1
|
Jung YY, Baek SH, Um JY, Ahn KS. Fangchinoline targets human renal cell carcinoma cells through modulation of apoptotic and non‑apoptotic cell deaths. Pathol Res Pract 2024; 260:155445. [PMID: 38996614 DOI: 10.1016/j.prp.2024.155445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
The process of apoptosis is one of the essential processes involved in maintenance of homeostasis in the human body. It can aid to remove misfolded proteins or cellular organelles. This sequence is especially necessary in cancer cells. However, specifically targeting already apoptotic pathways can induce drug resistance in cancer cells and hence drugs can induce cell death by alternative mechanism. We investigated whether fangchinoline (FCN) can target renal carcinoma cells by inducing multiple cell death mechanisms. Both paraptosis, autophagy, and apoptosis were induced by FCN through stimulation of diverse molecular signaling pathways. FCN induced ROS production with GSH/GSSG imbalance, and ER stress. In addition, formation of autophagosome and autophagy related markers were stimulated by FCN. Moreover, FCN induced cell cycle arrest and PARP cleavage. Except for blocking protein synthesis, these three cell death pathways were found to be complementarily working together with each other. FCN also exhibited synergistic effects with paclitaxel in inducing programmed cell death in RCC cells. Our data indicates that FCN could induce apoptotic cell death and non-apoptotic cell death pathways and can be con-tribute to development of novel cancer prevention or therapy.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, the Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
2
|
El Omari N, Bakrim S, Khalid A, Albratty M, Abdalla AN, Lee LH, Goh KW, Ming LC, Bouyahya A. Anticancer clinical efficiency and stochastic mechanisms of belinostat. Biomed Pharmacother 2023; 165:115212. [PMID: 37541175 DOI: 10.1016/j.biopha.2023.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia.
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia.
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Abdelhakim Bouyahya
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia; Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
3
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
4
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Histone deacetylase inhibitors as sanguine epitherapeutics against the deadliest lung cancer. Adv Cancer Res 2023; 158:163-198. [PMID: 36990532 DOI: 10.1016/bs.acr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The back-breaking resistance mechanisms generated by lung cancer cells against epidermal growth factor receptor (EGFR), KRAS and Janus kinase 2 (JAK2) directed therapies strongly prioritizes the requirement of novel therapies which are perfectly tolerated, potentially cytotoxic and can reinstate the drug-sensitivity in lung cancer cells. Enzymatic proteins modifying the post-translational modifications of nucleosome-integrated histone substrates are appearing as current targets for defeating various malignancies. Histone deacetylases (HDACs) are hyperexpressed in diverse lung cancer types. Blocking the active pocket of these acetylation erasers through HDAC inhibitors (HDACi) has come out as an optimistic therapeutic recourse for annihilating lung cancer. This article in the beginning gives an overview about lung cancer statistics and predominant lung cancer types. Succeeding this, compendium about conventional therapies and their serious drawbacks has been provided. Then, connection of uncommon expression of classical HDACs in lung cancer onset and expansion has been detailed. Moreover, keeping the main theme in view this article deeply discusses HDACi in the context of aggressive lung cancer as single agents and spotlights various molecular targets suppressed or induced by these inhibitors for engendering cytotoxic effect. Most particularly, the raised pharmacological effects achieved on using these inhibitors in concerted form with other therapeutic molecules and the cancer-linked pathways altered by this procedure are described. The positive direction towards further heightening of efficacy and the pressing requirement of exhaustive clinical assessment has been proposed as a new focus point.
Collapse
|
6
|
Sun M, Huang D, Liu Y, Chen H, Yu H, Zhang G, Chen Q, Chen H, Zhang J. Effects of Cinobufagin on the Proliferation, Migration, and Invasion of H1299 Lung Cancer Cells. Chem Biodivers 2023; 20:e202200961. [PMID: 36522286 DOI: 10.1002/cbdv.202200961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 μM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, β-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, β-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dongyu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guobin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
7
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
8
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
9
|
Euphorbiasteroid Abrogates EGFR and Wnt/β-Catenin Signaling in Non-Small-Cell Lung Cancer Cells to Impart Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123824. [PMID: 35744950 PMCID: PMC9227563 DOI: 10.3390/molecules27123824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.
