required for the regulation of iron and ROS homeostasis in cells. Recent studies revealed that the NEET proteins NAF-1 (CISD2) and mitoNEET (CISD1) play a critical role in promoting the proliferation of cancer cells, supporting tumor growth and metastasis. Moreover, the function of NEET proteins in cancer cells was found to be dependent of the degree of lability of their 2Fe-2S clusters. CRITICAL ISSUES NEET proteins could represent a key regulatory link between the maintenance of high iron and ROS in cancer cells, the activation of cell death and survival pathways, and cellular proliferation. FUTURE DIRECTIONS Because the function of NEET proteins depends on the lability of their clusters, drugs that target the 2Fe2S clusters of NEET proteins could be used as promising anticancer drugs.
Collapse
Affiliation(s)
- Ron Mittler
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Merav Darash-Yahana
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yang Sung Sohn
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fang Bai
- Departments of Physics and Astronomy, Chemistry and Biosciences, Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Luhua Song
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Ioav Z. Cabantchik
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California
| | - José N. Onuchic
- Departments of Physics and Astronomy, Chemistry and Biosciences, Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Wolfson Institute for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
A new colorimetric and fluorescent chemosensor based on Schiff base-phenyl-crown ether for selective detection of Al3+ and Fe3+. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Alonso-García FJ, Blanco-González E, Montes-Bayón M. An inductively coupled plasma-mass spectrometry (ICP-MS) linked immunoassay by means of iodinated antibodies for transferrin quantitative analysis in breast cancer cell lines. Talanta 2019; 194:336-342. [DOI: 10.1016/j.talanta.2018.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
|
39
|
Risk prediction for breast Cancer in Han Chinese women based on a cause-specific Hazard model. BMC Cancer 2019; 19:128. [PMID: 30732565 PMCID: PMC6367757 DOI: 10.1186/s12885-019-5321-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Background Considering the lack of efficient breast cancer prediction models suitable for general population screening in China. We aimed to develop a risk prediction model to identify high-risk populations, to help with primary prevention of breast cancer among Han Chinese women. Methods A cause-specific competing risk model was used to develop the Han Chinese Breast Cancer Prediction model. Data from the Shandong Case-Control Study (328 cases and 656 controls) and Taixing Prospective Cohort Study (13,176 participants) were used to develop and validate the model. The expected/observed (E/O) ratio and C-statistic were calculated to evaluate calibration and discriminative accuracy of the model, respectively. Results Compared with the reference level, the relative risks (RRs) for highest level of number of abortions, age at first live birth, history of benign breast disease, body mass index (BMI), family history of breast cancer, and life satisfaction scores were 6.3, 3.6, 4.3, 1.9, 3.3, 2.4, respectively. The model showed good calibration and discriminatory accuracy with an E/O ratio of 1.03 and C-statistic of 0.64. Conclusions We developed a risk prediction model including fertility status and relevant disease history, as well as other modifiable risk factors. The model demonstrated good calibration and discrimination ability. Electronic supplementary material The online version of this article (10.1186/s12885-019-5321-1) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Leftin A, Ben-Chetrit N, Joyce JA, Koutcher JA. Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Sci Rep 2019; 9:857. [PMID: 30696910 PMCID: PMC6351660 DOI: 10.1038/s41598-018-37408-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023] Open
Abstract
Iron deposits are a phenotypic trait of tumor-associated macrophages (TAMs). Histological iron imaging and contrast-agent free magnetic resonance imaging (MRI) can detect these deposits, but their presence in human cancer, and correlation with immunotherapeutic response is largely untested. Here, primarily using these iron imaging approaches, we evaluated the spatial distribution of polarized macrophage populations containing high endogenous levels of iron in preclinical murine models and human breast cancer, and used them as metabolic biomarkers to correlate TAM infiltration with response to immunotherapy in preclinical trials. Macrophage-targeted inhibition of the colony stimulating factor 1 receptor (CSF1R) by immunotherapy was confirmed to inhibit macrophage accumulation and slow mammary tumor growth in mouse models while also reducing hemosiderin iron-laden TAM accumulation as measured by both iron histology and in vivo iron MRI (FeMRI). Spatial profiling of TAM iron deposit infiltration defined regions of maximal accumulation and response to the CSF1R inhibitor, and revealed differences between microenvironments of human cancer according to levels of polarized macrophage iron accumulation in stromal margins. We therefore demonstrate that iron deposition serves as an endogenous metabolic imaging biomarker of TAM infiltration in breast cancer that has high translational potential for evaluation of immunotherapeutic response.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Nir Ben-Chetrit
