1
|
Feng M, Gong W, Zhu X, Zhu J, Hu J, Xu W, Ma Z, Fu S, Chen X. Covalent binding of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) and its co-delivery with Lipusu, a novel synergistic strategy to inhibit the proliferation of nasopharyngeal cancer. Eur J Pharm Sci 2025; 209:107092. [PMID: 40228725 DOI: 10.1016/j.ejps.2025.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
As the world's only commercially available paclitaxel liposome, Lipusu (Lip) has been clinically used in chemotherapy for >20 years, but the design concept of Lip remains largely unchanged since its initial development. Based on the study of Acetyl-CoA-carboxylase 1 (ACC1) in nasopharyngeal carcinoma (NPC), we proposed the concept of next-generation liposomes (NGL) utilizing lipid demand balance. In this study, we evaluated the feasibility of ACC1 and integrin αVβ3 as NPC targets, and designed 10 conjugates of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) that can bind to Lip. Considering the results of chemical parameter prediction, molecular docking, molecular dynamics simulation (MD) and other aspects, we finally selected and synthesized the compound F, and successfully constructed F-Lip by simple incubation method. Compared with Lip, F-Lip showed stronger toxicity in both HONE-1 cells and corresponding tumor-bearing mice. In conclusion, by regulating the balance of lipid demand, the toxicity of Lip can be improved so as to achieve the goal of inhibiting the proliferation of NPC. This study provides a new model for the future design and development of Lip.
Collapse
Affiliation(s)
- Min Feng
- College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, PR China; Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Wei Gong
- College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, PR China; Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Xin Zhu
- College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, PR China
| | - Juan Zhu
- Department of Pathology, Yancheng City Dafeng People's Hospital, Yanchen, Jiangsu, PR China
| | - Junjie Hu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Weihua Xu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China; Hainan Tropical Cancer Research Institute, Haikou, Hainan, PR China
| | - Zhichao Ma
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Shengmiao Fu
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, PR China.
| | - Xinping Chen
- College of Life Sciences and Pharmacy, Hainan University, Haikou, Hainan, PR China; Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan, PR China; Hainan Tropical Cancer Research Institute, Haikou, Hainan, PR China.
| |
Collapse
|
2
|
Delmas D, Mialhe A, Cotte AK, Connat JL, Bouyer F, Hermetet F, Aires V. Lipid metabolism in cancer: Exploring phospholipids as potential biomarkers. Biomed Pharmacother 2025; 187:118095. [PMID: 40311223 DOI: 10.1016/j.biopha.2025.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Aberrant lipid metabolism is increasingly recognized as a hallmark of cancer, contributing to tumor growth, metastatic dissemination, and resistance to therapy. Cancer cells reprogram key metabolic pathways-including de novo lipogenesis, lipid uptake, and phospholipid remodeling-to sustain malignant progression and adapt to microenvironmental demands. This review summarizes current insights into the role of lipid metabolic reprogramming in oncogenesis and highlights recent advances in lipidomics that have revealed cancer type- and stage-specific lipid signatures with diagnostic and prognostic relevance. We emphasize the dual potential of lipid metabolic pathways-particularly those involving phospholipids-as sources of clinically relevant biomarkers and therapeutic targets. Enzymes and transporters involved in these pathways have emerged as promising candidates for both diagnostic applications and pharmacological intervention. We also examine persistent challenges hindering the clinical translation of lipid-based approaches, including analytical variability, insufficient biological validation, and the lack of standardized integration into clinical workflows. Furthermore, the review explores strategies to overcome these barriers, highlighting the importance of incorporating lipidomics into multi-omics frameworks, supported by advanced computational tools and AI-driven analytics, to decipher the complexity of tumor-associated metabolic networks. We discuss how such integrative approaches can facilitate the identification of actionable metabolic targets, improve the specificity and robustness of lipid-based biomarkers, and enhance patient stratification in the context of precision oncology.