Collapse
|
10
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
11
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
12
|
Ramchandani S, Mohan CD, Mistry JR, Su Q, Naz I, Rangappa KS, Ahn KS. The multifaceted antineoplastic role of pyrimethamine against different human malignancies. IUBMB Life 2021; 74:198-212. [PMID: 34921584 DOI: 10.1002/iub.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Cancer accounted for nearly 10 million deaths in 2020 and is the second leading cause of death worldwide. The chemotherapeutic agents that are in clinical practice possess a broad range of severe adverse effects towards vital organs which emphasizes the importance of the discovery of new therapeutic agents or repurposing of existing drugs for the treatment of human cancers. Pyrimethamine is an antiparasitic drug used for the treatment of malaria and toxoplasmosis with a well-documented excellent safety profile. In the last five years, numerous efforts have been made to explore the anticancer potential of pyrimethamine in in vitro and in vivo preclinical models and to repurpose it as an anticancer agent. The studies have demonstrated that pyrimethamine inhibits oncogenic proteins such as STAT3, NF-κB, DX2, MAPK, DHFR, thymidine phosphorylase, telomerase, and many more in a different types of cancer models. Moreover, pyrimethamine has been reported to work in synergy with other anticancer agents, such as temozolomide, to induce apoptosis of tumor cells. Recently, the results of phase-1/2 clinical trials demonstrated that pyrimethamine administration reduces the expression of STAT3 signature genes in tumor tissues of chronic lymphocytic leukemia patients with a good therapeutic response. In the present article, we have reviewed most of the published papers related to the antitumor effects of pyrimethamine in malignancies of breast, liver, lung, skin, ovary, prostate, pituitary, and leukemia in in vitro and in vivo settings. We have also discussed the pharmacokinetic profile and results of clinical trials obtained after pyrimethamine treatment. From these studies, we believe that pyrimethamine has the potential to be repurposed as an anticancer drug. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology and Biochemistry, University of Melbourne, Parkville, VIC, Australia
| | | | - Jenaifer Rustom Mistry
- Jenaifer Rustom Mistry, Department of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Qi Su
- Qi Su, Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Irum Naz
- Irum Naz, Qaid-i-Azam, University of Islamabad & Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University, Bahawalpur, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
13
|
Barman M, Kamble S, Roy S, Bhandari V, Singothu S, Dandasena D, Suresh A, Sharma P. Antitheilerial Activity of the Anticancer Histone Deacetylase Inhibitors. Front Microbiol 2021; 12:759817. [PMID: 34867888 PMCID: PMC8640587 DOI: 10.3389/fmicb.2021.759817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 μM) and belinostat (0.069 μM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.
Collapse
Affiliation(s)
| | - Sonam Kamble
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Siva Singothu
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | | | - Akash Suresh
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
14
|
Devi Daimary U, Girisa S, Parama D, Verma E, Kumar A, Kunnumakkara AB. Embelin: A novel XIAP inhibitor for the prevention and treatment of chronic diseases. J Biochem Mol Toxicol 2021; 36:e22950. [PMID: 34842329 DOI: 10.1002/jbt.22950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1β, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.
