1
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
2
|
Zheng G, Ye H, Bai J, Zhang X. Downregulation of lncRNA MIR17HG reduced tumorigenicity and Treg-mediated immune escape of non-small-cell lung cancer cells through targeting the miR-17-5p/RUNX3 axis. J Biochem Mol Toxicol 2024; 38:e23715. [PMID: 38704830 DOI: 10.1002/jbt.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-β), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-β, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Guanghua Zheng
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hui Ye
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junjun Bai
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
3
|
Li L, Song Q, Zhou J, Ji Q. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers. Biomed Pharmacother 2024; 174:116488. [PMID: 38520871 DOI: 10.1016/j.biopha.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
Tian M, Tang J, Huang R, Dong J, Jia H. Circ_072697 knockdown promotes advanced glycation end products-induced cell proliferation and migration in HaCaT cells via miR-3150a-3p/KDM2A axis. BMC Endocr Disord 2023; 23:200. [PMID: 37726685 PMCID: PMC10507952 DOI: 10.1186/s12902-023-01430-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Diabetes foot ulcer (DFU) is a serious complication of diabetes, which can lead to significant mortality and amputation rate. Our previous study found circ_072697 was highly expressed in DFU tissues, but the regulatory mechanism of circ_072697 in DFU remains unclear. METHODS The relative expressions of circ_072697, miR-3150a-3p, and KDM2A in DFU patients or advanced glycation end products (AGEs)-treated HaCaT cells (used as DFU cell model) were determined by using qRT-PCR. Cell proliferation and migration abilities were determined by using CCK-8 and Transwell assays. The interaction between miR-3150a-3p with circ_072697 or KDM2A were verified by RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. Furthermore, the protein expression of genes involved in MAPK signaling pathway was detected by western blot. RESULTS The expression of circ_072697 was significantly upregulated in DFU tissues, while the expression of miR-3150a-3p was downregulated. Circ_072697 knockdown promoted the proliferation and migration of AGEs-treated HaCaT cells. miR-3150a-3p was confirmed as a target of circ_072697 and its inhibitor reversed the promotion effects of circ_072697 knockdown on biological behavior of cells. In addition, KDM2A was considered as a target of miR-3150a-3p and it was highly expressed in DFU samples. Importantly, circ_072697 could regulate KDM2A expression through sponging miR-3150a-3p, and this axis had effect on the MAPK signaling pathway. CONCLUSIONS Overall, circ_072697 regulated the biological behaviors of keratinocytes in DFU via miR-3150a-3p/KDM2A axis and MAPK signaling pathway, revealing a new insight into the pathogenesis and potential therapeutic targets of DFU.
Collapse
Affiliation(s)
- Ming Tian
- Department of Burn, Wound Healing Center, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiajun Tang
- Wound Healing Center, Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
| | - Jiaoyun Dong
- Department of Burn, Wound Healing Center, Shanghai Burn Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
| | - Huiying Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
6
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
9
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Recent Advances in the Aging Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14204990. [PMID: 36291773 PMCID: PMC9599409 DOI: 10.3390/cancers14204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The incidence of breast cancer has increased rapidly in recent years. Aging is one of the risk factors for advanced breast cancer. More and more studies have been conducted on the influence of the aging microenvironment on breast cancer. In this review, we summarize the effects of physical changes in the aging microenvironment, senescence-associated secretory phenotypes, and senescent stromal cells on the initiation and progression of breast cancer and the underlying mechanisms. In addition, we also discuss potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. We hope this review can provide some directions for future research on the aging microenvironment in breast cancer. Abstract Aging is one of the risk factors for advanced breast cancer. With the increasing trend toward population aging, it is important to study the effects of aging on breast cancer in depth. Cellular senescence and changes in the aging microenvironment in vivo are the basis for body aging and death. In this review, we focus on the influence of the aging microenvironment on breast cancer. Increased breast extracellular matrix stiffness in the aging breast extracellular matrix can promote the invasion of breast cancer cells. The role of senescence-associated secretory phenotypes (SASPs) such as interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), in breast cancer cell proliferation, invasion, and metastasis is worthy of exploration. Furthermore, the impact of senescent fibroblasts, adipocytes, and endothelial cells on the mammary matrix is discussed in detail. We also list potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. In conclusion, this review offers an overview of the influence of the aging microenvironment on breast cancer initiation and progression, with the aim of providing some directions for future research on the aging microenvironment in breast cancer.
