1
|
Tan R, Zhu X, Sun Y, Yang S, Peng C, Feng X, Chen Z, Yimamu Y, Liao G, Yang L. The association of HBV infection and head and neck cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:225. [PMID: 38365701 PMCID: PMC10874002 DOI: 10.1186/s12885-024-11967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infections is an important public health problem worldwide and closely affect extrahepatic cancer. Several recent studies have investigated the relationship between HBV infection and head and neck cancer (HNC), but their findings were inconsistent.In order to address the limitations of small sample sizes, we conducted a meta-analysis to assess the association between HBV and HNC. METHODS We systematically searched PubMed, Web of Science, Embase, Scopus, Cochrane Library, and China National Knowledge Infrastructure from inception to August 2023. Original articles published as a case-control or cohort study were included. HBV infection was identified by HBsAg, HBV DNA or ICD codes. Review articles, meeting abstracts, case reports, communications, editorials and letters were excluded, as were studies in a language other than English or Chinese. According to the MOOSE guidelines, frequencies reported for all dichotomous variables were extracted by two reviewers independently. Similarly, the outcomes of OR, RR or HR, and 95% CIs after adjusting for age and gender were collected. RESULTS Thirteen relevant studies and 58,006 patients with HNC were included. Our analysis revealed a positive correlation between HBV and HNC (OR = 1.50; 95% CI: 1.28-1.77). After adjusting for age and gender, the similar result (OR = 1.30; 95% CI: 1.10-1.54) was obtained. Subgroup analysis further demonstrated a significant association between HBV infection and oral cancer (OR = 1.24; 95% CI: 1.05-1.47), as well as nasopharyngeal carcinoma (OR = 1.41; 95% CI: 1.26-1.58). However, due to the limited number of studies included, the statistical significance was not reached for cancer of the oropharynx (OR = 1.82; 95% CI: 0.66-5.05), hypopharynx (OR = 1.33; 95% CI: 0.88-2.00), and larynx (OR = 1.25; 95% CI: 0.69-2.24) after adjusting for age and gender. When excluding the interference of HIV/HCV, smoking and alcohol use, the final outcome (OR = 1.17; 95% CI: 1.01-1.35) got the same conclusion. CONCLUSIONS Our study confirmed a positive relationship between HNC, specifically oral cancer and nasopharyngeal carcinoma, and HBV infection. However, further investigation is required at the molecular level to gather additional evidence in HNC.
Collapse
Affiliation(s)
- Rukeng Tan
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Xinyu Zhu
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Shihao Yang
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Chao Peng
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Xinkai Feng
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Zengyu Chen
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Yiliyaer Yimamu
- The First People's Hospital of Kashi Area, Xinjiang Uygur Autonomous Region, No.120, Yingbin Avenue, Kashi, People's Republic of China
| | - Guiqing Liao
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China.
| | - Le Yang
- Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Bangolo AI, Trivedi C, Jani I, Pender S, Khalid H, Alqinai B, Intisar A, Randhawa K, Moore J, De Deugd N, Faisal S, Suresh SB, Gopani P, Nagesh VK, Proverbs-Singh T, Weissman S. Impact of gut microbiome in the development and treatment of pancreatic cancer: Newer insights. World J Gastroenterol 2023; 29:3984-3998. [PMID: 37476590 PMCID: PMC10354587 DOI: 10.3748/wjg.v29.i25.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The gut microbiome plays an important role in the variation of pharmacologic response. This aspect is especially important in the era of precision medicine, where understanding how and to what extent the gut microbiome interacts with drugs and their actions will be key to individualizing therapy. The impact of the composition of the gut microbiome on the efficacy of newer cancer therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment has become an active area of research. Pancreatic adenocarcinoma (PAC) has a poor prognosis even in those with potentially resectable disease, and treatment options are very limited. Newer studies have concluded that there is a synergistic effect for immunotherapy in combination with cytotoxic drugs, in the treatment of PAC. A variety of commensal microbiota can affect the efficacy of conventional chemotherapy and immunotherapy by modulating the tumor microenvironment in the treatment of PAC. This review will provide newer insights on the impact that alterations made in the gut microbial system have in the development and treatment of PAC.
Collapse
Affiliation(s)
- Ayrton I Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ishan Jani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Silvanna Pender
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hirra Khalid
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Budoor Alqinai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Alina Intisar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Karamvir Randhawa
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Joseph Moore
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nicoleta De Deugd
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shaji Faisal
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Suchith Boodgere Suresh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Parva Gopani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tracy Proverbs-Singh
- Department of Gastrointestinal Malignancies, John Theurer Cancer Center, Hackensack, NJ 07601, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
3
|
Ai L, Liu QQ, Li Y, Wang Y, Zhang HM. The Role of HBx Protein in Diseases Beyond the Liver. Infect Drug Resist 2023; 16:3225-3232. [PMID: 37249958 PMCID: PMC10224689 DOI: 10.2147/idr.s405316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
HBX gene is essential for HBV replication, evading the surveillance of the immune system by integrating its sequence into the human genome. It also exists stably in human cells by inhibiting the expression and activity of mismatch repair-related pathway genes. Previous reviews have comprehensively summarized the role of HBx in liver-related diseases. Our article complements the summary of research on HBx in diseases other than liver disease. Through a comprehensive literature search and reading, we found that HBx is expressed in the kidney, placenta, lung and other organs of HBV-infected patients, and is closely related to the occurrence and development of diseases such as nephritis, diffuse large B-cell lymphoma, and gastric cancer. However, in the clinical treatment of these diseases, HBV infection and the role of HBx have not attracted sufficient attention, and there is no corresponding treatment strategy. Therefore, more research on HBx in diseases other than the liver is particularly necessary, and we hope that our article can provide some insight into the treatment of related diseases.
Collapse
Affiliation(s)
- Liping Ai
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Qing-Qing Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanyuan Wang
- Nephrology Department, Affiliated Hospital of Northwest Minzu University / Second Provincial People’s Hospital of Gansu, Lanzhou, Gansu, People’s Republic of China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
4
|
Morozov S, Batskikh S. Commentary: Hepatitis B virus infection: an insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front Immunol 2023; 14:1200405. [PMID: 37266431 PMCID: PMC10229800 DOI: 10.3389/fimmu.2023.1200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Sergey Morozov
- Department of Gastroenterology, Hepatology and Nutrition, Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - Sergey Batskikh
- Department of Hepatology, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow, Russia
| |
Collapse
|
5
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
6
|
Min Y, Wei X, Xia X, Wei Z, Li R, Jin J, Liu Z, Hu X, Peng X. Hepatitis B virus infection: An insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front Immunol 2023; 14:1141956. [PMID: 36936956 PMCID: PMC10014788 DOI: 10.3389/fimmu.2023.1141956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
The evidence for chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) occurrence is well established. The hepatocyte epithelium carcinogenesis caused by HBV has been investigated and reviewed in depth. Nevertheless, recent findings from preclinical and observational studies suggested that chronic HBV infection is equally important in extrahepatic cancer occurrence and survival, specifically gastrointestinal system-derived cancers. Immune microenvironment changes (immune-suppressive cytokine infiltration), epigenetic modification (N6-methyladenosine), molecular signaling pathways (PI3K-Akt and Wnt), and serum biomarkers such as hepatitis B virus X (HBx) protein are potential underlying mechanisms in chronic HBV infection-induced extrahepatic cancers. This narrative review aimed to comprehensively summarize the most recent advances in evaluating the association between chronic HBV infection and extrahepatic cancer risk and explore the potential underlying molecular mechanisms in the carcinogenesis induction of extrahepatic cancers in chronic HBV conditions.