Collapse
Affiliation(s)
- Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
15
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Cao Z, Yang F, Wang J, Gu Z, Lin S, Wang P, An J, Liu T, Li Y, Li Y, Lin H, Zhao Y, He B. Indirubin Derivatives as Dual Inhibitors Targeting Cyclin-Dependent Kinase and Histone Deacetylase for Treating Cancer. J Med Chem 2021; 64:15280-15296. [PMID: 34624191 DOI: 10.1021/acs.jmedchem.1c01311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To utilize the unique scaffold of a natural product indirubin, we herein adopted the strategy of combined pharmacophores to design and synthesize a series of novel indirubin derivatives as dual inhibitors against cyclin-dependent kinase (CDK) and histone deacetylase (HDAC). Among them, the lead compound 8b with remarkable CDK2/4/6 and HDAC6 inhibitory activity of IC50 = 60.9 ± 2.9, 276 ± 22.3, 27.2 ± 4.2, and 128.6 ± 0.4 nM, respectively, can efficiently induce apoptosis and S-phase arrest in several cancer cell lines. In particular, compound 8b can prevent the proliferation of a non-small-cell lung cancer cell line (A549) through the Mcl-1/XIAP/PARP axis, in agreement with the unique modes of action of the combined agents of HDAC inhibitors and CDK inhibitors. In an A549 xerograph model, compound 8b showed significant antitumor efficacy correlated with its dual inhibition. Our data demonstrated that compound 8b as a single agent could be a promising drug candidate for cancer therapy in combination with CDK and HDAC inhibitors.
Collapse
Affiliation(s)
- Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Fenfen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
17
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
18
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
19
|
Biagioni A, Tavakol S, Ahmadirad N, Zahmatkeshan M, Magnelli L, Mandegary A, Samareh Fekri H, Asadi MH, Mohammadinejad R, Ahn KS. Small nucleolar RNA host genes promoting epithelial-mesenchymal transition lead cancer progression and metastasis. IUBMB Life 2021; 73:825-842. [PMID: 33938625 DOI: 10.1002/iub.2501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
The small nucleolar RNA host genes (SNHGs) belong to the long non-coding RNAs and are reported to be able to influence all three levels of cellular information-bearing molecules, that is, DNA, RNA, and proteins, resulting in the generation of complex phenomena. As the host genes of the small nucleolar RNAs (snoRNAs), they are commonly localized in the nucleolus, where they exert multiple regulatory functions orchestrating cellular homeostasis and differentiation as well as metastasis and chemoresistance. Indeed, worldwide literature has reported their involvement in the epithelial-mesenchymal transition (EMT) of different histotypes of cancer, being able to exploit peculiar features, for example, the possibility to act both in the nucleus and the cytoplasm. Moreover, SNHGs regulation is a fundamental topic to better understand their role in tumor progression albeit such mechanism is still debated. Here, we reviewed the biological functions of SNHGs in particular in the EMT process and discussed the perspectives for new cancer therapies.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Florence, Italy
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Florence, Italy
| | - Ali Mandegary
- Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hojjat Samareh Fekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Reza Mohammadinejad
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
21
|
Barman M, Kamble S, Roy S, Bhandari V, Singothu S, Dandasena D, Suresh A, Sharma P. Antitheilerial Activity of the Anticancer Histone Deacetylase Inhibitors. Front Microbiol 2021. [PMID: 34867888 DOI: 10.3389/fmicb.2021.759817/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 μM) and belinostat (0.069 μM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.