Collapse
Affiliation(s)
- Dominique Delmas
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France; Centre de Lutte Contre le Cancer Georges François Leclerc Center, Dijon F-21000, France; Inserm UMS58 - Biologie Santé Dijon (BioSanD), Dijon F-21000, France.
| | - Aurélie Mialhe
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Alexia K Cotte
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Jean-Louis Connat
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Florence Bouyer
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - François Hermetet
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| | - Virginie Aires
- Université Bourgogne Europe, Dijon F-21000, France; Inserm Research Center UMR1231 - Therapies and Immune Response in Cancers Team, Bioactive Molecules and Health Research Group, Dijon F-21000, France
| |
Collapse
|
3
|
Peng Y, Yin H, Pei X, Zhang Y, Wang C, Zheng X, Liang H, Yang H, Li S. Cholesterol-activated stress granules reduce the membrane localization of DRD2 and promote prolactinoma dopamine agonists resistance. Acta Neuropathol Commun 2025; 13:84. [PMID: 40281543 PMCID: PMC12023431 DOI: 10.1186/s40478-025-01986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Prolactinoma is the most prevalent pituitary neuroendocrine tumor and dopamine agonists (DAs) targeting dopamine D2 receptor (DRD2) are recommended as the first-line treatment. However, varying degrees of DA resistance limit patient benefit. Our study used transcriptome sequencing of surgical tumor samples and found abnormal cholesterol metabolism in prolactinoma, especially in DA-resistant tumors. We found that cholesterol significantly enhanced the resistance of prolactinoma MMQ cell lines to cabergoline in vitro and in vivo xenografts. Further, cholesterol did not affect the total protein level of DRD2, but changed the distribution of DRD2 with downregulation of its membrane abundance and upregulation of cytoplasmic localization. Mechanistically, immunoprecipitation combined with mass spectrometry revealed cholesterol increased binding affinity between DRD2 and stress granules (SGs) core proteins, such as G3BP1. Western blot experiment of G3BP1 and fluorescent probe were used to confirm the formation of SGs after cholesterol treatment in MMQ cells and tumor xenografts, as well as in surgical tumor samples. Interfering the formation of SGs by overexpressing of USP10 and using the small molecule ISRIB reversed cholesterol's effect on DRD2 cellular distribution and DA resistance in MMQ cells. Finally, a non-specificity inhibitor of SGs, anisomycin identified by drug repositioning analysis, could attenuate cholesterol-induced cabergoline resistance in vitro. Taken together, our findings suggest that abnormal cholesterol metabolism reduces DRD2 membrane localization via stress granules formation, which may be an important reason for the DA resistance of prolactinoma patients.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Huachun Yin
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing, 400038, China
| | - Xiangdong Pei
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Yuan Zhang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Chengcheng Wang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Xin Zheng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hong Liang
- Department of Neurosurgery, The Second People's Hospital of Jiulongpo District, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| |
Collapse
|
4
|
Van den Bossche V, Vignau J, Vigneron E, Rizzi I, Zaryouh H, Wouters A, Ambroise J, Van Laere S, Beyaert S, Helaers R, van Marcke C, Mignion L, Lepicard EY, Jordan BF, Guilbaud C, Lowyck O, Dahou H, Mendola A, Desgres M, Aubert L, Gerin I, Bommer GT, Boidot R, Vermonden P, Warnant A, Larondelle Y, Machiels JP, Feron O, Schmitz S, Corbet C. PPARα-mediated lipid metabolism reprogramming supports anti-EGFR therapy resistance in head and neck squamous cell carcinoma. Nat Commun 2025; 16:1237. [PMID: 39890801 PMCID: PMC11785796 DOI: 10.1038/s41467-025-56675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy (cetuximab) shows a limited clinical benefit for patients with locally advanced or recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), due to the frequent occurrence of secondary resistance mechanisms. Here we report that cetuximab-resistant HNSCC cells display a peroxisome proliferator-activated receptor alpha (PPARα)-mediated lipid metabolism reprogramming, with increased fatty acid uptake and oxidation capacities, while glycolysis is not modified. This metabolic shift makes cetuximab-resistant HNSCC cells particularly sensitive to a pharmacological inhibition of either carnitine palmitoyltransferase 1A (CPT1A) or PPARα in 3D spheroids and tumor xenografts in mice. Importantly, the PPARα-related gene signature, in human clinical datasets, correlates with lower response to anti-EGFR therapy and poor survival in HNSCC patients, thereby validating its clinical relevance. This study points out lipid metabolism rewiring as a non-genetic resistance-causing mechanism in HNSCC that may be therapeutically targeted to overcome acquired resistance to anti-EGFR therapy.