Collapse
Affiliation(s)
- Yu Min
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoyuan Wei
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Xi Xia
- Research and Development Department Shanghai ETERN Biopharma Co., Ltd., Shanghai, China
| | - Zhigong Wei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Ruidan Li
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jing Jin
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
- *Correspondence: Xingchen Peng, ; Xiaolin Hu,
| |
Collapse
|
7
|
Zhao JF, Teng QP, Lv Y, Li XY, Ding Y. Association between hepatitis B or hepatitis C virus infection and risk of pancreatic cancer: a systematic review and meta-analysis of cohort studies. Ther Adv Infect Dis 2023; 10:20499361231212161. [PMID: 37954404 PMCID: PMC10634262 DOI: 10.1177/20499361231212161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background and aim With conflicting data from previous observational studies on the relationship between hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and pancreatic cancer (PC), we decided to conduct a systematic review and meta-analysis in order to evaluate any potential association. Design This is a systematic review and meta-analysis. Methods We conducted a search of three databases (PubMed, Embase, and Web of Science) from the time of their creation up to June 2023. The summary results, including hazard ratio (HR) with 95% confidence interval (CI), were pooled using a generic inverse variance method and a random-effects model. Furthermore, subgroup and sensitivity analyses were conducted. Results In this meta-analysis, 22 cohort studies with a total of 10,572,865 participants were analyzed. Meta-analysis from 15 cohort studies revealed that HBV infection was correlated with an increased risk of PC (HR = 1.53, 95% CI: 1.40-1.68, p < 0.00001) with no heterogeneity (I2 = 0%, p = 0.49). Meta-analysis from 14 cohort studies showed that HCV infection was associated with an increased risk of PC (HR = 1.82, 95% CI: 1.51-2.21, p < 0.00001). Most of our subgroup analyses yielded similar results. Meta-analysis from four cohort studies indicated that co-infection with HBV and HCV was linked to an increased risk of PC (HR = 2.32, 95% CI: 1.40-3.85, p = 0.001) with no heterogeneity observed (I2 = 0%, p = 0.60). The results of sensitivity analyses were robust. Conclusion Our meta-analysis showed that HBV/HCV infection or co-infection with HBV and HCV was associated with an increased risk of PC. Future prospective cohort studies need to take into account various ethnicities and any confounding factors, as well as investigate the potential mechanisms of PC development in those with HBV/HCV. Trial registration Open Science Framework registries (No: osf.io/n64ua).
Collapse
Affiliation(s)
- Jian-Feng Zhao
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei Province, China
- Central Hospital, Jingmen, Hubei Province, China
| | - Qiu-Ping Teng
- Department of Nephrology, The central Hospital of Jingmen, Jingmen, Hubei Province, China
| | - Yang Lv
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei Province, China
- Central Hospital, Jingmen, Hubei Province, China
| | - Xiao-Yi Li
- Imaging Diagnosis Center, Jingmen People’s Hospital, Jingchu University of Technology Affiliated, Jingmen, Hubei, China
| | - Yi Ding
- Department of Gastrointestinal Surgery, Jingmen People’s Hospital, Jingchu University of Technology Affiliated Central Hospital, No. 39, Xiangshan Avenue, Jingmen City, Hubei Province 448000, China
| |
Collapse
|
8
|
Luo C, Yu S, Zhang J, Wu X, Dou Z, Li Z, Yang E, Zhang L. Hepatitis B or C viral infection and the risk of cervical cancer. Infect Agent Cancer 2022; 17:54. [PMID: 36320009 PMCID: PMC9624004 DOI: 10.1186/s13027-022-00466-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/13/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The present study aimed to evaluate the effects of hepatitis B virus (HBV) or hepatitis C virus (HCV) infection on the risk of cervical cancer. METHODS We conducted a case-control study including 838 cervical cancer cases and 838 benign disease controls matched for age, ethnicity, and place of birth. Venous blood was tested for HBV and HCV serological markers. Multiple odds ratios (OR) and corresponding 95% confidence intervals (CI) for cervical cancer were estimated using logistic regression. HBV antigens were examined using immunohistochemical staining. RESULTS Anti-HCV was positive in 10 cases (1.2%) and 0 controls (0%). Cases had higher percentage of chronic HBV infection (HBsAg-positive/anti-HBc-positive) and prior HBV infection (HBsAg-negative/anti-HBc-positive) than controls (6.3% vs 4.4%; 11.6% vs 7.3%). Both chronic HBV infection (OR 1.6; 95% CI 1.0-2.4) and prior HBV infection (OR 1.7; 95% CI 1.2-2.4) were associated with cervical cancer in univariate logistic regression analyses. In subgroup analysis among HPV-positive patients, the association between chronic HBV infection and cervical cancer disappeared (OR 1.2; 95% CI 0.4-3.4); while in subgroup among patients younger than 50 years, the association remained significant with adjustment for HPV infection and parity (adjusted OR 2.1; 95% CI 1.0-4.4). HBsAg and HBcAg were detected in 8% and 12% of cervical cancer cases who had seropositive HBsAg, respectively. Compared with the benign controls, individuals with both HBsAg and HPV positive had an increased risk of cervical cancer (adjusted OR 67.1; 95% CI 23.4-192.7). CONCLUSIONS HBV infection was associated with cervical cancer in patients with age younger than 50 years. Further prospective studies are needed to confirm this relationship.
Collapse
Affiliation(s)
- Chuanfang Luo
- grid.452826.fDepartment of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Shuhui Yu
- grid.452826.fDepartment of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Jinping Zhang
- grid.452826.fDepartment of Medical Administration, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Xingrao Wu
- grid.452826.fDepartment of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Zhongyan Dou
- grid.452826.fDepartment of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Zheng Li
- grid.452826.fDepartment of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - E. Yang
- grid.452826.fDepartment of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| | - Lan Zhang
- grid.452826.fDepartment of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118 China
| |
Collapse
|
9
|
Identification of the Hub Genes and Potential Regulation Network in Chronic Hepatitis B via Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:6113807. [PMID: 36193503 PMCID: PMC9525735 DOI: 10.1155/2022/6113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Background Chronic hepatitis B (CHB) is a serious infectious disease which is induced by hepatitis B virus (HBV) infection. This project was conducted to reveal the potential mechanism in CHB development via analyzing the public clinical data. Methods GSE33857 and GSE110217, obtained from the GEO database, were used for bioinformatics excavation. Briefly, the raw data of GSE33857 and GSE110217 were analyzed with the GEO2R, and then the expressed matrix files were generated. The matrix files was visualized as heat map with R software. The targets of the miRNAs were analyzed with the miRDIP database. The functional annotation and pathway enrichment were performed using “clusterProfiler” package in R software. The STRING database was utilized to analyze the interaction of the DEGs, and the PPI and miRNA-mRNA network were established according to the related results. Results 93 downregulated genes and 17 upregulated genes in GES33857, and 111 downregulated and 40 upregulated genes in GSE110217 were identified as the hub nodes. The targets of the DEGs in the datasets were enriched in PI3K/AKT and MAPK pathways and associated with transcriptional regulation. Moreover, PPI and miRNA-mRNA networks were also established with the DEGs and related targets in the datasets. miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p were identified as the potential biomarkers in CHB. Conclusion Eight miRNAs, including miR-122-5p, miR-125b-5p, miR-136-5p, miR-194-5p, miR-139-5p, miR-140-5p, miR-181a-5p, and miR-29b-3p, were identified as the potential biomarkers in CHB, and the PPI and miRNA-mRNA networks were also established.