Collapse
Affiliation(s)
| | - Sonam Kamble
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Siva Singothu
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | | | - Akash Suresh
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
22
|
Ramchandani S, Naz I, Dhudha N, Garg M. An overview of the potential anticancer properties of cardamonin. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:413-426. [PMID: 36046386 PMCID: PMC9400778 DOI: 10.37349/etat.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality, contributing to 9.6 million deaths globally in 2018 alone. Although several cancer treatments exist, they are often associated with severe side effects and high toxicities, leaving room for significant advancements to be made in the field. In recent years, several phytochemicals from plants and natural bioresources have been extracted and tested against various human malignancies using both in vitro and in vivo preclinical model systems. Cardamonin, a chalcone extracted from the Alpinia species, is an example of a natural therapeutic agent that has anti-cancer and anti-inflammatory effects against human cancer cell lines, including breast, lung, colon, and gastric, in both in vitro culture systems as well as xenograft mouse models. Earlier, cardamonin was used as a natural medicine against stomach related issues, diarrhea, insulin resistance, nephroprotection against cisplatin treatment, vasorelaxant and antinociceptive. The compound is well-known to inhibit proliferation, migration, invasion, and induce apoptosis, through the involvement of Wnt/β-catenin, NF-κB, and PI3K/Akt pathways. The good biosafety and pharmacokinetic profiling of cardamonin satisfy it as an attractive molecule for the development of an anticancer agent. The present review has summarized the chemo-preventive ability of cardamonin as an anticancer agent against numerous human malignancies.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology Biomedicine, the University of Melbourne, Parkville Victoria 3010, Australia
| | - Irum Naz
- Department of Biochemistry, Quaid-i-Azam University, Higher Education Commission of Pakistan, Islamabad 44000, Pakistan
| | - Namrata Dhudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Noida 201301, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
23
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Yang MH, Baek SH, Chinnathambi A, Alharbi SA, Ahn KS. Identification of protocatechuic acid as a novel blocker of epithelial-to-mesenchymal transition in lung tumor cells. Phytother Res 2020; 35:1953-1966. [PMID: 33251669 DOI: 10.1002/ptr.6938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022]
Abstract
Protocatechuic acid (PA) is widely distributed and commonly occurring natural compound that can exert antioxidant, anti-inflammatory, as well as anti-cancer effects. Epithelial-to-mesenchymal transition (EMT) is important cellular process that can control tumor invasion and metastasis. Here, we investigated whether PA can modulate the EMT process in basal and transforming growth factorβ-induced A549 and H1299 cells. We found that PA suppressed expression of mesenchymal markers (Fibronectin, Vimentin, and N-cadherin), MMP-9, MMP-2, twist, and snail but stimulated the levels of epithelial markers (E-cadherin and Occludin). In addition, PA can affect TGFβ-induced expression of both mesenchymal and epithelial markers. Moreover, PA abrogated migratory and invasive potential of tumor cells by reversing the EMT process. Furthermore, we found that PA suppressed EMT process by abrogating the activation of PI3K/Akt/mTOR signaling cascade in lung cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Shahzadi I, Ali Z, Baek SH, Mirza B, Ahn KS. Assessment of the Antitumor Potential of Umbelliprenin, a Naturally Occurring Sesquiterpene Coumarin. Biomedicines 2020; 8:biomedicines8050126. [PMID: 32443431 PMCID: PMC7277383 DOI: 10.3390/biomedicines8050126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal cells as well as the development of resistance to these treatment options in patients, create a serious threat to successful treatment of cancer. The use of natural compounds to prevent and treat cancers has been found to be quite effective, with fewer adverse effects found in patients. Umbelliprenin (UMB) is a naturally occurring sesquiterpene compound found in Ferula species and recently in Artemisia absinthium. Many studies have highlighted the antitumor potential of UMB in different cancer cell lines as well as in animal models. UMB exerts its anticancer actions by regulating extrinsic and intrinsic apoptotic pathways; causing inhibition of the cell cycle at the G0/G1 phase; and attenuating migration and invasion by modulating the Wnt signaling, NF-ĸB, TGFβ, and Fox3 signaling pathways. UMB also affects the key hallmarks of tumor cells by attenuating tumor growth, angiogenesis, and metastasis. This review provides an insight into the role of UMB as a potential antitumor drug for different malignancies and highlights the signaling cascades affected by UMB treatment in diverse tumor cell lines and preclinical models.
Collapse
Affiliation(s)
- Iram Shahzadi
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
| | - Zain Ali
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Bushra Mirza
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
- Correspondence: (B.M.); (K.S.A.)