Collapse
Affiliation(s)
- Valentin Van den Bossche
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Julie Vignau
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Engy Vigneron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabella Rizzi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit (TCRU), GZA Ziekenhuizen, Antwerp, Belgium
| | - Simon Beyaert
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Cédric van Marcke
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Elise Y Lepicard
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Olivier Lowyck
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Hajar Dahou
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Antonella Mendola
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Léo Aubert
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges‑François Leclerc Cancer Center‑UNICANCER, 21079, Dijon, France
- ICMUB UMR CNRS 6302, 21079, Dijon, France
| | - Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Aurélien Warnant
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-Pascal Machiels
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium
| | - Sandra Schmitz
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium.
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium.
| |
Collapse
|
5
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Feng T, Zhang H, Zhou Y, Zhu Y, Shi S, Li K, Lin P, Chen J. Roles of posttranslational modifications in lipid metabolism and cancer progression. Biomark Res 2024; 12:141. [PMID: 39551780 PMCID: PMC11571667 DOI: 10.1186/s40364-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Ping Lin
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China.
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
7
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
9
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
10
|
Wang G, Su H, Guo Z, Li H, Jiang Z, Cao Y, Li C. Rubus Occidentalis and its bioactive compounds against cancer: From molecular mechanisms to translational advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155029. [PMID: 38417241 DOI: 10.1016/j.phymed.2023.155029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cancer ranks as the second leading cause of death globally, imposing a significant public health burden. The rise in cancer resistance to current therapeutic agents underscores the potential role of phytotherapy. Black raspberry (BRB, Rubus Occidentalis) is a fruit rich in anthocyanins, ellagic acid, and ellagitannins. Accumulating evidence suggests that BRB exhibits promising anticancer effects, positioning it as a viable candidate for phytotherapy. PURPOSE This article aims to review the existing research on BRB regarding its role in cancer prevention and treatment. It further analyzes the effective components of BRB, their metabolic pathways, and the potential mechanisms underlying the fruit's anticancer effects. METHODS Ovid MEDLINE, EMBASE, Web of Science, and CENTRAL were searched through the terms of Black Raspberry, Raspberry, and Rubus Occidentali up to January 2023. Two reviewers performed the study selection by screening the title and abstract. Full texts of potentially eligible studies were retrieved to access the details. RESULTS Out of the 767 articles assessed, 73 papers met the inclusion criteria. Among them, 63 papers investigated the anticancer mechanisms, while 10 conducted clinical trials focusing on cancer treatment or prevention. BRB was found to influence multiple cancer hallmarks by targeting various pathways. Decomposition of free radicals and regulation of estrogen metabolism, BRB can reduce DNA damage caused by reactive oxygen species. BRB can also enhance the function of nucleotide excision repair to repair DNA lesions. Through regulation of epigenetics, BRB can enhance the expression of tumor suppressor genes, inducing cell cycle arrest, and promoting apoptosis and pyroptosis. BRB can reduce the energy and nutrients supply to the cancer nest by inhibiting glycolysis and reducing angiogenesis. The immune and inflammatory microenvironment surrounding cancer cells can also be ameliorated by BRB, inhibiting cancer initiation and progression. However, the limited bioavailability of BRB diminishes its anticancer efficacy. Notably, topical applications of BRB, such as gels and suppositories, have demonstrated significant clinical benefits. CONCLUSION BRB inhibits cancer initiation, progression, and metastasis through diverse anticancer mechanisms while exhibiting minimal side effects. Given its potential, BRB emerges as a promising phototherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, No.29, Jiuyanqiao Wangjiang Rd., Chengdu 610064, China
| | - Zijian Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| |
Collapse
|
11
|
Shin D, Lee J, Roh JL. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett 2024; 585:216645. [PMID: 38280477 DOI: 10.1016/j.canlet.2024.216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
The TP53 gene, encoding the p53 protein, has been a focal point of research since its 1979 discovery, playing a crucial role in tumor suppression. Ferroptosis, a distinct form of cell death characterized by lipid peroxide accumulation, has gained prominence since its recognition in 2012. Recent studies have unveiled an intriguing connection between p53 and ferroptosis, with implications for cancer therapy. Recent research underscores p53 as a novel target for cancer therapy, influencing key metabolic processes in ferroptosis. Notably, p53 represses the expression of the cystine-glutamate antiporter SLC7A11, supporting p53-mediated tumor growth suppression. Furthermore, under metabolic stress, p53 mitigates ferroptosis sensitivity, aiding cancer cells in coping and delaying cell death. This dynamic interplay between p53 and ferroptosis has far-reaching implications for various diseases, particularly cancer. This review provides a comprehensive overview of ferroptosis in cancer cells, elucidating p53's role in regulating ferroptosis, and explores the potential of targeting p53 to induce ferroptosis for cancer therapy. Understanding this complex relationship between p53 and ferroptosis offers a promising avenue for developing innovative cancer treatments.