Collapse
|
10
|
Batskikh S, Morozov S, Dorofeev A, Borunova Z, Kostyushev D, Brezgin S, Kostyusheva A, Chulanov V. Previous hepatitis B viral infection-an underestimated cause of pancreatic cancer. World J Gastroenterol 2022; 28:4812-4822. [PMID: 36156926 PMCID: PMC9476854 DOI: 10.3748/wjg.v28.i33.4812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The etiology of pancreatic cancer remains unclear. This limits the possibility of prevention and effective treatment. Hepatitis B virus (HBV) is responsible for the development of different types of cancer, but its role in pancreatic cancer is still being discussed. AIM To assess the prevalence of previous HBV infection and to identify viral biomarkers in patients with pancreatic ductal adenocarcinoma (PDAC) to support the role of the virus in etiology of this cancer. METHODS The data of 130 hepatitis B surface antigen-negative subjects were available for the final analysis, including 60 patients with PDAC confirmed by cytology or histology and 70 sex- and age-matched controls. All the participants were tested for HBV biomarkers in blood [antibody to hepatitis B core antigen (anti-HBc), antibody to hepatitis B surface antigen (anti-HBs) and HBV DNA], and for those with PDAC, biomarkers in resected pancreatic tissues were tested (HBV DNA, HBV pregenomic RNA and covalently closed circular DNA). We performed immunohistochemistry staining of pancreatic tissues for hepatitis B virus X antigen and Ki-67 protein. Non-parametric statistics were used for the analysis. RESULTS Anti-HBc was detected in 18/60 (30%) patients with PDAC and in 9/70 (13%) participants in the control group (P = 0.029). Accordingly, the odds of PDAC in anti-HBc-positive subjects were higher compared to those with no previous HBV infection (odds ratio: 2.905, 95% confidence interval: 1.191-7.084, standard error 0.455). HBV DNA was detected in 8 cases of PDAC and in 6 of them in the pancreatic tumor tissue samples only (all patients were anti-HBc positive). Blood HBV DNA was negative in all subjects of the control group with positive results of the serum anti-HBc test. Among 9 patients with PDAC, 5 revealed signs of replicative competence of the virus (covalently closed circular DNA with or without pregenomic RNA) in the pancreatic tumor tissue samples. Hepatitis B virus X antigen expression and active cell proliferation was revealed by immunohistochemistry in 4 patients with PDAC in the pancreatic tumor tissue samples. CONCLUSION We found significantly higher risks of PDAC in anti-HBc-positive patients. Detection of viral replication and hepatitis B virus X protein expression in the tumor tissue prove involvement of HBV infection in pancreatic cancer development.
Collapse
Affiliation(s)
- Sergey Batskikh
- Department of Hepatology, Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia
| | - Sergey Morozov
- Department of Gastroenterology, Hepatology and Nutrition, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow 115446, Russia
| | - Alexey Dorofeev
- Department of Scientific and Clinical Laboratory Research, Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia
| | - Zanna Borunova
- Department of Scientific and Clinical Laboratory Research, Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Sechenov University, Moscow 119435, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Sechenov University, Moscow 119435, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Vladimir Chulanov
- Laboratory of Genetic Technologies, Sechenov University, Moscow 119435, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia
- Laboratory of Genetic Technologies and Translational Research, National Medical Research Center for Tuberculosis and Infectious Diseases of Ministry of Health of Russia, Moscow 127994, Russia
| |
Collapse
|
11
|
Batskikh S, Morozov S, Kostyushev D. Hepatitis B virus markers in hepatitis B surface antigen negative patients with pancreatic cancer: Two case reports. World J Hepatol 2022; 14:1512-1519. [PMID: 36158906 PMCID: PMC9376784 DOI: 10.4254/wjh.v14.i7.1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a known carcinogen that may be involved in pancreatic cancer development. Detection of HBV biomarkers [especially expression of HBV regulatory X protein (HBx)] within the tumor tissue may provide direct support for this. However, there is still a lack of such reports, particularly in non-endemic regions for HBV infection. Here we present two cases of patients with pancreatic ductal adenocarcinoma, without a history of viral hepatitis, in whom the markers of HBV infection were detected in blood and in the resected pancreatic tissue. CASE SUMMARY The results of examination of two patients with pancreatic cancer, who gave informed consent for participation and publication, were the source for this study. Besides standards of care, special examination to reveal occult HBV infection was performed. This included blood tests for HBsAg, anti-HBc, anti-HBs, HBV DNA, and pancreatic tissue examinations with polymerase chain reaction for HBV DNA, pregenomic HBV RNA (pgRNA HBV), and covalently closed circular DNA HBV (cccDNA) and immunohistochemistry staining for HBxAg and Ki-67. Both subjects were operated on due to pancreatic ductal adenocarcinoma and serum HBsAg was not detected. However, in both of them anti-HBc antibodies were detected in blood, although HBV DNA was not found. Examination of the resected pancreatic tissue gave positive results for HBV DNA, expression of HBx, and active cellular proliferation by Ki-67 index in both cases. However, HBV pgRNA and cccDNA were detected only in case 1. CONCLUSION These cases may reflect potential involvement of HBV infection in the development of pancreatic cancer.
Collapse
Affiliation(s)
- Sergey Batskikh
- Department of Hepatology, Moscow Clinical Research Center named after A.S. Loginov, Moscow 111123, Russia
| | - Sergey Morozov
- Department of Gastroenterology, Hepatology and Nutrition, Federal Research Center of Nutrition and Biotechnology, Moscow 115446, Russia.
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
12
|
Xu B, Dan W, Zhang X, Wang H, Cao L, Li S, Li J. Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Biological Mechanisms of Unsaponifiable Matter in Kanglaite Injection for Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6229462. [PMID: 35707377 PMCID: PMC9192213 DOI: 10.1155/2022/6229462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Background Kanglaite injection (KLTi) has shown good clinical efficacy in the treatment of pancreatic ductal adenocarcinoma (PDAC). While previous studies have demonstrated the antitumor effects of the oil compounds in KLTi, it is unclear whether the unsaponifiable matter (USM) also has antitumor effects. This study used network pharmacology, molecular docking, and database verification methods to investigate the molecular biological mechanisms of USM. Methods Compounds of USM were obtained from GC-MS, and targets from DrugBank. Next, the GEO database was searched for differentially expressed genes in cancerous tissues and healthy tissues of PDAC to identify targets. Subsequently, the protein-protein interaction of USM and PDAC targets was constructed by BisoGenet to extract candidate genes. The candidate genes were enriched using GO and KEGG by Metascape, and the gene-pathway network was constructed to screen the key genes. Molecular docking and molecular dynamic simulations of core compound targets were finally performed and to explore the diagnostic, survival, and prognosis value of targets. Results A total of 10 active compounds and 36 drug targets were screened for USM, 919 genes associated with PDAC, and 139 USM candidate genes against PDAC were excavated. The enrichment predicted USM by acting on RELA, NFKB1, IKBKG, JUN, MAPK1, TP53, and AKT1. Molecular docking and dynamic simulations confirmed the screened core targets had good affinity and stability with the corresponding compounds. In diagnostic ROC validation, the above targets have certain accuracy for diagnosing PDAC, and the combined diagnosis is more advantageous. As the most diagnostic value of RELA, it is equally significant in predicting disease-specific survival and progression-free interval. Conclusions USM in KLTi plays an anti-PDAC role by intervening in the cell cycle, inducing apoptosis, and downregulating the NF-κB, MAPK, and PI3K-Akt pathways. It might participate in the pancreatic cancer pathway, and core target groups have diagnostic, survival, and prognosis value biomarker significance.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Dan
- Department of Dermatological, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heping Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shixin Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
13
|
Mo X, Zhang CF, Xu P, Ding M, Ma ZJ, Sun Q, Liu Y, Bi HK, Guo X, Abdelatty A, Hu C, Xu HJ, Zhou GR, Jia YL, Xia HP. KCNN4-mediated Ca 2+/MET/AKT axis is promising for targeted therapy of pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 43:735-746. [PMID: 34183755 PMCID: PMC8888650 DOI: 10.1038/s41401-021-00688-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
As a member of the potassium calcium-activated channel subfamily, increasing evidence suggests that KCNN4 was associated with malignancies. However, the roles and regulatory mechanisms of KCNN4 in PDAC have been little explored. In this work, we demonstrated that the level of KCNN4 in PDAC was abnormally elevated, and the overexpression of KCNN4 was induced by transcription factor AP-1. KCNN4 was closely correlated with unfavorable clinicopathologic characteristics and poor survival. Functionally, we found that overexpression of KCNN4 promoted PDAC cell proliferation, migration and invasion. Conversely, the knockdown of KCNN4 attenuated the growth and motility of PDAC cells. In addition to these, knockdown of KCNN4 promoted PDAC cell apoptosis and led to cell cycle arrest in the S phase. In mechanistic investigations, RNA-sequence revealed that the MET-mediated AKT axis was essential for KCNN4, encouraging PDAC cell proliferation and migration. Collectively, these findings reveal a function of KCNN4 in PDAC and suggest it's an attractive therapeutic target and tumor marker. Our studies underscore a better understanding of the biological mechanism of KCNN4 in PDAC and suggest novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xiao Mo
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Cheng-Fei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Ping Xu
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Min Ding
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Zhi-Jie Ma
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Qi Sun
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Yu Liu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Hong-Kai Bi
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Xin Guo
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Alaa Abdelatty
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Chao Hu
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Hao-Jun Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China
| | - Guo-Ren Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210092, China.