Collapse
|
11
|
Qian Y, Ao M, Li B, Kuang Z, Wang X, Cao Y, Li J, Qiu Y, Guo K, Fang M, Wu Z. Design and synthesis of N-(1-(6-(substituted phenyl)-pyridazin-3-yl)-piperidine-3-yl)-amine derivatives as JMJD6 inhibitors. Bioorg Chem 2022; 129:106119. [PMID: 36116323 DOI: 10.1016/j.bioorg.2022.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 μM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhijian Kuang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
13
|
Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, Hosseindoost S, Vousooghi N, Javar HA, Larijani B, Hadjighassem MR, Rahimian N, Hamblin MR, Mirzaei H. Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:758-791. [PMID: 35664698 PMCID: PMC9130092 DOI: 10.1016/j.omtn.2022.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Histone H3K36me2 demethylase KDM2A promotes bladder cancer progression through epigenetically silencing RARRES3. Cell Death Dis 2022; 13:547. [PMID: 35697678 PMCID: PMC9192503 DOI: 10.1038/s41419-022-04983-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Epigenetic dysregulation contributes to bladder cancer tumorigenesis. H3K36me2 demethylase KDM2A functions as an important epigenetic regulator of cell fate in many types of tumors. However, its role in bladder cancer remains unknown. Here, we revealed a positive correlation between KDM2A gene copy number gain and upregulation of KDM2A mRNA expression in bladder cancer. Moreover, a super-enhancer (SE) driving KDM2A transcription was found in high-grade bladder cancer, resulting in a significantly higher expression of KDM2A mRNA compared to that in low-grade bladder tumors. KDM2A knockdown (KD) decreased the proliferation, invasion, and spheroid formation of high-grade bladder cancer cells and inhibited tumor growth in mouse xenograft models. Furthermore, we identified RARRES3 as a key KDM2A target gene. KDM2A suppresses RARRES3 expression via demethylation of H3K36me2 in the RARRES3 promoter. Intriguingly, RARRES3 KD attenuated the inhibitory effects of KDM2A depletion on the malignant phenotypes of high-grade bladder cancer cells. The combination of the KDM2A inhibitor IOX1 and the RARRES3 agonist all-trans retinoic acid (ATRA) synergistically inhibited the proliferation of high-grade bladder cancer cells, suggesting that the KDM2A/RARRES3 axis may be a promising therapeutic target for the treatment of high-grade bladder cancer.
Collapse
|
15
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
16
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
17
|
Chen Y, Tang W, Zhu X, Zhang L, Zhu Y, Xiao H, Xu J, Fang Y, Li X, Tang C, Shi J. Nuclear receptor binding SET domain protein 1 promotes epithelial-mesenchymal transition in paclitaxel-resistant breast cancer cells via regulating nuclear factor kappa B and F-box and leucine-rich repeat protein 11. Bioengineered 2021; 12:11506-11519. [PMID: 34905470 PMCID: PMC8810193 DOI: 10.1080/21655979.2021.2009963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Breast cancer (BC) is regarded as the major cause of cancer-associated deaths in women. Paclitaxel exerts a critical impact on the chemotherapy of BC, but the resistance to paclitaxel becomes a great obstacle in treating the disease. It is reported that noncoding RNA nuclear receptor binding SET domain protein 1 (NSD1) plays a significant role in drug resistance; however, the special role of NSD1 in paclitaxel-resistant BC is unclear. Human BC cell line MCF-7 was used to establish paclitaxel-resistant BC cells (MCF-7/PR). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) displayed that NSD1 and F-box and leucine-rich repeat protein 11 (FBXL11) were highly expressed in BC tissues. Western blotting was utilized for protein level assessment. Cell counting kit-8 (CCK-8), Transwell, wound healing assays, and animal experiments were conducted to examine the influence of NSD1 or FBXL11 on the malignant behaviors of BC in vitro and in vivo, respectively. Transfected MCF-7/PR cells were injected subcutaneously into BALB/c nude mice with or without treatment of paclitaxel. The nuclear factor kappa B (NF-kB) activity was evaluated by the luciferase reporter assay. Results showed that NSD1 knockdown inhibited the epithelial-mesenchymal transition (EMT), migration and invasiveness of BC in vitro, which was rescued by FBXL11 overexpression. Furthermore, NSD1 silencing promoted paclitaxel sensitivity of paclitaxel-resistant BC cells and suppressed tumor growth and paclitaxel resistance in vivo. NSD1 knockdown reduced NF-kB activity, while FBXL11 inhibition markedly increased NF-kB activity. Collectively, NSD1 facilitates the EMT, migration and invasion in paclitaxel-resistant BC cells via regulating NF-kB and FBXL11.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology, Nanjing Pukou Central Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xuedan Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lele Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Xu
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyu Fang
- Department of Oncology, Nanjing Pukou Central Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Li
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Wang L, Lang B, Zhou Y, Ma J, Hu K. Up-regulation of miR-663a inhibits the cancer stem cell-like properties of glioma via repressing the KDM2A-mediated TGF-β/SMAD signaling pathway. Cell Cycle 2021; 20:1935-1952. [PMID: 34424812 DOI: 10.1080/15384101.2021.1966962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emerging reports have shown that microRNAs (miRNAs) function as vital regulators in tumor development via modulating gene expression at the posttranscriptional level. Here, we explored the role and underlying mechanism of miR-663a in the proliferation, migration, invasion, and cancer stem cell-like (CSC) properties of glioma cells. Quantitative reverse transcription PCR (qRT-PCR) was implemented to detect miR-663a expression in glioblastoma tissues and the adjacent normal tissues. Additionally, gain- and loss-of-function assays of miR-633a were performed on U-251 MG cells or human primary glioblastoma cancer cells (pGBMC1). Cell proliferation, migration, invasion, CSC properties, and profiles of stem cell