Collapse
Affiliation(s)
- Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
12
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
13
|
Wu YP, Zheng WC, Huang Q, Huang XY, Lin F, Ke ZB, You Q, Zheng QS, Wei Y, Xue XY, Xu N. ND630 controls ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. J Transl Med 2023; 21:877. [PMID: 38049827 PMCID: PMC10694902 DOI: 10.1186/s12967-023-04760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND ND630 is believed to be a new therapy pharmacologic molecule in targeting the expression of ACACA and regulating the lipid metabolism. However, the function of ND630 in prostate cancer remains unknown. KIF18B, as an oncogene, plays a vital role in prostate cancer progression. circKIF18B_003 was derived from oncogene KIF18B and was markedly overexpressed in prostate cancer tissues. We speculated that oncoprotein KIF18B-derived circRNA circKIF18B_003 might have roles in prostate cancer promotion. The aim of this study was to validate whether ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. METHODS RT-qPCR was used to analyze the expression of circKIF18B_003 in prostate cancer cell lines and prostate cancer samples. circKIF18B_003 expression was modulated in prostate cancer cells using circKIF18B_003 interference or overexpression plasmid. We examined the function and effects of circKIF18B_003 in prostate cancer cells using CCK-8, colony formation, wound healing, and Transwell invasion assays and xenograft models. Fluorescence in situ hybridization (FISH) was performed to evaluate the localization of circKIF18B_003. RNA immunoprecipitation (RIP), RNA pull down, and luciferase reporter assay were performed to explore the potential mechanism of circKIF18B_003. RESULTS The function of ND630 was determined in this study. circKIF18B_003 was overexpressed in prostate cancer tissues, and overexpression of circKIF18B_003 was associated with poor survival outcome of prostate cancer patients. The proliferation, migration, and invasion of prostate cancer cells were enhanced after up-regulation of circKIF18B_003. circKIF18B_003 is mainly located in the cytoplasm of prostate cancer cells, and the RIP and RNA pull down assays confirmed that circKIF18B_003 could act as a sponge for miR-370-3p. Further study demonstrated that up-regulation of circKIF18B_003 increased the expression of ACACA by sponging miR-370-3p. The malignant ability of prostate cancer cells enhanced by overexpression of circKIF18B_003 was reversed by the down-regulation of ACACA. We found that overexpression of circKIF18B_003 was associated with lipid metabolism, and a combination of ND-630 and docetaxel markedly attenuated tumor growth. CONCLUSION ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. ND630 and circKIF18B_003 may represent a novel target for prostate cancer.