| | - Yu-Liang Jia
- Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China.
| | - Hong-Ping Xia
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
- Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China.
- School of Basic Medical Sciences & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 210092, China.
| |
Collapse
|
14
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
15
|
Abdul Rahman R, Lamarca A, Hubner RA, Valle JW, McNamara MG. The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153779. [PMID: 34359684 PMCID: PMC8345056 DOI: 10.3390/cancers13153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancers. It is a difficult cancer to treat, and the complexity surrounding the pancreatic tumour is one of the contributing factors. The microbiome is the collection of microorganisms within an environment and its genetic material. They reside on body surfaces and most abundantly within the human gut in symbiotic balance with their human host. Disturbance in the balance can lead to many diseases, including cancers. Significant advances have been made in cancer treatment since the introduction of immunotherapy, and the microbiome may play a part in the outcome and survival of patients with cancer, especially those treated with immunotherapy. Immunotherapy use in pancreatic cancer remains challenging. This review will focus on the potential interaction of the microbiome with pancreas cancer and how this could be manipulated. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is projected to be the second most common cause of cancer-related death by 2030, with an overall 5-year survival rate between 7% and 9%. Despite recent advances in surgical, chemotherapy, and radiotherapy techniques, the outcome for patients with PDAC remains poor. Poor prognosis is multifactorial, including the likelihood of sub-clinical metastatic disease at presentation, late-stage at presentation, absence of early and reliable diagnostic biomarkers, and complex biology surrounding the extensive desmoplastic PDAC tumour micro-environment. Microbiota refers to all the microorganisms found in an environment, whereas microbiome is the collection of microbiota and their genome within an environment. These organisms reside on body surfaces and within mucosal layers, but are most abundantly found within the gut. The commensal microbiome resides in symbiosis in healthy individuals and contributes to nutritive, metabolic and immune-modulation to maintain normal health. Dysbiosis is the perturbation of the microbiome that can lead to a diseased state, including inflammatory bowel conditions and aetiology of cancer, such as colorectal and PDAC. Microbes have been linked to approximately 10% to 20% of human cancers, and they can induce carcinogenesis by affecting a number of the cancer hallmarks, such as promoting inflammation, avoiding immune destruction, and microbial metabolites can deregulate host genome stability preceding cancer development. Significant advances have been made in cancer treatment since the advent of immunotherapy. The microbiome signature has been linked to response to immunotherapy and survival in many solid tumours. However, progress with immunotherapy in PDAC has been challenging. Therefore, this review will focus on the available published evidence of the microbiome association with PDAC and explore its potential as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Rozana Abdul Rahman
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Juan W. Valle
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Correspondence:
| |
Collapse
|
16
|
Kim JR, Han K, Han Y, Kang N, Shin TS, Park HJ, Kim H, Kwon W, Lee S, Kim YK, Park T, Jang JY. Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. BIOLOGY 2021; 10:biology10030219. [PMID: 33805810 PMCID: PMC8000718 DOI: 10.3390/biology10030219] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Although tremendous advances in diagnosis and treatment, pancreatic cancer still remains one of the lethal diseases with an overall survival rate of 10~15%. Early detection and diagnosis of pancreatic cancer is very important in improving the prognosis of patients. The aim of our study was to find new biomarkers, using microbiomes based on bacteria-derived extracellular vesicles, extracted from blood serum. With 38 patients with pancreatic cancer and 52 healthy controls with no history of pancreatic disease, we identified several compositional differences of microbiome between them. Using various combinations of the metagenomic markers which made the compositional differences, we also built a pancreatic cancer prediction model with high area under the receiver operating characteristic curve (0.966 at the phylum level and 1.000 at the genus level). These microbiome markers, based on bacteria-derived extracellular vesicles acquired from blood, show demonstrate the potential of candidate biomarkers for early diagnosis of pancreatic cancer. Abstract Novel biomarkers for early diagnosis of pancreatic cancer (PC) are necessary to improve prognosis. We aimed to discover candidate biomarkers by identifying compositional differences of microbiome between patients with PC (n = 38) and healthy controls (n = 52), using microbial extracellular vesicles (EVs) acquired from blood samples. Composition analysis was performed using 16S rRNA gene analysis and bacteria-derived EVs. Statistically significant differences in microbial compositions were used to construct PC prediction models after propensity score matching analysis to reduce other possible biases. Between-group differences in microbial compositions were identified at the phylum and genus levels. At the phylum level, three species (Verrucomicrobia, Deferribacteres, and Bacteroidetes) were more abundant and one species (Actinobacteria) was less abundant in PC patients. At the genus level, four species (Stenotrophomonas, Sphingomonas, Propionibacterium, and Corynebacterium) were less abundant and six species (Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, and Lachnospiraceae UCG-001) were more abundant in PC patients. Using the best combination of these microbiome markers, we constructed a PC prediction model that yielded a high area under the receiver operating characteristic curve (0.966 and 1.000, at the phylum and genus level, respectively). These microbiome markers, which altered microbial compositions, are therefore candidate biomarkers for early diagnosis of PC.
Collapse
Affiliation(s)
- Jae Ri Kim
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
| | - Kyulhee Han
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
| | - Youngmin Han
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Nayeon Kang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
| | - Tae-Seop Shin
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Hyeon Ju Park
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Hongbeom Kim
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Wooil Kwon
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea;
| | - Yoon-Keun Kim
- MD Healthcare Inc., Seoul 03923, Korea; (T.-S.S.); (H.J.P.); (Y.-K.K.)
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (K.H.); (N.K.)
- Department of Statistics, Seoul National University, Seoul 08826, Korea
- Correspondence: (T.P.); (J.-Y.J.); Tel.: +82-2-880-8924 (T.P.); Fax: +82-2-880-6144 (T.P.); Tel./Fax: +82-2-2072-2194 (J.-Y.J.)
| | - Jin-Young Jang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea; (J.R.K.); (Y.H.); (H.K.); (W.K.)