markers (including CD133, CD44) were examined by the MTT assay, Transwell assay, tumorsphere experiment, and Western blotting, respectively. The dual-luciferase reporter gene assay was performed to testify the targeted relationship between miR-663a and lysine demethylase 2A (KDM2A). The results showed that miR-663a was down-regulated in glioblastoma tissues and cells. Overexpressing miR-663a repressed the proliferation, migration, invasion, CSC properties of U-251 MG cells and pGBMC1, while miR-663a knockdown had the opposite effects. The in-vivo experiment confirmed that miR-663a repressed the growth of U-251 MG cells in nude mice. When cocultured with THP1 cells, U-251 MG cells gained enhanced proliferation, migration, invasion, and CSC properties. MiR-633a overexpression reversed THP1-mediated effects on U-251 MG cells, and reduced the "M2" polarization of THP1 cells. What's more, Mechanistically, KDM2A was targeted by miR-663a. KDM2A knockdown suppressed the progression and CSC properties of U-251 MG cells in vitro, and dampened TGF-β. Overall, those data revealed that up-regulating miR-663a reduced glioma progression by inhibiting the KDM2A-mediated TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Bojuan Lang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Pathology, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Youdong Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jinyang Ma
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Keqi Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
19
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
20
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Farooqi AA, Gulnara K, Mukhanbetzhanovna AA, Datkhayev U, Kussainov AZ, Adylova A. Regulation of RUNX proteins by long non-coding RNAs and circular RNAs in different cancers. Noncoding RNA Res 2021; 6:100-106. [PMID: 34189363 PMCID: PMC8209647 DOI: 10.1016/j.ncrna.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
RUNX proteins have been shown to behave as "double-edge sword" in wide variety of cancers. Discovery of non-coding RNAs has played linchpin role in improving our understanding about the post-transcriptional regulation of different cell signaling pathways. Several new mechanistic insights and distinct modes of cross-regulation of RUNX proteins and non-coding RNAs have been highlighted by recent research. In this review we have attempted to provide an intricate interplay between non-coding RNAs and RUNX proteins in different cancers. Better conceptual and mechanistic understanding of layered regulation of RUNX proteins by non-coding RNAs will be helpful in effective translation of the laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty, 050040, Kazakhstan
| | | | - Ubaidilla Datkhayev
- Asfendiyarov Kazakh National Medical University, KazNMU, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | - Abay Z Kussainov
- Kazakh National Medical University Named After S. D. Asfendiyarov, Kazakhstan
| | - Aima Adylova
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
22
|
Huang K, Yang C, Zheng J, Liu X, Liu J, Che D, Xue Y, An P, Wang D, Ruan X, Yu B. Effect of circular RNA, mmu_circ_0000296, on neuronal apoptosis in chronic cerebral ischaemia via the miR-194-5p/Runx3/Sirt1 axis. Cell Death Discov 2021; 7:124. [PMID: 34052838 PMCID: PMC8164632 DOI: 10.1038/s41420-021-00507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic cerebral ischaemia (CCI) is a common pathological disorder, which is associated with various diseases, such as cerebral arteriosclerosis and vascular dementia, resulting in neurological dysfunction. As a type of non-coding RNA, circular RNA is involved in regulating the occurrence and development of diseases, such as ischaemic brain injury. Here, we found that HT22 cells and hippocampus treated with CCI had low expression of circ_0000296, Runx3, Sirt1, but high expression of miR-194-5p. Overexpression of circ_0000296, Runx3, Sirt1, and silenced miR-194-5p significantly inhibited neuronal apoptosis induced by CCI. This study demonstrated that circ_0000296 specifically bound to miR-194-5p; miR-194-5p bound to the 3'UTR region of Runx3 mRNA; Runx3 directly bound to the promoter region of Sirt1, enhancing its transcriptional activity. Overexpression of circ_0000296 by miR-194-5p reduced the negative regulatory effect of miR-194-5p on Runx3, promoted the transcriptional effect of Runx3 on Sirt1, and inhibited neuronal apoptosis induced by CCI. mmu_circ_0000296 plays an important role in regulating neuronal apoptosis induced by CCI through miR-194-5p/Runx3/Sirt1 pathway.
Collapse
Affiliation(s)
- Keyu Huang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jie Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Dongfang Che
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Bo Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.
| |
Collapse
|
23
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
24
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
25
|
Forterre A, Komuro H, Aminova S, Harada M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers (Basel) 2020; 12:E1852. [PMID: 32660045 PMCID: PMC7408939 DOI: 10.3390/cancers12071852] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
In the field of molecular oncology, microRNAs (miRNAs) and their role in regulating physiological processes and cancer pathogenesis have been a revolutionary discovery over the last decade. It is now considered that miRNA dysregulation influences critical molecular pathways involved in tumor progression, invasion, angiogenesis and metastasis in a wide range of cancer types. Hence, altering miRNA levels in cancer cells has promising potential as a therapeutic intervention, which is discussed in many other articles in this Special Issue. Some of the most significant hurdles in therapeutic miRNA usage are the stability and the delivery system. In this review, we cover a comprehensive update on the challenges and strategies for the development of therapeutic miRNA delivery systems that includes virus-based delivery, non-viral delivery (artificial lipid-based vesicles, polymer-based or chemical structures), and recently emerged extracellular vesicle (EV)-based delivery systems.