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (B.M.); (K.S.A.)
| |
Collapse
|
26
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
27
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
28
|
Ojha R, Nepali K, Chen CH, Chuang KH, Wu TY, Lin TE, Hsu KC, Chao MW, Lai MJ, Lin MH, Huang HL, Chang CD, Pan SL, Chen MC, Liou JP. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur J Med Chem 2020; 190:112086. [PMID: 32058238 DOI: 10.1016/j.ejmech.2020.112086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022]
Abstract
This study reports the synthesis of a series of 2-aroylisoindoline hydroxamic acids employing N-benzyl, long alkyl chain and acrylamide units as diverse linkers. In-vitro studies led to the identification of N-benzyl linker-bearing compound (10) and long chain linker-containing compound (17) as dual selective HDAC6/HSP90 inhibitors. Compound 17 displays potent inhibition of HDAC6 isoform (IC50 = 4.3 nM) and HSP90a inhibition (IC50 = 46.8 nM) along with substantial cell growth inhibitory effects with GI50 = 0.76 μM (lung A549) and GI50 = 0.52 μM (lung EGFR resistant H1975). Compound 10 displays potent antiproliferative activity against lung A549 (GI50 = 0.37 μM) and lung H1975 cell lines (GI50 = 0.13 μM) mediated through selective HDAC6 inhibition (IC50 = 33.3 nM) and HSP90 inhibition (IC50 = 66 nM). In addition, compound 17 also modulated the expression of signatory biomarkers associated with HDAC6 and HSP90 inhibition. In the in vivo efficacy evaluation in human H1975 xenografts, 17 induced slightly remarkable suppression of tumor growth both in monotherapy as well as the combination therapy with afatinib (20 mg/kg). Moreover, compound 17 could effectively reduce programmed death-ligand 1 (PD-L1) expression in IFN-γ treated lung H1975 cells in a dose dependent manner suggesting that dual inhibition of HDAC6 and HSP90 can modulate immunosuppressive ability of tumor area.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taiwan; Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan
| | - Tung-Yun Wu
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Chao-Di Chang
- Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan; Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan
| | - Mei-Chuan Chen
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
29
|
The IκB Kinase Inhibitor ACHP Targets the STAT3 Signaling Pathway in Human Non-Small Cell Lung Carcinoma Cells. Biomolecules 2019; 9:biom9120875. [PMID: 31847229 PMCID: PMC6995615 DOI: 10.3390/biom9120875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.
Collapse
|
30
|
Bordoloi D, Banik K, Padmavathi G, Vikkurthi R, Harsha C, Roy NK, Singh AK, Monisha J, Wang H, Kumar AP, Kunnumakkara AB. TIPE2 Induced the Proliferation, Survival, and Migration of Lung Cancer Cells Through Modulation of Akt/mTOR/NF-κB Signaling Cascade. Biomolecules 2019; 9:E836. [PMID: 31817720 PMCID: PMC6995575 DOI: 10.3390/biom9120836] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer represents the most common cause of cancer deaths in the world, constituting around 11.6% of all new cancer cases and 18.4% of cancer-related deaths. The propensity for early spread, lack of suitable biomarkers for early diagnosis, as well as prognosis and ineffective existing therapies, contribute to the poor survival rate of lung cancer. Therefore, there is an urgent need to develop novel biomarkers for early diagnosis and prognosis which in turn can facilitate newer therapeutic avenues for the management of this aggressive neoplasm. TIPE2 (tumor necrosis factor-α-induced protein 8-like 2), a recently identified cytoplasmic protein, possesses enormous potential in this regard. Immunohistochemical analysis showed that TIPE2 was significantly upregulated in different stages and grades of lung cancer tissues compared to normal lung tissues, implying its involvement in the positive regulation of lung cancer. Further, knockout of TIPE2 resulted in significantly reduced proliferation, survival, and migration of human lung cancer cells through modulation of the Akt/mTOR/NF-κB signaling axis. In addition, knockout of TIPE2 also caused arrest in the S phase of the cell cycle of lung cancer cells. As tobacco is the most predominant risk factor for lung cancer, we therefore evaluated the effect of TIPE2 in tobacco-mediated lung carcinogenesis as well. Our results showed that TIPE2 was involved in nicotine-, nicotine-derived nitrosamine ketone (NNK)-, N-nitrosonornicotine (NNN)-, and benzo[a]pyrene (BaP)-mediated lung cancer through inhibited proliferation, survival, and migration via modulation of nuclear factor kappa B (NF-κB)- and NF-κB-regulated gene products, which are involved in the regulation of diverse processes in lung cancer cells. Taken together, TIPE2 possesses an important role in the development and progression of lung cancer, particularly in tobacco-promoted lung cancer, and hence, specific targeting of it holds an enormous prospect in newer therapeutic interventions in lung cancer. However, these findings need to be validated in the in vivo and clinical settings to fully establish the diagnostic and prognostic importance of TIPE2 against lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Kishore Banik
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Javadi Monisha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| |
Collapse
|
31
|
Liu WJ, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 2019; 206:107438. [PMID: 31715289 DOI: 10.1016/j.pharmthera.2019.107438] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted therapy, including mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), the receptor tyrosine kinase ROS proto-oncogene 1 (ROS1), and the serine/threonine-protein kinase BRAF (v-Raf murine sarcoma viral oncogene homolog B). We also discuss the mechanism of action of less common oncoproteins, as in-depth understanding of these molecular mechanisms is important for optimizing treatment strategies.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Wen
- Department of Medicine, Stanford University School of Medicine, California, USA
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China.
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
32
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
33
|
Girisa S, Shabnam B, Monisha J, Fan L, Halim CE, Arfuso F, Ahn KS, Sethi G, Kunnumakkara AB. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019; 24:molecules24040734. [PMID: 30781671 PMCID: PMC6413012 DOI: 10.3390/molecules24040734] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is still a major risk factor to public health globally, causing approximately 9.8 million deaths worldwide in 2018. Despite advances in conventional treatment modalities for cancer treatment, there are still few effective therapies available due to the lack of selectivity, adverse side effects, non-specific toxicities, and tumour recurrence. Therefore, there is an immediate need for essential alternative therapeutics, which can prove to be beneficial and safe against cancer. Various phytochemicals from natural sources have been found to exhibit beneficial medicinal properties against various human diseases. Zerumbone is one such compound isolated from Zingiber zerumbet Smith that possesses diverse pharmacological properties including those of antioxidant, antibacterial, antipyretic, anti-inflammatory, immunomodulatory, as well as anti-neoplastic. Zerumbone has shown its anti-cancer effects by causing significant suppression of proliferation, survival, angiogenesis, invasion, and metastasis through the molecular modulation of different pathways such as NF-κB, Akt, and IL-6/JAK2/STAT3 (interleukin-6/janus kinase-2/signal transducer and activator of transcription 3) and their downstream target proteins. The current review briefly summarizes the modes of action and therapeutic potential of zerumbone against various cancers.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Bano Shabnam
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Javadi Monisha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Clarissa Esmeralda Halim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
34
|
Zhang Q, Wang S, Chen J, Yu Z. Histone Deacetylases (HDACs) Guided Novel Therapies for T-cell lymphomas. Int J Med Sci 2019; 16:424-442. [PMID: 30911277 PMCID: PMC6428980 DOI: 10.7150/ijms.30154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
T-cell lymphomas are a heterogeneous group of cancers with different pathogenesis and poor prognosis. Histone deacetylases (HDACs) are epigenetic modifiers that modulate many key biological processes. In recent years, HDACs have been fully investigated for their roles and potential as drug targets in T-cell lymphomas. In this review, we have deciphered the modes of action of HDACs, HDAC inhibitors as single agents, and HDACs guided combination therapies in T-cell lymphomas. The overview of HDACs on the stage of T-cell lymphomas, and HDACs guided therapies both as single agents and combination regimens endow great opportunities for the cure of T-cell lymphomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Shaobin Wang