- Correspondence: (T.P.); (J.-Y.J.); Tel.: +82-2-880-8924 (T.P.); Fax: +82-2-880-6144 (T.P.); Tel./Fax: +82-2-2072-2194 (J.-Y.J.)
| |
Collapse
|
17
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
18
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
19
|
Dong J, Gao HL, Wang WQ, Yu XJ, Liu L. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Marônek M, Link R, Monteleone G, Gardlík R, Stolfi C. Viruses in Cancers of the Digestive System: Active Contributors or Idle Bystanders? Int J Mol Sci 2020; 21:ijms21218133. [PMID: 33143318 PMCID: PMC7663754 DOI: 10.3390/ijms21218133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
The human virome, which is a collection of all the viruses that are present in the human body, is increasingly being recognized as an essential part of the human microbiota. The human gastrointestinal tract and related organs (e.g., liver, pancreas, and gallbladder)-composing the gastrointestinal (or digestive) system-contain a huge number of viral particles which contribute to maintaining tissue homeostasis and keeping our body healthy. However, perturbations of the virome steady-state may, both directly and indirectly, ignite/sustain oncogenic mechanisms contributing to the initiation of a dysplastic process and/or cancer progression. In this review, we summarize and discuss the available evidence on the association and role of viruses in the development of cancers of the digestive system.
Collapse
Affiliation(s)
- Martin Marônek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (M.M.); (R.G.)
| | - René Link
- Institute of Experimental Medicine, Faculty of Medicine, University of Pavol Jozef Šafárik, 040 11 Košice, Slovakia;
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (M.M.); (R.G.)
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Division of Clinical Biochemistry and Clinical Molecular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-72596163
| |
Collapse
|
21
|
Nakhaie M, Charostad J, Kaydani GA, Faghihloo E. The role of viruses in adenocarcinoma development. INFECTION GENETICS AND EVOLUTION 2020; 86:104603. [PMID: 33091575 DOI: 10.1016/j.meegid.2020.104603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Cancer is a leading public health issue that accounts for million deaths around the world every year. Human cancers contain over 100 types, which are categorized into different groups. Adenocarcinoma is one of those categories of cancer that begins from the glans and involves various tissues such as lung, esophagus, pancreas, prostate and colorectal. A range of risk factors has been identified for the development and progression of adenocarcinomas. One of these risk factors are viruses that serves special mechanisms to affect important host cell factors and tumorigenic pathways, contributing in development and promotion of adenocarcinomas. Here, we summarized the main viruses and their mechanisms implicated in the course of various adenocarcinomas development.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medical Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, Student Research Committee, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Wan X, Guo D, Zhu Q, Qu R. microRNA-382 suppresses the progression of pancreatic cancer through the PI3K/Akt signaling pathway by inhibition of Anxa3. Am J Physiol Gastrointest Liver Physiol 2020; 319:G309-G322. [PMID: 32463333 DOI: 10.1152/ajpgi.00322.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is a lethal cancer in the digestive system. microRNAs (miRNAs) have been demonstrated to participate in PC progression. In this context, we, thus, aimed to explore the mechanism of miR-382 in epithelial mesenchymal transition (EMT) and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. Gene expression data sets GSE16515, GSE71989, and GSE32676 were screened out, with the findings showing the significance of miR-382 and annexin A3 (Anxa3) in PC. A total of 115 PC patients were selected for determination of miR-382 and Anxa3 expression with lowly expressed miR-382 and highly expressed Anxa3 found via RT-quantitative PCR and Western blot analysis. Additionally, negative correlation was found between miR-382 and Anxa3 in PC. Dual-luciferase reporter gene assay and in situ hybridization results confirmed that miR-382 negatively regulated Anxa3. miR-382 targeted Anxa3 and suppressed PC progression by blocking the PI3K/Akt signaling pathway. After a series of gain- and loss-of function approaches, upregulation of miR-382 or silencing of Anxa3 inhibited the EMT and lymph node metastasis, as evidenced by increased level of E-cadherin and decreased level of N-cadherin, vimentin, vascular endothelial growth factor(VEGFR)-3, VEGF-C, and VEGF-D. Overexpression of miR-382 or downregulation of Anxa3 was shown to inhibit colony formation, migration, and invasion abilities of PC cells. Further, tumor xenograft in nude mice in vivo also confirmed the inhibitory role of miR-382 and silenced Anxa3 in lymph node metastasis in PC. Thus, this study provides promising therapeutic targets for PC treatment.NEW & NOTEWORTHY This study focused on the mechanism of miR-382 in epithelial mesenchymal transition and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. We found the inhibitory role of miR-382 in PC in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaohui Wan
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Qi Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
23
|
Lu C, Fu W, Zhou R, Hu W. Network pharmacology-based study on the mechanism of Yiganling capsule in hepatitis B treatment. BMC Complement Med Ther 2020; 20:37. [PMID: 32024508 PMCID: PMC7076828 DOI: 10.1186/s12906-020-2815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yiganling (YGL) capsule is a traditional Chinese medicine preparation consisting of eight herbs that has been clinically proven to have a favorable treatment effect on Hepatitis B (HB). However, due to its multiple targets and multi-pharmacological effects, the mechanisms of YGL capsule in the treatment of HB are unknown. Methods First, the chemical constituents of YGL capsules were obtained from the Chinese medicine database, and YGL capsules were constructed. Second, active compounds were screened by the ADME model. The target fishing model was used to screen the corresponding targets of active compounds and to construct a compounds and compound targets network. Using human disease databases and literature mining, we systematically identified genes associated with HB, constructed disease-specific protein-protein interaction networks, and performed clustering and enrichment analyses of these networks. These networks were then merged to obtain a compound-disease target network, and cluster and enrichment analyses were performed on the compound-disease target network to acquire a compounds-disease targets-mechanism network and a clustering network. Results We successfully built eight pharmacological network diagrams, including four primary networks and other network maps. The four dominating network maps included a HB disease-associated protein-protein interaction network, a YGL capsule compounds-target network, a YGL capsule ingredient target-HB disease target network, and a YGL-HB disease mechanism network. Other networks included a pathway of HB disease targets, the HB disease protein-protein interaction cluster analysis network, and the YGL-HB target clustering network. Conclusion This study successfully forecasted, illuminated, and confirmed the synergistic effects of HB disease molecules and discovered the potential of HB relevant targets, clusters, and target-related biological processes and signaling pathways. Our research not only provides theoretical support for the molecular and pharmacological mechanisms of YGL capsule in HB treatment, but also provides new research methods for the study of the other traditional Chinese medicinal compounds.
Collapse
Affiliation(s)
- Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
24
|
Tu W, Gong J, Tian D, Wang Z. Hepatitis B Virus X Protein Induces SATB1 Expression Through Activation of ERK and p38MAPK Pathways to Suppress Anoikis. Dig Dis Sci 2019; 64:3203-3214. [PMID: 31147803 DOI: 10.1007/s10620-019-05681-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously reported that there were potentially certain correlations between the high expression of SATB1 and the HBV infection in human hepatocellular carcinoma tissues, and SATB1 promoted tumor growth and metastasis in liver cancer. Hepatitis B virus (HBV) infection is internationally recognized as a contributing factor to metastasis in liver cancer. The anoikis prevention of detached malignant cancer cells is the precondition for metastasis. AIMS Our studies aimed to explore the relationship between HBV infection, SATB1 and liver cancer cell anoikis and their specific regulatory mechanisms in HBV-associated liver cancer. METHODS HepG2 cell was transiently transfected with pBlue-HBV and seven types of HBV-encoded protein plasmids. Anoikis assay and soft agarose colony formation experiment were analyzed in HepG2.2.15-SATB1 siRNA cells, HBx-overexpressing cells and HepG2-HBx-SATB1 siRNA cells. The inhibitors of signaling molecules were used to treat of HepG2-HBx cells, and then, the SATB1 expression and phosphorylation levels of signaling molecules were evaluated. RESULTS Our data show that the high expression of SATB1 and enhanced anoikis resistance were observed in HBV stably expressing cell line HepG2.2.15 and high metastatic potential cell line SK-HEP-1. HBV can induce SATB1 expression and suppress anoikis of unattached liver cancer cells. Moreover, SATB1 expression and anoikis resistance were mainly regulated by HBV-encoded viral protein HBx through the activation of ERK and p38 MAPK signaling pathways to promote metastasis of liver cancer. CONCLUSION These data suggest that the HBV-encoded HBx and SATB1 may play an important role in promoting anoikis resistance and metastasis in HBV-associated liver cancer.