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Medicine, Weill-Cornell Medical College, New York, NY, 10021, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, CH-1066, Lausanne, Switzerland
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
41
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
42
|
Dong D, Zhang G, Yang J, Zhao B, Wang S, Wang L, Zhang G, Shang P. The role of iron metabolism in cancer therapy focusing on tumor-associated macrophages. J Cell Physiol 2018; 234:8028-8039. [PMID: 30362549 DOI: 10.1002/jcp.27569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient in mammalian cells for basic processes such as DNA synthesis, cell cycle progression, and mitochondrial activity. Macrophages play a vital role in iron metabolism, which is tightly linked to their phagocytosis of senescent and death erythrocytes. It is now recognized that the polarization process of macrophages determines the expression profile of genes associated with iron metabolism. Although iron metabolism is strictly controlled by physiology, cancer has recently been connected with disordered iron metabolism. Moreover, in the environment of cancer, tumor-associated macrophages (TAMs) exhibit an iron release phenotype, which stimulates tumor cell survival and growth. Usually, the abundance of TAMs in the tumor is implicated in poor disease prognosis. Therefore, important attention has been drawn toward the development of tumor immunotherapies targeting these TAMs focussing on iron metabolism and reprogramming polarized phenotypes. Although further systematic research is still required, these efforts are almost certainly valuable in the search for new and effective cancer treatments.
Collapse
Affiliation(s)
- Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| |
Collapse
|
43
|
Yang Y, Xu Y, Su A, Yang D, Zhang X. Effects of Deferoxamine on Leukemia In Vitro and Its Related Mechanism. Med Sci Monit 2018; 24:6735-6741. [PMID: 30246777 PMCID: PMC6180944 DOI: 10.12659/msm.910325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background This study aimed to investigate the effect of deferoxamine (DFO) on leukemia in vitro, and to explore the underlying molecular mechanism. Material/Methods K562 leukemia cells were treated with various concentrations of DFO (10, 50, and 100 μmol/l) with or without 10 μmol/l ferric chloride for 12 h. Then, total cellular iron was detected. CCK-8 kit and flow cytometry were used for cell viability and apoptosis detection. In addition, expression of apoptosis-related genes was determined by Western blotting and qRT-PCR, respectively. Results The results suggested that DFO significantly inhibited K562 cell viability and induced cell apoptosis in a dose-dependent manner. We also found that the protein and mRNA levels of Bax, p53, and Fas dose-dependently increased in DFO-treated K562 cells, while the level of Bcl-2 markedly decreased in a dose-dependent manner. Moreover, the findings showed that ferric chloride eliminated these effects on K562 cells caused by DFO treatment. Conclusions Our results indicate that DFO plays a protective role in leukemia via inhibiting leukemia cell viability and inducing cell apoptosis by the regulation of apoptosis-related genes expression.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yanli Xu
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ailing Su
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Dan Yang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
44
|
Li H, Li X, Shi W, Xu Y, Ma H. Rationally Designed Fluorescence .
OH Probe with High Sensitivity and Selectivity for Monitoring the Generation of .
OH in Iron Autoxidation without Addition of H2
O2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808400] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hongyu Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yanhui Xu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
45
|
Li H, Li X, Shi W, Xu Y, Ma H. Rationally Designed Fluorescence .
OH Probe with High Sensitivity and Selectivity for Monitoring the Generation of .
OH in Iron Autoxidation without Addition of H2
O2. Angew Chem Int Ed Engl 2018; 57:12830-12834. [DOI: 10.1002/anie.201808400] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hongyu Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yanhui Xu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
46
|
Mishra P, Tang W, Ambs S. ADHFE1 is a MYC-linked oncogene that induces metabolic reprogramming and cellular de-differentiation in breast cancer. Mol Cell Oncol 2018; 5:e1432260. [PMID: 30250890 PMCID: PMC6150044 DOI: 10.1080/23723556.2018.1432260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
The oncometabolite, D-2-hydroxyglutarate, accumulates in various cancers because of acquired mutations in isocitrate dehydrogenase 1 & 2. Here, we describe a new mechanism for D-2-hydroxyglutarate accumulation in breast cancer. It involves c-Myc signaling and alcohol dehydrogenase, iron-containing protein 1 (ADHFE1) and leads to metabolic reprogramming, de-differentiation, and increased mammary tumorigenesis.