Collapse
Affiliation(s)
- Yu-Peng Wu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qi Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qi You
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
14
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
15
|
Wu Q, Li J, Hao S, Guo Y, Li Z, Liu Z, Xuan H. Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism. Biomed Pharmacother 2023; 168:115766. [PMID: 37864895 DOI: 10.1016/j.biopha.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is one of the main active ingredients of propolis with good antitumor activities. However, the potential effects of CAPE on the glycolysis and lipid metabolism of tumor cells are unclear. Here, the anti-tumor effects of CAPE on MDA-MB-231 cells in an inflammatory microenvironment stimulated with lipopolysaccharide (LPS) were studied by estimating the inflammatory mediators and the key factors of glycolysis and lipid metabolism. The CAPE treatment obviously inhibited proliferation, migration, invasion, and angiogenesis, and the mitochondrial membrane potential was decreased in the LPS-stimulated MDA-MB-231 cells. Compared with the LPS group, pro-inflammatory mediators, including toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), NF-kappa-B inhibitor alpha (IκBα), interleukin (IL)-1β, and IL-6, as well as interleukin-1 receptor-associated kinase 4 (IRAK4), declined after the CAPE treatment. Additionally, CAPE significantly down-regulated the levels of glucose transporter 1 (GLUT1), glucose transporter 3 (GLUT3), and the key enzymes of glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA). Moreover, CAPE treatment decreased the levels of key lipid metabolism proteins, including acetyl coenzyme A carboxylase (ACC), fatty acid synthase (FASN), and free fatty acid (FFA)-transported-related protein CD36. After adding the glycolysis inhibitor 2-deoxy-D-glucose (2-DG), the inhibitory effects of CAPE on cell viability and migration were not significant when compared with the LPS group. In summary, the antitumor activity of CAPE in vitro was mainly via the modulation of the inflammatory mediators and the inhibition of key proteins and enzymes in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Qian Wu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Junya Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yuyang Guo
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Zongze Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Zhengxin Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
16
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
17
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
19
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Lv Y, Wang W, Liu Y, Yi B, Chu T, Feng Z, Liu J, Wan X, Wang Y. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 2023; 40:339-356. [PMID: 37326719 DOI: 10.1007/s10585-023-10218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.
Collapse
Affiliation(s)
- Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Wenhong Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Liu
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
21
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Qu DC, Neu D, Khawaja ZQ, Wang R, Bartels CF, Lovrenert K, Chan ER, Hill-Baskin AE, Scacheri PC, Berger NA. Epigenetic effects of high-fat diet on intestinal tumorigenesis in C57BL/6J- Apc Min/+ mice. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2023; 7:3-16. [PMID: 36817228 PMCID: PMC9937564 DOI: 10.20517/jtgg.2022.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim Obesity and obesogenic diets might partly accelerate cancer development through epigenetic mechanisms. To determine these early effects, we investigated the impact of three days of a high-fat diet on epigenomic and transcriptomic changes in Apc Min/+ murine intestinal epithelia. Method ChIP-Seq and RNA-Seq were performed on small intestinal epithelia of WT and Apc Min/+ male mice fed high-fat diet (HFD) or low-fat diet (LFD) for three days to identify genomic regions associated with differential H3K27ac levels as a marker of variant enhancer loci (VELs) as well as differentially expressed genes (DEGs). Results Regarding epigenetic and transcriptomic changes, diet type (LFD vs. HFD) showed a significant impact, and genotype (WT vs.Apc Min/+) showed a small impact. Compared to LFD, HFD resulted in 1306 gained VELs, 230 lost VELs, 133 upregulated genes, and 127 downregulated genes in WT mice, with 1056 gained VELs, 371 lost VELs, 222 upregulated genes, and 182 downregulated genes in Apc Min/+ mice. Compared to the WT genotype, the Apc Min/+ genotype resulted in zero changed VELs for either diet type group, 21 DEGs for LFD, and 48 DEGs for HFD. Most gained VELs, and upregulated genes were associated with lipid metabolic processes. Gained VELs were also associated with Wnt signaling. Downregulated genes were associated with antigen presentation and processing. Conclusion Three days of HFD-induced epigenomic and transcriptomic changes involving metabolic and immunologic pathways that may promote tumor growth in the genetically predisposed murine intestine without affecting key cancer signaling pathways.