Collapse
Affiliation(s)
- Wei Tu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
25
|
Zhang Q, Wang JY, Zhou SY, Yang SJ, Zhong SL. Circular RNA expression in pancreatic ductal adenocarcinoma. Oncol Lett 2019; 18:2923-2930. [PMID: 31452773 PMCID: PMC6676441 DOI: 10.3892/ol.2019.10624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
The regulatory roles of circular RNAs (circRNAs) in cancer are attracting increasing attention. The aim of the present study was to explore the roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) using microarray data. The circRNA and microRNA (miRNA) microarray data were downloaded from Gene Expression Omnibus. A total of 256 differentially expressed circRNAs were obtained by analyzing the circRNA microarray data from 26 pairs of PDAC and adjacent normal tissues. Differentially expressed miRNAs were analyzed using a dataset of 6 PDAC tissues and 5 non-neoplastic pancreas samples (GSE43796); 20 differentially expressed miRNAs were detected. circRNA/miRNA interactions were predicted between differentially expressed circRNAs and miRNAs using miRanda and RNAhybrid algorithms and 51 circRNA/miRNA interactions were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using gene symbols of differentially expressed circRNAs demonstrated that 41 circRNAs were enriched in 17 pathways. Subnetworks that were associated with apoptosis or proliferation were extracted from the 17 pathways and a new network was constructed using Cytoscape software, which identified that mitogen-activated protein kinase, PI3K/AKT and WNT/β-catenin signaling pathways may be associated with PDAC development. In conclusion, 256 differentially expressed circRNAs and 20 differentially expressed miRNAs were identified in PDAC tissues compared with normal tissues; the circRNA/miRNA interactions and the networks of KEGG pathways provided a global view of the function of these differentially expressed circRNAs and miRNAs.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jin Yan Wang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Si Ying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Su Jin Yang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shan Liang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
26
|
Zhang X, Yin Y, Yue L, Gong L. Selective Serotonin Reuptake Inhibitors Aggravate Depression-Associated Dry Eye Via Activating the NF-κB Pathway. Invest Ophthalmol Vis Sci 2019; 60:407-419. [PMID: 30695093 DOI: 10.1167/iovs.18-25572] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Our study aimed to evaluate the side effects of selective serotonin reuptake inhibitors (SSRIs) on the ocular surface. Methods Twenty patients with depression and dry eye disease (DED) were randomly picked to receive SSRI treatment, whereas another 20 patients received placebo treatment. The serotonin, inflammatory cytokine, and proapoptotic protein levels were determined by using protein chip, qRT-PCR, and ELISA analyses. A rat depression model was established, and SSRIs were applied for 3 or 6 weeks. Tear production and corneal epithelial barrier function were evaluated. The serotonin and inflammatory cytokine levels were analyzed by qRT-PCR, immunohistochemical staining, and ELISA. Human corneal epithelial cells were subjected to serotonin, a HTR antagonist, and/or an NF-κB signaling inhibitor. The inflammatory cytokine and proapoptotic protein levels were determined by qRT-PCR, Western blot analysis, and ELISA. The cell apoptosis rate was assessed by using flow cytometry. Results The SSRI group had higher tear serotonin levels and more serious inflammation and cell apoptosis on the ocular surface. In the rat depression model, depression decreased tear secretion and increased IL-1β and TNF-α production, whereas the serotonin, TLR2, and TLR4 levels were not increased. SSRI aggravated DED, disrupted the corneal epithelial barrier, and promoted an inflammatory response on the ocular surface by increasing the tear serotonin levels. In addition, serotonin induced an inflammatory response and cell apoptosis in corneal epithelial cells by activating NF-κB signaling. Conclusions SSRIs aggravate depression-associated DED via activating the NF-κB pathway. The antagonist of HTRs or the inhibitor of NF-κB signaling presents a potential therapeutic strategy for depression-associated DED. (Trial registration number, ChiCTR1800015592).
Collapse
Affiliation(s)
- Xiaozhao Zhang
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yue Yin
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Ling Yue
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology and Vision Science, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
27
|
The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer 2019; 18:97. [PMID: 31109338 PMCID: PMC6526613 DOI: 10.1186/s12943-019-1008-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Microbiota is just beginning to be recognized as an important player in carcinogenesis and the interplay among microbes is greater than expected. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease for which mortality closely parallels incidence. Early detection would provide the best opportunity to increase survival rates. Specific well-studied oral, gastrointestinal, and intrapancreatic microbes and some kinds of hepatotropic viruses and bactibilia may have potential etiological roles in pancreatic carcinogenesis, or modulating individual responses to oncotherapy. Concrete mechanisms mainly involve perpetuating inflammation, regulating the immune system-microbe-tumor axis, affecting metabolism, and altering the tumor microenvironment. The revolutionary technology of omics has generated insight into cancer microbiomes. A better understanding of the microbiota in PDAC might lead to the establishment of screening or early-stage diagnosis methods, implementation of cancer bacteriotherapy, adjustment of therapeutic efficacy even alleviating the adverse effects, creating new opportunities and fostering hope for desperate PDAC patients.
Collapse
|
28
|
Chang RQ, Shao J, Meng YH, Wang J, Li DJ, Li MQ. Decidual RANKL/RANK interaction promotes the residence and polarization of TGF-β1-producing regulatory γδ T cells. Cell Death Dis 2019; 10:113. [PMID: 30737372 PMCID: PMC6368618 DOI: 10.1038/s41419-019-1380-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
ABSTACT Decidual γδΤ (dγδΤ) cells play an essential role during successful pregnancy; however, the residence and polarization of γδΤ cells in decidua remain unclear. In this study, we observed higher levels of receptor activator for nuclear factor-κ B ligand (RANKL) on decidual stromal cells (DSCs), and its receptor RANK on dγδΤ cells in decidua from normal pregnancy compared with patients with recurrent spontaneous abortion (RSA). RANKL expressed by DSCs can induce the polarization of peripheral blood γδΤ (pγδΤ) and dγδΤ cells to Foxp3 + γδΤ cells, and upregulate the expression of transforming growth factor (TGF)-β1. This process is mediated through activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In addition, RANKL promotes the adhesion of dγδΤ cells to DSCs in vitro, which is associated with the upregulation of ICAM-1 and VCAM-1 on DSCs and integrins on dγδΤ cells. RANKL knockout leads to the decreased numbers of uterus total γδΤ cells, Foxp3+γδΤ cells and the expression of TGF-β1, and the increased pregnancy loss in mice. These results suggest that RANKL is a pivotal regulator of maternal-fetal tolerance by triggering the polarization and residence of TGF-β1-producing Foxp3+γδΤ cells in early pregnancy. The abnormal low level of RANKL/RANK results in pregnancy loss because of the dialogue disorder between DSCs and dγδΤ cells. This observation provides a scientific basis on which a potential marker can be detected to early warning of pregnancy loss.