Collapse
Affiliation(s)
- Alexis Forterre
- UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, 67200 Strasbourg, France;
| | - Hiroaki Komuro
- Department of Cardiovascular Physiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Shakhlo Aminova
- Lyman Briggs College, Michigan State University, East Lansing, MI 48825, USA;
- Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Sciences and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Song J, Liu Y, Wang T, Li B, Zhang S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed Pharmacother 2020; 128:110246. [PMID: 32447210 DOI: 10.1016/j.biopha.2020.110246] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dysregulated microRNAs (miRNAs/miRs) directly modulate the biological functions of gastric cancer (GC) cells and contribute to the initiation and progression of GC. MiR-17-5p and runt-related transcription factor 3 (RUNX3) have been reported to be related to GC progression; however, the specific interaction between miR-17-5p and RUNX3 in GC require further investigation. METHODS Western blotting, real-time PCR and immunohistochemistry were used to study the expression level of miR-17-5p and RUNX3 in gastric cancer tissues and plasma. The biological function of miR-17-5p was examined by measuring cell proliferation, apoptosis and cell invasion in vitro; the target gene of miR17-5p was identified by luciferase reporter assays, RNA Binding protein immunoprecipitation (RIP) and western blotting. In vivo animal study was conducted to confirm the role of miR-17-5p during tumorigensis of gastric cancer. RESULTS This study showed that miR17-5p was upregulated in the plasma and tissues of patients with GC, while RUNX3 was downregulated in GC tissues. Functional experiments indicated that miR-17-5p mimics promoted the proliferation and invasion of GC via suppressing apoptosis in vitro. Furthermore, bioinformatics prediction, luciferase reporter assays, reverse transcription quantitative polymerase chain reaction assays, RIP and western blotting analysis demonstrated that RUNX3 was a direct target gene of miR-17-5p in GC. In addition, overexpression of RUNX3 suppressed the proliferation and invasiveness of GC cells. In vivo data indicated miR-17-5p agomir significantly promoted tumor growth. In contrast, miR-17-5p antagomir notably decreased tumor volume compared with control group. CONCLUSIONS MiR-17-5p promoted the progression of GC via directly targeting RUNX3, suggesting that miR-17-5p and RUNX3 could be considered as diagnostic and therapeutic targets for patients with GC.
Collapse
Affiliation(s)
- Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyuan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Shengsheng Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
27
|
Yuan H, Du S, Chen L, Xu X, Wang Y, Ji F. Hypomethylation of nerve growth factor (NGF) promotes binding of C/EBPα and contributes to inflammatory hyperalgesia in rats. J Neuroinflammation 2020; 17:34. [PMID: 31980031 PMCID: PMC6982391 DOI: 10.1186/s12974-020-1711-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 11/11/2022] Open
Abstract
Background Chronic pain usually accompanied by tissue damage and inflammation. However, the pathogenesis of chronic pain remains unclear. Methods We investigated the role of nerve growth factor (NGF) in chronic inflammatory pain induced by complete Freund’s adjuvant (CFA), explored the methylation status of CpG islands in the promoter region of the NGF gene, and clarified the function and mechanism of C/EBPα-NGF signaling pathway from epigenetic perspective in the chronic inflammatory pain model. Results CFA induced significant hyperalgesia and continuous upregulation of NGF mRNA and protein levels in the L4–6 dorsal root ganglions (DRGs) in rats. Hypomethylation of CpG islands occurred in the NGF gene promoter region after CFA treatment. At the same time, the miR-29b expression level was significantly increased, while the DNA methyltransferase 3b (DNMT3b) level reduced significantly. Moreover, CFA treatment promoted binding of C/EBPα to the NGF gene promoter region and C/EBPα siRNA treatment obviously decreased expression of NGF levels and also alleviate inflammatory hyperalgesia significantly in rats. Conclusion Collectively, the results indicated that CFA leads to the upregulation of miR-29b level, which represses the expression of DNMT3b, enhances the demethylation of the NGF gene promoter region, and promotes the binding of C/EBPα with the NGF gene promoter, thus results in the upregulation of NGF gene expression and maintenance of chronic inflammatory pain.
Collapse
Affiliation(s)
- Hongjie Yuan
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.,Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shibin Du
- Department of Anesthesiology, Shenzhen University Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liping Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Fuhai Ji
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Yuan H, Du S, Chen L, Xu X, Wang Y, Ji F. Hypomethylation of nerve growth factor (NGF) promotes binding of C/EBPα and contributes to inflammatory hyperalgesia in rats. J Neuroinflammation 2020; 17:34. [PMID: 31980031 DOI: hypomethylation of nerve growth factor (ngf) promotes binding of c/ebpα and contributes to inflammatory hyperalgesia in rats] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic pain usually accompanied by tissue damage and inflammation. However, the pathogenesis of chronic pain remains unclear. METHODS We investigated the role of nerve growth factor (NGF) in chronic inflammatory pain induced by complete Freund's adjuvant (CFA), explored the methylation status of CpG islands in the promoter region of the NGF gene, and clarified the function and mechanism of C/EBPα-NGF signaling pathway from epigenetic perspective in the chronic inflammatory pain model. RESULTS CFA induced significant hyperalgesia and continuous upregulation of NGF mRNA and protein levels in the L4-6 dorsal root ganglions (DRGs) in rats. Hypomethylation of CpG islands occurred in the NGF gene promoter region after CFA treatment. At the same time, the miR-29b expression level was significantly increased, while the DNA methyltransferase 3b (DNMT3b) level reduced significantly. Moreover, CFA treatment promoted binding of C/EBPα to the NGF gene promoter region and C/EBPα siRNA treatment obviously decreased expression of NGF levels and also alleviate inflammatory hyperalgesia significantly in rats. CONCLUSION Collectively, the results indicated that CFA leads to the upregulation of miR-29b level, which represses the expression of DNMT3b, enhances the demethylation of the NGF gene promoter region, and promotes the binding of C/EBPα with the NGF gene promoter, thus results in the upregulation of NGF gene expression and maintenance of chronic inflammatory pain.