Collapse
Affiliation(s)
- Dan C Qu
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Devin Neu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zain Q Khawaja
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ruoyu Wang
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cynthia F Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anne E Hill-Baskin
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Yu Y, Nie Q, Wang Z, Di Y, Chen X, Ren K. Targeting acetyl-CoA carboxylase 1 for cancer therapy. Front Pharmacol 2023; 14:1129010. [PMID: 36843935 PMCID: PMC9950103 DOI: 10.3389/fphar.2023.1129010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Metabolic adaptation is an emerging hallmark of tumors. De novo fatty acid synthesis is an important metabolic process to produce metabolic intermediates for energy storage, biosynthesis of membrane lipids and generation of signaling molecules. Acetyl-CoA carboxylase 1 (ACC1) is a critical enzyme in the fatty acid synthesis, which carboxylates acetyl-CoA carboxylic acid to form malonyl-CoA. The role of acetyl-CoA carboxylase 1 in fatty acid synthesis makes it a promising therapeutic target for various metabolic diseases such as non-alcoholic fatty liver disease, obesity and diabetes. Tumors have a high energy flow and a strong dependence on fatty acid synthesis. Thus, acetyl-CoA carboxylase inhibition has become a potential choice for anti-tumor therapy. In this review, we first introduced the structure and expression pattern of Acetyl-CoA carboxylase 1. We also discussed the molecular mechanisms of acetyl-CoA carboxylase 1 in the initiation and progression of various cancer types. Furthermore, acetyl-CoA carboxylase1 inhibitors has also been discussed. Collectively, we summarized the interplay between acetyl-CoA carboxylase 1 and tumorigenesis, indicating acetyl-CoA carboxylase 1 as a promising therapeutic target for tumor management.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingzhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyi Wang
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Zhang Z, Bao C, Jiang L, Wang S, Wang K, Lu C, Fang H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front Oncol 2023; 12:1054233. [PMID: 36686803 PMCID: PMC9854130 DOI: 10.3389/fonc.2022.1054233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Resistance to drug treatment is a critical barrier in cancer therapy. There is an unmet need to explore cancer hallmarks that can be targeted to overcome this resistance for therapeutic gain. Over time, metabolic reprogramming has been recognised as one hallmark that can be used to prevent therapeutic resistance. With the advent of metabolomics, targeting metabolic alterations in cancer cells and host patients represents an emerging therapeutic strategy for overcoming cancer drug resistance. Driven by technological and methodological advances in mass spectrometry imaging, spatial metabolomics involves the profiling of all the metabolites (metabolomics) so that the spatial information is captured bona fide within the sample. Spatial metabolomics offers an opportunity to demonstrate the drug-resistant tumor profile with metabolic heterogeneity, and also poses a data-mining challenge to reveal meaningful insights from high-dimensional spatial information. In this review, we discuss the latest progress, with the focus on currently available bulk, single-cell and spatial metabolomics technologies and their successful applications in pre-clinical and translational studies on cancer drug resistance. We provide a summary of metabolic mechanisms underlying cancer drug resistance from different aspects; these include the Warburg effect, altered amino acid/lipid/drug metabolism, generation of drug-resistant cancer stem cells, and immunosuppressive metabolism. Furthermore, we propose solutions describing how to overcome cancer drug resistance; these include early detection during cancer initiation, monitoring of clinical drug response, novel anticancer drug and target metabolism, immunotherapy, and the emergence of spatial metabolomics. We conclude by describing the perspectives on how spatial omics approaches (integrating spatial metabolomics) could be further developed to improve the management of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Lee J, Roh JL. Ferroptosis induction via targeting metabolic alterations in head and neck cancer. Crit Rev Oncol Hematol 2023; 181:103887. [PMID: 36442748 DOI: 10.1016/j.critrevonc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Ferroptosis is a newly regulated cell death induced by the accumulation of iron-mediated lipid peroxidation. The alteration of cancer metabolism may contribute to proliferation, metastasis, and treatment resistance in human cancers, implicating the sensitivity to ferroptosis induction. Altered metabolism in cancer cells regulates oxidative stresses and changes metabolism intermediates, contributing to their deregulated growth and proliferation. Cancer metabolic changes toward the elevation of cellular free iron and polyunsaturated fatty acids sensitize cancer cells to lipid peroxidation toxicity tightly linked to ferroptosis. The altered metabolism in cancers can be served as a promising target to reverse cancer therapeutic resistance by ferroptosis induction to selectively kill cancer cells while sparing normal cells. The role of mitochondria and lipid metabolism in inducing ferroptosis in head and neck cancer (HNC) has been elucidated in previous studies. Ferroptosis is receiving attention in cancer research as treating cancers altering cellular metabolism and refractory from conventional therapies. More in-depth studies are needed to develop highly therapeutic drugs and practical methods to induce ferroptosis in diverse cancer cells and tumor microenvironments effectively. Therefore, this review intends to understand the altered metabolism and find new therapeutic possibilities using ferroptosis in HNC.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