Collapse
MESH Headings
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/pathology
- Adult
- Animals
- Cell Plasticity/physiology
- Coculture Techniques
- Decidua/cytology
- Decidua/immunology
- Decidua/metabolism
- Decidua/pathology
- Female
- Humans
- Male
- Maternal-Fetal Exchange
- Mice
- Mice, Knockout
- Phenotype
- Pregnancy
- RANK Ligand/immunology
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Transfection
- Transforming Growth Factor beta1/metabolism
Collapse
Grants
- This study supported by the National Basic Research Program of China (No. 2015CB943300), the National Natural Science Foundation of China (NSFC) (No. 31671200, 81490744, 91542108, 81471513, 81471548, 81571509, 81501275), the National Key Research and Development Program of China (2017YFC1001404), the Shanghai Rising-Star Program (No. 16QA1400800), the Innovation-oriented Science and Technology Grant from NPFPC Key Laboratory of Reproduction Regulation (CX2017-2), the Program for Zhuoxue of Fudan University.
Collapse
Affiliation(s)
- Rui-Qi Chang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, People's Republic of China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 200011, Shanghai, People's Republic of China
| | - Yu-Han Meng
- Reproductive Medical Center, Affiliated Hospital of Weifang Medical University, 261030, Weifang, People's Republic of China
| | - Jian Wang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, People's Republic of China
| | - Da-Jin Li
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, People's Republic of China.
| | - Ming-Qing Li
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 200011, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Mahale P, Engels EA, Koshiol J. Hepatitis B virus infection and the risk of cancer in the elderly US population. Int J Cancer 2018; 144:431-439. [DOI: 10.1002/ijc.31643] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Parag Mahale
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Rockville MD
| | - Eric A. Engels
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Rockville MD
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Rockville MD
| |
Collapse
|
30
|
Desai R, Patel U, Sharma S, Singh S, Doshi S, Shaheen S, Shamim S, Korlapati LS, Balan S, Bray C, Williams R, Shah N. Association Between Hepatitis B Infection and Pancreatic Cancer: A Population-Based Analysis in the United States. Pancreas 2018; 47:849-855. [PMID: 29939908 DOI: 10.1097/mpa.0000000000001095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to assess the role of hepatitis B (HepB) infection in the causation of pancreatic cancer and the predictors of pancreatic cancer and mortality. METHODS We identified pancreatic cancer patients 11 to 70 years of age from the 2013-2014 National Inpatient Sample. Pearson χ test and Student's t-test were used for categorical and continuous variables, respectively. We assessed the association of HepB and pancreatic cancer and the independent mortality predictors by multivariate analyses. RESULTS Of 69,210 pancreatic cancer patients, 175 patients with a history of HepB and 69,035 patients without a history of HepB were identified. Compared with the pancreatic cancer-non-HepB group, the pancreatic cancer-HepB group consisted more of younger (mean, 60.4 [standard deviation, 7.4] years vs 68.2 [standard deviation, 12.1] years), male, black, and Asian patients with low household income and nonelective admissions. The odds of developing pancreatic cancer among the HepB patients were significantly higher (adjusted odds ratio, 1.24; 95% confidence interval, 1.056-1.449; P = 0.008). Black race, age ≥ 65 years, and male sex demonstrated greater odds of mortality. CONCLUSIONS This study concluded up to a 24% increased likelihood of pancreatic cancer among the HepB patients. Blacks showed greater odds of pancreatic cancer and related mortality.
Collapse
Affiliation(s)
| | - Upenkumar Patel
- Department of Public Health, National University, San Diego, CA
| | - Shobhit Sharma
- Department of Biology, Texas State University, San Marcos, TX
| | - Sandeep Singh
- Department of Neurology, Institute of Human Behavior and Allied Science, New Delhi, India
| | - Shreyans Doshi
- Department of Internal Medicine, University of Central Florida/HCA GME Consortium, North Florida Regional Medical Center, Gainesville, FL
| | - Sana Shaheen
- Department of Internal Medicine, Hurontario Medical Clinic, Mississauga, Ontario, Canada
| | - Sofia Shamim
- Department of Internal Medicine & Psychiatry, Berkeley Medical & Rehabilitation Center, Atlanta, GA
| | | | - Shuba Balan
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, GA
| | - Christopher Bray
- Department of Internal Medicine, University of Central Florida/HCA GME Consortium, North Florida Regional Medical Center, Gainesville, FL
| | - Renee Williams
- Department of Internal Medicine, Gastroenterology, NYU School of Medicine/Bellevue Hospital Center, New York, NY
| | - Nihar Shah
- Department of Internal Medicine, Gastroenterology, Joan C. Edward School of Medicine, Marshall University, Huntington, WV
| |
Collapse
|
31
|
Zhao X, Guo X, Xing L, Yue W, Yin H, He M, Wang J, Yang J, Chen J. HBV infection potentiates resistance to S-phase arrest-inducing chemotherapeutics by inhibiting CHK2 pathway in diffuse large B-cell lymphoma. Cell Death Dis 2018; 9:61. [PMID: 29352124 PMCID: PMC5833392 DOI: 10.1038/s41419-017-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A considerable number of diffuse large B-cell lymphoma (DLBCL) patients are infected with hepatitis B virus (HBV), which is correlated with their poor outcomes. However, the role of HBV infection in DLBCL treatment failure remains poorly understood. Here, our data demonstrated that HBV infection was closely associated with poorer clinical prognosis independent of its hepatic dysfunction in germinal center B-cell type (GCB type) DLBCL patients. Interestingly, we found that DLBCL cells expressing hepatitis B virus X protein (HBX) did not exhibit enhanced cell growth but did show reduced sensitivity to methotrexate (MTX) and cytarabine (Ara-C), which induced S-phase arrest. Mechanism studies showed that HBX specifically inhibited the phosphorylation of checkpoint kinase 2 (CHK2, a key DNA damage response protein). CHK2 depletion similarly conferred resistance to the S-phase arrest-inducing chemotherapeutics, consistent with HBX overexpression in DLBCL cells. Moreover, overexpression of wild-type CHK2 rather than its unphosphorylated mutant (T68A) significantly restored the reduced chemosensitivity in HBX-expressing cells, suggesting that HBV infection conferred resistance to chemotherapeutics that induced S-phase arrest by specifically inhibiting the activation of CHK2 response signaling in DLBCL.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Libo Xing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haisen Yin
- Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
32
|
Li M, Qian X, Zhu M, Li A, Fang M, Zhu Y, Zhang J. miR‑1273g‑3p promotes proliferation, migration and invasion of LoVo cells via cannabinoid receptor 1 through activation of ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Mol Med Rep 2018; 17:4619-4626. [PMID: 29328379 DOI: 10.3892/mmr.2018.8397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miR) are important in various crucial cell processes including proliferation, migration and invasion. Dysregulation of miRNAs have been increasingly reported to contribute to colorectal cancer. However, the detailed biological function and potential mechanisms of miR‑1273g‑3p in colorectal cancer remain poorly understood. The expression levels of miR‑1273g‑3p in human colorectal cancer LoVo cell lines were detected via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The target genes of miR‑1273g‑3p were predicted by bioinformatics and verified by a luciferase reporter assay, RT‑qPCR and western blotting. The MTT, wound‑healing and Transwell assays were used to examine the biological functions of miR‑1273g‑3p in LoVo cells. The potential molecular mechanisms of miR‑1273g‑3p on LoVo cell proliferation, migration and invasion was detected by western blotting. The results of the present study demonstrated that miR‑1273g‑3p expression was extensively upregulated in LoVo cells compared with the normal colon epithelial NCM460 cell line. Further studies indicated that miR‑1273g‑3p inhibitor significantly suppressed LoVo cell proliferation, migration and invasion compared with inhibitor control. Following this, the cannabinoid receptor 1 (CNR1) was identified as a direct target gene of miR‑1273g‑3p. Knockdown of CNR1 restored the phenotypes of LoVo cells transfected with miR‑1273g‑3p inhibitor. Furthermore, the potential molecular mechanism of miR‑1273g‑3p on LoVo cell proliferation, migration and invasion may be mediated by activating the Erb‑B2 receptor tyrosine kinase 4 (ERBB4)/phosphoinositide‑3‑kinase regulatory subunit 3 (PIK3R3)/mechanistic target of rapamycin (mTOR)/S6 kinase 2 (S6K2) signaling pathway. These observations indicated that miR‑1273g‑3p promoted the proliferation, migration and invasion of LoVo cells via CNR1, and this may have occurred through activation of the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway, suggesting that miR‑1273g‑3p may serve as a novel therapeutic target for the effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Min Li