Collapse
Affiliation(s)
- Hongjie Yuan
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shibin Du
- Department of Anesthesiology, Shenzhen University Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liping Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Fuhai Ji
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Zheng K, Yu J, Chen Z, Zhou R, Lin C, Zhang Y, Huang Z, Yu L, Zhao L, Wang Q. Ethanol promotes alcohol-related colorectal cancer metastasis via the TGF-β/RUNX3/Snail axis by inducing TGF-β1 upregulation and RUNX3 cytoplasmic mislocalization. EBioMedicine 2019; 50:224-237. [PMID: 31757777 PMCID: PMC6921366 DOI: 10.1016/j.ebiom.2019.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alcohol intake is a well-known lifestyle risk factor for CRC, and an increasing number of studies have revealed that alcohol intake is also tightly associated with CRC metastasis. However, the effect of alcohol on CRC metastasis and its underlying mechanism remain unclear. METHODS A retrospective cohort study was performed to investigate the characteristics of patients with alcohol-related CRC. The effects of ethanol on the biological behaviours of CRC cells were assessed through in vivo and in vitro assays using the Lieber-DeCarli ethanol liquid diet and ethanol, respectively. The ethanol-mediated signalling pathway and downstream factors were screened through ELISA, western blot, immunofluorescence and co-immunoprecipitation. FINDINGS Most patients with alcohol-related CRC, particularly those with tumour metastasis, were characterized by a notably higher circulating ethanol level and a lower systemic acetaldehyde level. Moreover, CRC cells accumulated in ethanol, but not acetaldehyde, to notably higher levels compared with adjacent normal cells. Alcohol intake significantly promoted CRC metastasis via the ethanol-mediated TGF-β/Smad/Snail axis, and ethanol induced the cytoplasmic mislocalization of RUNX3 and further promoted the aggressiveness of CRC by targeting Snail. Pirfenidone (PFD) significantly eliminated the effects of ethanol on CRC metastasis by specifically blocking TGF-β signalling. INTERPRETATION Alcohol intake plays a vital role in CRC metastasis via the ethanol-mediated TGF-β/RUNX3/Snail axis, and PFD might be a novel therapeutic management strategy for CRC.
Collapse
Affiliation(s)
- Kehong Zheng
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China; Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lina Yu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong province, China.
| |
Collapse
|
31
|
Xu WH, Liang DY, Wang Q, Shen J, Liu QH, Peng YB. Knockdown of KDM2A inhibits proliferation associated with TGF-β expression in HEK293T cell. Mol Cell Biochem 2019; 456:95-104. [PMID: 30604066 DOI: 10.1007/s11010-018-03493-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
Abstract
Lysine-specific demethylase 2A (KDM2A, also known as JHDM1A or FBXL11) plays an important role in regulating cell proliferation. However, the mechanisms on KDM2A controlling cell proliferation are varied among cell types, even controversial conclusions have been drawn. In order to elucidate the functions and underlying mechanisms for KDM2A controlling cell proliferation and apoptosis, we screened a KDM2A knockout HEK293T cell lines by CRISPR-Cas9 to illustrate the effects of KDM2A on both biological process. The results indicate that knocking down expression of KDM2A can significantly weaken HEK293T cell proliferation. The cell cycle analysis via flow cytometry demonstrate that knockdown expression of KDM2A will lead more cells arrested at G2/M phase. Through the RNA-seq analysis of the differential expressed genes between KDM2A knockdown HEK293T cells and wild type, we screened out that TGF-β pathway was significantly downregulated in KDM2A knockdown cells, which indicates that TGF-β signaling pathway might be the downstream target of KDM2A to regulate cell proliferation. When the KDM2A knockdown HEK293T cells were transient-transfected with KDM2A overexpression plasmid or treated by TGF-β agonist hydrochloride, the cell proliferation levels can be partial or completely rescued. However, the TGF-β inhibitor LY2109761 can significantly inhibit the KDM2A WT cells proliferation, but not the KDM2A knockdown HEK293T cells. Taken together, these findings suggested that KDM2A might be a key regulator of cell proliferation and cell cycle via impacting TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wen-Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China
| | - Da-Yan Liang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China
| | - Qi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 82 MinZu Ave., Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J, Hong L. Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial‑mesenchymal transition. Oncol Rep 2018; 41:917-927. [PMID: 30483796 PMCID: PMC6313075 DOI: 10.3892/or.2018.6888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the most common cause of death in ovarian cancer patients but remains largely untreated. Epithelial‑mesenchymal transition (EMT) is critical for the conversion of early‑stage ovarian tumors into metastatic malignancies. Thus, investigating the signaling pathways promoting EMT may identify potential targets for the treatment of metastatic ovarian cancer. Lysine demethylase 2A (KDM2A), also known as FBXL11 and JHDM1A, is a histone H3 lysine 36 (H3K36) demethylase that regulates EMT and the metastasis of ovarian cancer. However, the function and underlying mechanisms of EMT suppression in ovarian cancer have not been thoroughly elucidated to date. In the present study, we used Gene Expression Omnibus (GEO) databases to determine that KDM2A is significantly upregulated in human ovarian cancers. KDM2A expression was assessed by immunohistochemistry of epithelial ovarian cancer (EOC) borderline ovarian tumors and normal ovary tissues. Seven fresh EOC tissues and 3 fresh normal ovary tissues were collected for western blot analysis. Kaplan‑Meier survival curves were constructed to identify genes related to EOC prognosis from the TCGA data portal. Stable KDM2A‑knockdown cell lines were established to study the biological functions and underlying mechanisms of KDM2A in EMT in vitro. GEO database analysis revealed that KDM2A was highly upregulated in EOC tissues; this analysis was accompanied by immunochemistry and western blot analysis using samples of human tissues. High expression of KDM2A was associated with poor survival in EOC patients. KDM2A knockdown promoted apoptosis and suppressed the proliferation, migration and invasion of tumor cells in vitro. EMT and the PI3K/AKT/mTOR signaling pathway were suppressed in KDM2A‑silenced cells. Inactivation of the PI3K/AKT/mTOR signaling pathway in A2780 cells induced EMT inhibition. Our data revealed that KDM2A functions as a tumor oncogene, and the downregulation of KDM2A expression regulates EMT and EOC progression, providing a valuable prognostic marker and potential target for the treatment of EOC patients.