- Health Management Center of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Junhui Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Zhendong Yu
- China Central Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| |
Collapse
|
35
|
Jung YY, Shanmugam MK, Narula AS, Kim C, Lee JH, Namjoshi OA, Blough BE, Sethi G, Ahn KS. Oxymatrine Attenuates Tumor Growth and Deactivates STAT5 Signaling in a Lung Cancer Xenograft Model. Cancers (Basel) 2019; 11:cancers11010049. [PMID: 30621055 PMCID: PMC6356594 DOI: 10.3390/cancers11010049] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Oxymatrine (OMT) is a major alkaloid found in radix Sophorae flavescentis extract and has been reported to exhibit various pharmacological activities. We elucidated the detailed molecular mechanism(s) underlying the therapeutic actions of OMT in non-small cell lung cancer (NSCLC) cells and a xenograft mouse model. Because the STAT5 signaling cascade has a significant role in regulating cell proliferation and survival in tumor cells, we hypothesized that OMT may disrupt this signaling cascade to exert its anticancer effects. We found that OMT can inhibit the constitutive activation of STAT5 by suppressing the activation of JAK1/2 and c-Src, nuclear localization, as well as STAT5 binding to DNA in A549 cells and abrogated IL-6-induced STAT5 phosphorylation in H1299 cells. We also report that a sub-optimal concentration of OMT when used in combination with a low dose of paclitaxel produced significant anti-cancer effects by inhibiting cell proliferation and causing substantial apoptosis. In a preclinical lung cancer mouse model, OMT when used in combination with paclitaxel produced a significant reduction in tumor volume. These results suggest that OMT in combination with paclitaxel can cause an attenuation of lung cancer growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | | | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA.
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
36
|
McDonald AJ, Curt KM, Patel RP, Kozlowski H, Sackett DL, Robey RW, Gottesman MM, Bates SE. Targeting mitochondrial hexokinases increases efficacy of histone deacetylase inhibitors in solid tumor models. Exp Cell Res 2018; 375:106-112. [PMID: 30579954 DOI: 10.1016/j.yexcr.2018.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023]
Abstract
Hexokinase 1 and 2 have been shown to inhibit Bak- and Bax-mediated apoptosis, leading us to combine the histone deacetylase inhibitor romidepsin with clotrimazole or bifonazole, two compounds that reportedly decrease mitochondrial localization of hexokinases. Cancer cell lines derived from breast, kidney, lung, colon or ovarian cancers were treated with a short-term exposure to 25 ng/ml romidepsin combined with either clotrimazole or bifonazole. The combination of romidepsin with 25 µM clotrimazole or bifonazole resulted in increased annexin staining compared to cells treated with any of the drugs alone. Cell death was caspase-mediated, as the pan-caspase inhibitor Q-VD-OPh was found to inhibit apoptosis induced by the combination. A549 lung cancer cells or HCT-116 cells deficient in Bak and Bax were also resistant to apoptosis with the combination implicating the intrinsic apoptotic pathway. We found that a 24 h treatment with clotrimazole or bifonazole decreased total hexokinase 2 expression, resulting in a 76% or 60% decrease, respectively, of mitochondrial expression of hexokinase 2. Mitochondrial hexokinase 1 levels increased 2-fold or less. Our work suggests that the combination of a short-term romidepsin treatment with bifonazole or clotrimazole leads to increased apoptosis, most likely due to decreased mitochondrial expression of hexokinase 2.
Collapse
Affiliation(s)
- Andrew J McDonald
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Katherine M Curt
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Ruchi P Patel
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Hanna Kozlowski
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Robert W Robey
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States; Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Susan E Bates
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States; Columbia University Medical Center, Division of Hematology/Oncology, New York, NY 10032, United States.