- Department of Oncology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaoping Qian
- Department of The Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Mingzhen Zhu
- The Department of Tumor‑Chemotherapy, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222023, P.R. China
| | - Aiyi Li
- The Department of Tumor‑Chemotherapy, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222023, P.R. China
| | - Mingzhi Fang
- Department of Oncology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yong Zhu
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Jingyu Zhang
- The Department of Tumor‑Chemotherapy, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222023, P.R. China
| |
Collapse
|
33
|
Cadmium Exposure as a Putative Risk Factor for the Development of Pancreatic Cancer: Three Different Lines of Evidence. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1981837. [PMID: 29349066 PMCID: PMC5733953 DOI: 10.1155/2017/1981837] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
Abstract
Although profoundly studied, etiology of pancreatic cancer (PC) is still rather scant. Exposure to cadmium (Cd), a ubiquitous metal associated with well-established toxic and carcinogenic properties, has been hypothesized to one putative cause of PC. Hence, we analyzed recently published observational studies, meta-analyses, and experimental animal and in vitro studies with the aim of summarizing the evidence of Cd involvement in PC development and describing the possible mechanisms. Consolidation of epidemiological data on PC and exposure to Cd indicated a significant association with an elevated risk of PC among general population exposed to Cd. Cadmium exposure of laboratory animals was showed to cause PC supporting the findings suggested by human studies. The concordance with human and animal studies is buttressed by in vitro studies, although in vitro data interpretation is problematic. In most instances, only significant effects are reported, and the concentrations of Cd are excessive, which would skew interpretation. Previous reports suggest that oxidative stress, apoptotic changes, and DNA cross-linking and hypermethylation are involved in Cd-mediated carcinogenesis. Undoubtedly, a significant amount of work is still needed to achieve a better understanding of the Cd involvement in pancreatic cancer which could facilitate prevention, diagnosis, and therapy of this fatal disease.
Collapse
|
34
|
Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 96:619-625. [PMID: 29035827 DOI: 10.1016/j.biopha.2017.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Erlotinib has shown activity in the management of pancreatic cancer. However, the benefit of EGFR blockade is limited due to EGFR independent PI3K/Akt signaling pathway. Studies have reported that Ginsenoside Rg3 strongly inhibited PI3K-Akt signaling pathway of many carcinomas. We aimed to investigate the activity of Ginsenoside Rg3 to sensitize erlotinib in treating pancreatic cancer in vitro and in vivo. Human pancreatic cancer cell lines BxPC-3 and AsPC-1 were used. Cell proliferation and colony formation assay, Annexin V/PI apoptosis analysis, Western blot analysis, immunohistochemistry and in vivo study were carried out. Ginsenoside Rg3 enhanced the anti-proliferative effects of erlotinib in BxPC-3 and AsPC-1 pancreatic cancer cells and xenograft. Ginsenoside Rg3 enhanced erlotinib-induced apoptosis and increased caspase-3,9 and PARP cleavage expression levels. Erlotinib/Ginsenoside Rg3 treatment decreased the levels of p-EGFR, p-PI3K, and p-Akt expression significantly. Ginsenoside Rg3 could enhance the efficacy of erlotinib to inhibit the proliferation of pancreatic cancer cells via induction of apoptosis and downregulation of the EGFR/PI3K/AKT pathway.
Collapse
|
35
|
Reactive Oxygen Species-Mediated c-Jun NH 2-Terminal Kinase Activation Contributes to Hepatitis B Virus X Protein-Induced Autophagy via Regulation of the Beclin-1/Bcl-2 Interaction. J Virol 2017; 91:JVI.00001-17. [PMID: 28515304 DOI: 10.1128/jvi.00001-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/07/2017] [Indexed: 02/08/2023] Open
Abstract
Autophagy is closely associated with the regulation of hepatitis B virus (HBV) replication. HBV X protein (HBx), a multifunctional regulator in HBV-associated biological processes, has been demonstrated to be crucial for autophagy induction by HBV. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we demonstrated that HBx induced autophagosome formation independently of the class I phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway. In contrast, the class III PI3K(VPS34)/beclin-1 pathway was revealed to be critical for HBx-induced autophagosome formation. Further study showed that HBx did not affect the level of VPS34 and beclin-1 expression but inhibited beclin-1/Bcl-2 association, and c-Jun NH2-terminal kinase (JNK) signaling was found to be important for this process. Moreover, it was found that HBx treatment led to the generation of reactive oxygen species (ROS), and inhibition of ROS activity abrogated both JNK activation and autophagosome formation. Of importance, ROS-JNK signaling was also revealed to play an important role in HBV-induced autophagosome formation and subsequent HBV replication. These data may provide deeper insight into the mechanisms of autophagy induction by HBx and help in the design of new therapeutic strategies against HBV infection.IMPORTANCE HBx plays a key role in diverse HBV-associated biological processes, including autophagy induction. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we found that HBx induced autophagy independently of the class I PI3K/AKT/mTOR signaling pathway, while the class III PI3K(VPS34)/beclin-1 pathway was revealed to be crucial for this process. Further data showed that ROS-JNK activation by HBx resulted in the release of beclin-1 from its association with Bcl-2 to form a complex with VPS34, thus enhancing autophagosome formation. Of importance, ROS-JNK signaling was also demonstrated to be critical for HBV replication via regulation of autophagy induction. These data help to elucidate the molecular mechanisms of autophagy induction by HBx/HBV and might be useful for designing novel therapeutic approaches to HBV infection.
Collapse
|
36
|
125I Seeds Radiation Induces Paraptosis-Like Cell Death via PI3K/AKT Signaling Pathway in HCT116 Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8145495. [PMID: 28078301 PMCID: PMC5204104 DOI: 10.1155/2016/8145495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/28/2016] [Accepted: 11/27/2016] [Indexed: 12/19/2022]
Abstract
125I seeds brachytherapy implantation has been extensively performed in unresectable and rerecurrent rectal carcinoma. Many studies on the cancer-killing activity of 125I seeds radiation mainly focused on its ability to trigger apoptosis, which is the most well-known and dominant type of cell death induced by radiation. However our results showed some unique morphological features such as cell swelling, cytoplasmic vacuolation, and plasma membrane integrity, which is obviously different to apoptosis. In this study, clonogenic proliferation was carried out to assay survival fraction. Transmission electron microscopy was used to analyze ultrastructural and evaluate morphologic feature of HCT116 cells after exposure to 125I seeds radiation. Immunofluorescence analysis was used to detect the origin of cytoplasmic vacuoles. Flow cytometry analysis was employed to detect the size and granularity of HCT116 cells. Western blot was performed to measure the protein level of AIP1, caspase-3, AKT, p-Akt (Thr308), p-Akt (Ser473), and β-actin. We found that 125I seeds radiation activated PI3K/AKT signaling pathway and could trigger paraptosis-like cell death. Moreover, inhibitor of PI3K/AKT signaling pathway could inhibit paraptosis-like cell death induced by 125I seeds radiation. Our data suggest that 125I seeds radiation can induce paraptosis-like cell death via PI3K/AKT signaling pathway.
Collapse
|