Collapse
Affiliation(s)
- Dan-Hua Lu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiang Yang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Kun Gao
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Min
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Tang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Hu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Su-Ting Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Pathology, Molecular Diagnostics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Shou T, Yang H, Lv J, Liu D, Sun X. MicroRNA‑3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Mol Med Rep 2018; 19:1049-1055. [PMID: 30483744 PMCID: PMC6323202 DOI: 10.3892/mmr.2018.9698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are acknowledged as essential regulators in human cancer types, including glioblastoma (GBM). However, the functions of microRNA-3666 (miR-3666) in GBM remain unclear. In the present study, it was identified that the expression of miR-3666 was significantly downregulated in GBM tissues compared with adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction. Additionally, miR-3666 was downregulated in GBM cell lines. Furthermore, it was observed that the miR-3666 expression level in patients with GBM was associated with prognosis. With functional experiments, it was identified that overexpression of miR-3666 significantly inhibited the proliferation, migration and invasion of GBM cells in vitro by Cell Counting kit-8 and Transwell assays. Ectopic expression of miR-3666 significantly arrested GBM cells in the G0 phase by fluorescence activated cell sorting. In terms of the underlying mechanism, it was identified that lysine-specific demethylase 2A (KDM2A) is a direct target of miR-3666 in GBM cells. Overexpression of miR-3666 significantly decreased the expression of KDM2A in GBM cells. Furthermore, it was observed that knockdown of KDM2A significantly suppressed the proliferation, migration and invasion of GBM cells. Collectively, the present results demonstrated that the miR-3666/KDM2A axis serves an important role in the progression of GBM, which provides novel insight into the development of therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Taotao Shou
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Huyin Yang
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jia Lv
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Dai Liu
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoyang Sun
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
34
|
Wang F, Liang S, Liu X, Han L, Wang J, Du Q. LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. Onco Targets Ther 2018; 11:6383-6394. [PMID: 30323616 PMCID: PMC6174301 DOI: 10.2147/ott.s169307] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in the occurrence and development of human cancers. LINC00460, a novel tumor-related lncRNA, has been reported to be involved in several types of human malignancies. However, the role of LINC00460 in gastric cancer (GC) is still unclear. The present study aimed at exploring the biological role of LINC00460 in GC and illuminating the potential molecular mechanisms. Methods In this study, qRT-PCR, western blotting, MTT assay, and Transwell invasion assay were used to conduct relevant experimental analysis. Results Here, we found that LINC00460 was highly expressed in GC tissues and cell lines. Moreover, LINC00460 overexpression was found to promote GC cell proliferation, migration and invasion, whereas LINC00460 down-regulation significantly inhibited these processes. Notably, we confirmed that LINC00460 could up-regulate KDM2A expression by competitively binding to miR-342-3p in GC cells. Furthermore, the suppressive effects of LINC00460 down-regulation on GC cell proliferation, migration and invasion were partially reversed by a miR-342-3p inhibitor. Conclusion In summary, our findings provide evidence for LINC00460 as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Shaobo Liang
- Department of Gastroenterology, Central Hospital of Shanxian County, Heze, 274399, China
| | - Xiaowei Liu
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Lei Han
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Junye Wang
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Qin Du
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| |
Collapse
|
35
|
曹 坤, 孙 良, 张 业, 王 腾, 李 海, 左 石. [Overpression of miR-29b suppresses the proliferation and induces apoptosis of cholangiocarcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1234-1238. [PMID: 30377134 PMCID: PMC6744069 DOI: 10.3969/j.issn.1673-4254.2018.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the expression of miR-29b in cholangiocarcinoma and explore its effects on cell proliferation and apoptosis of cholangiocarcinoma cells. METHODS Real-time PCR was used to detect the expression of miR-29b in cholangiocarcinoma cells line QBC939 and cholangiocarcinoma tissues. The lentiviral vector LV-hsa-miR-29b and blank vector were constructed to infect QBC939 cells. MTT assay and cell clone formation assay were performed to assess the changes in the cell proliferation and clone formation, respectively; flow cytometry was employed to evaluate the effect of miR-29b overexpression on cell cycle and apoptosis. RESULTS The expression of miR-29b was significantly down-regulated in QBC939 cells and cholangiocarcinoma tissues as compared with H-69 cells and normal tissues (P < 0.01). Compared with the blank vector, the lentiviral vector LV-hsa-miR-29b caused significantly increased expression of miR-29b in QBC939 cells (P < 0.01), which exhibited suppressed cell proliferation and clone formation (P < 0.01 or 0.05), cell cycle arrest at the S phase (P < 0.05), and significantly increased cell apoptosis (P < 0.01). CONCLUSIONS As a tumor-suppressing miRNA, miR-29b is down-regulated in cholangiocarcinoma, and its overexpression can suppress the proliferation and induce apoptosis of cholangiocarcinoma cells.