| |
Collapse
|
37
|
Huang WT, Chong IW, Chen HL, Li CY, Hsieh CC, Kuo HF, Chang CY, Chen YH, Liu YP, Lu CY, Liu YR, Liu PL. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett 2018; 442:287-298. [PMID: 30439539 DOI: 10.1016/j.canlet.2018.10.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/10/2023]
Abstract
Exosomes are implicated in cancer cell development, migration and invasion. Pigment epithelium-derived factor (PEDF) is a secreted anticancer protein that can regulate lung cancer progression; however, the role of PEDF in non-small cell lung cancer (NSCLC), including metastasis and cancer cell-derived exosome secretion, is unclear. In this study, we analyzed the effects of PEDF on exosome-mediated migration, invasion, and tumorigenicity of cultured NSCLC cells. The results showed that PEDF overexpression significantly reduced NSCLC invasion and migration, while inducing cell aggregation, whereas PEDF knockdown had the opposite effects. Exosomes from NSCLC cells treated with recombinant PEDF had a significantly reduced ability to promote cancer cell motility, migration, and invasion compared to exosomes from untreated cells. Exosomes from PEDF-treated cells contained thrombospondin 1 (THBS1), which inhibited cytoskeletal remodeling and exosome-induced lung cancer cell motility, migration, and invasion. Furthermore, PEDF-overexpressing NSCLC cells formed smaller xenograft tumors with higher THBS1 expression compared to control tumors. Our findings indicate that PEDF decreases the metastatic potential of NSCLC cells through regulation of THBS1 release in cancer cell-derived exosomes, thus uncovering a new mechanism of lung cancer progression.
Collapse
Affiliation(s)
- Wen-Tsung Huang
- Division of Hemato-oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiu-Lin Chen
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Chia-Yuan Chang
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan; Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
38
|
Su X, Li Y, Jiang M, Zhu J, Zheng C, Chen X, Zhou J, Li Y, Xiao W, Wang Y. Systems pharmacology uncover the mechanism of anti-non-small cell lung cancer for Hedyotis diffusa Willd. Biomed Pharmacother 2018; 109:969-984. [PMID: 30551551 DOI: 10.1016/j.biopha.2018.10.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has become one of the most general malignancies in the world and has been shown to be the leading cause of cancer-related deaths. Traditional Chinese medicine (TCM) is considered to be a useful medicine for survival, and has been used in Asia for thousands of years. Hedyotis diffusa Willd (HDW) is an important folk herb that is used in clinical treatment of various cancers in various Chinese medicine prescriptions. However, its underlying mechanism of action remains unclear. Presently, we used an innovative system-pharmacology platform to systematically uncover the pharmacological mechanisms of HDW in the treatment of NSCLC from molecules, targets, and pathway levels. The results show that HDW treatment of NSCLC may activate immunity, achieve anti-inflammatory, anti-proliferative and anti-migration therapeutic effects by regulating multiple pathways. This research provides a new idea for understanding the mechanism of TCM and promotes to develop potential drugs from HDW in modern medicine.
Collapse
Affiliation(s)
- Xing Su
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Yueping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China
| | - Yan Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China.
| | - Yonghua Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China.
| |
Collapse
|
39
|
Liu L, Ahn KS, Shanmugam MK, Wang H, Shen H, Arfuso F, Chinnathambi A, Alharbi SA, Chang Y, Sethi G, Tang FR. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. J Cell Biochem 2018; 120:4504-4513. [DOI: 10.1002/jcb.27738] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Lian Liu
- Department of Pharmacology Medical School of Yangtze University Jingzhou China
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Kwang Seok Ahn
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University Seoul Korea
| | - Muthu K Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Hong Wang
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Hongyuan Shen
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Yung Chang
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University Taoyuan Taiwan
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| |
Collapse
|
40
|
Peng P, Lv J, Cai C, Lin S, Zhuo E, Wang S. Cinobufagin, a bufadienolide, activates ROS-mediated pathways to trigger human lung cancer cell apoptosis in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra01085k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung cancer, as the most common malignancy worldwide, is one of the most threatening diseases for human beings.
Collapse
Affiliation(s)
- Panli Peng
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Junhong Lv
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Changqing Cai
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Shaohuan Lin
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Enqing Zhuo
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Senming Wang
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|