Collapse
Affiliation(s)
- Prachi Mishra
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
47
|
Akam EA, Utterback RD, Marcero JR, Dailey HA, Tomat E. Disulfide-masked iron prochelators: Effects on cell death, proliferation, and hemoglobin production. J Inorg Biochem 2018; 180:186-193. [PMID: 29324291 PMCID: PMC5956897 DOI: 10.1016/j.jinorgbio.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
The iron metabolism of malignant cells, which is altered to ensure higher acquisition and utilization, motivates the investigation of iron chelation strategies in cancer treatment. In a prochelation approach aimed at increasing intracellular specificity, disulfide reduction/activation switches are incorporated on iron-binding scaffolds resulting in intracellularly activated scavengers. Herein, this strategy is applied to several tridentate donor sets including thiosemicarbazones, aroylhydrazones and semicarbazones. The novel prochelator systems are antiproliferative in breast adenocarcinoma cell lines (MCF-7 and metastatic MDA-MB-231) and do not result in the intracellular generation of oxidative stress. Consistent with iron deprivation, the tested prochelators lead to cell-cycle arrest at the G1/S interface and induction of apoptosis. Notably, although hemoglobin-synthesizing blood cells have the highest iron need in the human body, no significant impact on hemoglobin production was observed in the MEL (murine erythroleukemia) model of differentiating erythroid cells. This study provides new information on the intracellular effects of disulfide-based prochelators and indicates aroylhydrazone (AH1-S)2 as a promising prototype of a new class of antiproliferative prochelator systems.
Collapse
Affiliation(s)
- E A Akam
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - R D Utterback
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - J R Marcero
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - H A Dailey
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - E Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, United States.
| |
Collapse
|
48
|
He X, Cai J, Li H, Liu B, Qin Y, Zhong Y, Wang L, Liao Y. In Vivo magnetic resonance imaging of xenografted tumors using FTH1 reporter gene expression controlled by a tet-on switch. Oncotarget 2018; 7:78591-78604. [PMID: 27732930 PMCID: PMC5346662 DOI: 10.18632/oncotarget.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
As a promising magnetic resonance imaging (MRI) reporter, ferritin has been used to track cells in vivo; however, its continuous overexpression can be cytotoxic, which restricts its application. In this study, we aimed to develop a switch to turn this genetic reporter “on” or “off” while monitoring cell grafts via MRI. To accomplish this, we genetically modified the ferritin heavy chain (FTH1) with a Tet-On switch and assessed the expression of FTH1 in transduced neuroblastoma cells (SK-N-SH) in vitro and in xenografted tumors in vivo. We found that FTH1 expression induced by doxycycline (Dox) in SK-N-SH-FTH1 cells depended on treatment dose and duration. We successfully detected T2-weighted MRI contrast in cell grafts after switching “on” the reporter gene using Dox, and this contrast disappeared when we switched it “off”. The genetic reporter FTH1 can thus be switched “on” or “off” throughout longitudinal monitoring of cell grafts, limiting expression to when MRI contrast is needed. The controllable imaging system we have developed minimizes risks from constitutive reporter gene overexpression and facilitates tumor cell monitoring in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hao Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yi Zhong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yifan Liao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
49
|
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron 2018; 99:593-602. [DOI: 10.1016/j.bios.2017.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
50
|
Lappano R, Malaguarnera R, Belfiore A, Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol 2017; 457:49-56. [PMID: 27765682 DOI: 10.1016/j.mce.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Certain environmental chemicals may accumulate in human serum and tissues eliciting estrogenic and/or carcinogenic effects. Therefore, there is heightened interest in determining whether environmental chemicals may increase the risk for endocrine-related tumors like breast cancer. For instance, metals as cadmium, zinc, copper, iron, nickel and aluminum have been shown to mimic estrogen action. Moreover, the exposure to these chemicals has been reported to stimulate diverse malignancies including breast cancer, which is the most common tumor in women worldwide. In this review, we summarize the epidemiologic and experimental evidence regarding the association between the exposure to some trace elements and breast cancer risk. We also address recent insights on the molecular mechanisms involved by metals in breast tumorigenesis.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|