Collapse
Affiliation(s)
- 坤 曹
- 贵州医科大学附属医院 普外科,贵州 贵阳 550001Department of General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 良权 孙
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 业伟 张
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 腾飞 王
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 海洋 李
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 石 左
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
36
|
Li Y, Ju K, Wang W, Liu Z, Xie H, Jiang Y, Jiang G, Lu J, Dong Z, Tang F. Dinitrosopiperazine-decreased PKP3 through upregulating miR-149 participates in nasopharyngeal carcinoma metastasis. Mol Carcinog 2018; 57:1763-1779. [PMID: 30144176 PMCID: PMC6282612 DOI: 10.1002/mc.22895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) has a high metastatic clinicopathological feature. As a carcinogen factor, N,N'-dinitrosopiperazine (DNP) is involved in NPC metastasis, but its precise mechanism has not been fully elucidated. Herein, we showed that DNP promotes NPC metastasis through upregulating miR-149. DNP was found to decrease Plakophilin3 (PKP3) expression, further DNP-decreased PKP3 was verified to be through upregulating miR-149. We also found that DNP induced proliferation, adhesion, migration and invasion of NPC cell, which was inhibited by miR-149-inhibitor. DNP may promote NPC metastasis through miR-149-decreased PKP3 expression. Therefore, DNP-increased miR-149 expression may be an important factor of NPC high metastasis, and miR-149 may serve as a molecular target for anti-metastasis therapy of NPC.
Collapse
Affiliation(s)
- Yuejin Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Kunyu Ju
- Metallurgical Science and Engineering, Central South University, Changsha, China
| | - Weiwei Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheliang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haitao Xie
- The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yuan Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Guanmin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinping Lu
- Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Faqing Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Zhuhai Hospital of Jinan University, Zhuhai, China
| |
Collapse
|
37
|
Cheng J, Zhuo H, Xu M, Wang L, Xu H, Peng J, Hou J, Lin L, Cai J. Regulatory network of circRNA-miRNA-mRNA contributes to the histological classification and disease progression in gastric cancer. J Transl Med 2018; 16:216. [PMID: 30068360 PMCID: PMC6071397 DOI: 10.1186/s12967-018-1582-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Little has been known about the role of non-coding RNA regulatory network in the patterns of growth and invasiveness of gastric cancer (GC) development. METHODS MicroRNAs (miRNAs) microarray was used to screen differential miRNA expression profiles in Ming's classification. The significant differential expressions of representative miRNAs and their interacting circular RNA (circRNA) were confirmed in GC cell line and 63 pairs of GC samples. Then, a circRNA/miRNA network was constructed by bioinformatics approaches to identify molecular pathways. Finally, we explored the clinical value of the common targets in the pathway by using receiver operating characteristic curve and survival analysis. RESULTS Significantly differential expressed miRNAs were found in two pathological types of GC. Both of miR-124 and miR-29b were consistently down-regulated in GC. CircHIPK3 could play a negative regulatory role on miR-124/miR-29b expression and associated with T stage and Ming's classification in GC. The bioinformatics analyses showed that targets expression of circHIPK3-miR-124/miR-29b axes in cancer-related pathways was able to predict the status of GC and associated with individual survival time. CONCLUSIONS The targets of circHIPK3-miR-124/miR-29b axes involved in the progression of GC. CircHIPK3 could take part in the proliferation process of GC cell and may be potential biomarker in histological classification of GC.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
| | - Mao Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
| | - Linpei Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
| | - Hao Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
| | - Jigui Peng
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
| | - Lingyun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004 Fujian China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, 361004 Fujian China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, 361004 Fujian China
- Union Hospital, Fujian Medical University, Fuzhou, 350001 Fujian China
| |
Collapse
|
38
|
Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem 2018; 119:7226-7234. [PMID: 29856087 DOI: 10.1002/jcb.26901] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Abstract
Drug resistance is a big obstacle for clinical anti-tumor treatment outcome. However, the role of HOTAIR in drug resistance in gastric cancer (GC) remains unknown. In this study, we showed that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells. Furthermore, the expression of HOTAIR was upregulated in GC tissues and higher expression of HOTAIR was associated with late stage. In addition, we showed that miR-217 expression was lower in GC tissues compared with the paired non-tumour tissues and downregulated expression of miR-217 was correlated with late stage. Interestingly, the expression of miR-217 was negatively correlated with HOTAIR expression in GC tissues. Ectopic expression of HOTAIR increased GC cell proliferation, cell cycle, and migration. Elevated expression of HOTAIR suppressed miR-217 expression and enhanced GPC5 and PTPN14 expression. Furthermore, we demonstrated that overexpression of miR-217 suppressed paclitaxel and doxorubicin resistance in GC cells. Ectopic expression of HOTAIR promoted drug resistance and increased GC cell proliferation, cell cycle, and migration by targeting miR-217. These data suggested that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells through inhibiting miR-217 expression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Aoran Guan
- Department of General Surgery, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying Yao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongping Jia
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weikang Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianpeng Gao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
39
|
An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells. Oncotarget 2018; 8:39994-40005. [PMID: 28611288 PMCID: PMC5522207 DOI: 10.18632/oncotarget.18127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3’ untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.
Collapse
|
40
|
Yu J, Tian X, Chang J, Liu P, Zhang R. RUNX3 inhibits the proliferation and metastasis of gastric cancer through regulating miR-182/HOXA9. Biomed Pharmacother 2017; 96:782-791. [DOI: 10.1016/j.biopha.2017.08.144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023] Open
|
41
|
Li H, Liu G, Pan K, Miao X, Xie Y. Methylation-induced downregulation and tumor suppressive role of microRNA-29b in gastric cancer through targeting LASP1. Oncotarget 2017; 8:95880-95895. [PMID: 29221174 PMCID: PMC5707068 DOI: 10.18632/oncotarget.21431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRs) have been demonstrated to play promoting or tumor suppressive roles in various human cancers, but the regulatory mechanism of miR-29b underlying gastric cancer development and progression still remains largely unclear. In the present study, we found that miR-29b was significantly downregulated in gastric cancer tissues and cell lines. Low expression of miR-29b was significantly associated with DNA methylation, and treatment with DNA methyltransferase inhibitor 5-Aza-20-deoxycytidine upregulated miR-29b in gastric cancer cells. In addition, both reduced miR-29b expression and miR-29b methylation were associated with disease progression and poor prognosis in gastric cancer. Restoration of miR-29b caused a reduction in gastric cancer cell proliferation, migration, and invasion, and inhibited tumor growth in vivo. LASP1 was then identified as a target gene of miR-29b in gastric cancer cells. Moreover, upregulation of LASP1 was significantly associated with gastric cancer progression and poor prognosis. Knockdown of LASP1 also suppressed the proliferation, migration, and invasion of gastric cancer cells. Moreover, overexpression of LASP1 impaired the suppressive effects of miR-29b on the malignant phenotypes of gastric cancer cells, suggesting that miR-29b may inhibit gastric cancer growth and metastasis via targeting LASP1. According to these data, miR-29b may be used as a potential therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesia, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoqing Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Pan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Neil JC, Hay J, Borland G. RUNX oncoproteins and miRNA networks. Oncotarget 2017; 8:62818-62819. [PMID: 28968950 PMCID: PMC5609882 DOI: 10.18632/oncotarget.20673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, MRC University of Glasgow Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, MRC University of Glasgow Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, MRC University of Glasgow Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
43
|
miR-215 promotes cell migration and invasion of gastric cancer by targeting Retinoblastoma tumor suppressor gene 1. Pathol Res Pract 2017; 213:889-894. [PMID: 28689850 DOI: 10.1016/j.prp.2017.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumor and has high mortality worldwide. microRNAs (miRNAs) play critical roles in carcinogenesis. Previous studied showed that miR-215 was involved in tumorigenesis and progression. This study was designed to clarify the biological function of miR-215 in GC. METHODS qRT-PCR was used to detect the miR-215 expression in GC tissues and 6 human GC cell lines (AGS, SGC-7901, NCI-N87, GES-1, MKN-45 and BGC-823) as well. Transwell assay was used to investigate the biological function of miR-215 in GC. Luciferase reporter assay was used to confirm its effect on the regulation of the target gene Retinoblastoma tumor suppressor gene 1 (RB1). RESULTS miR-215 was frequently up-regulated in GC tissues compared to adjacent non-tumor tissues and GC cell lines. miR-215 expression level was correlated with the progression of tumor invasion and tumor-node-metastasis (TNM) stage. Over-expression miR-215 in GC cell lines promoted cell migration and invasion. Besides, miR-215 could down-regulate the expression of RB1 in vitro via directly binding to its 3'-untranslated region (UTR), while the expression of RB1 would suppress the miR-215-indueced GC cell migration and invasion. CONCLUSIONS miR-215 promoted cell migration and invasion of gastric cancer by directly targeting RB1.
Collapse
|
44
|
Okamoto K, Tanaka Y, Tsuneoka M. SF-KDM2A binds to ribosomal RNA gene promoter, reduces H4K20me3 level, and elevates ribosomal RNA transcription in breast cancer cells. Int J Oncol 2017; 50:1372-1382. [DOI: 10.3892/ijo.2017.3908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/21/2017] [Indexed: 11/05/2022] Open
|
45
|
Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel) 2017; 8:genes8010021. [PMID: 28075356 PMCID: PMC5295016 DOI: 10.3390/genes8010021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.
Collapse
|