26
|
Tan SK, Hougen HY, Merchan JR, Gonzalgo ML, Welford SM. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nat Rev Urol 2023; 20:48-60. [PMID: 36192502 PMCID: PMC10826284 DOI: 10.1038/s41585-022-00654-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Lipid droplet formation is a defining histological feature in clear-cell renal cell carcinoma (ccRCC) but the underlying mechanisms and importance of this biological behaviour have remained enigmatic. De novo fatty acid (FA) synthesis, uptake and suppression of FA oxidation have all been shown to contribute to lipid storage, which is a necessary tumour adaptation rather than a bystander effect. Clinical studies and mechanistic investigations into the roles of different enzymes in FA metabolism pathways have revealed new metabolic vulnerabilities that hold promise for clinical effect. Several metabolic alterations are associated with worse clinical outcomes in patients with ccRCC, as lipogenic genes drive tumorigenesis. Enzymes involved in the intrinsic FA metabolism pathway include FA synthase, acetyl-CoA carboxylase, ATP citrate lyase, stearoyl-CoA desaturase 1, cluster of differentiation 36, carnitine palmitoyltransferase 1A and the perilipin family, and each might be potential therapeutic targets in ccRCC owing to the link between lipid deposition and ccRCC risk. Adipokines and lipid species are potential biomarkers for diagnosis and treatment monitoring in patients with ccRCC. FA metabolism could potentially be targeted for therapeutic intervention in ccRCC as small-molecule inhibitors targeting the pathway have shown promising results in preclinical models.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen Y Hougen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mark L Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
27
|
Aragón-Herrera A, Couselo-Seijas M, Feijóo-Bandín S, Anido-Varela L, Moraña-Fernández S, Tarazón E, Roselló-Lletí E, Portolés M, Martínez-Sande JL, García-Seara J, Álvarez E, González-Juanatey JR, Rodríguez-Mañero M, Eiras S, Lago F. Relaxin-2 plasma levels in atrial fibrillation are linked to inflammation and oxidative stress markers. Sci Rep 2022; 12:22287. [PMID: 36566255 PMCID: PMC9789945 DOI: 10.1038/s41598-022-26836-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Relaxin-2 exerts many favourable cardiovascular effects in pathological circumstances such as atrial fibrillation (AF) and heart failure, but the mechanisms underlying its actions are not completely understood. Since inflammation and fibrosis are pivotal processes in the pathogenesis of AF, our aim was to study the relationship between relaxin-2 plasma levels in left atrium (LA) and peripheral vein with molecules implicated in fibrosis, inflammation and oxidative stress in AF patients, and to evaluate the anti-fibrotic ability of relaxin-2 in normal human atrial cardiac fibroblasts (NHCF-A). Peripheral vein relaxin-2 plasma levels were higher than LA relaxin-2 plasma levels in men while, in women, peripheral vein relaxin-2 levels were increased compared to men. AF patients with higher levels of relaxin-2 exhibited a reduction in H2O2 plasma levels and in mRNA levels of alpha-defensin 3 (DEFA3) and IL-6 in leucocytes from LA plasma. Relaxin-2-in-vitro treatment inhibited NHCF-A migration and decreased mRNA and protein levels of the pro-fibrotic molecule transforming growth factor-β1 (TGF-β1). Our results support an association between relaxin-2 and molecules involved in fibrosis, inflammation and oxidative stress in AF patients, and reinforce an anti-fibrotic protective role of this hormone in NHCF-A; strengthening the relevance of relaxin-2 in AF physiopathology, diagnosis and treatment.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Marinela Couselo-Seijas
- Translational Cardiology Group, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Estefanía Tarazón
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Avda. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Esther Roselló-Lletí
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Avda. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Manuel Portolés
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Cardiocirculatory Unit, Health Institute La Fe University Hospital (IIS La Fe), Avda. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José Luis Martínez-Sande
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Arrhytmia Unit, University Clinical Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Javier García-Seara
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Arrhytmia Unit, University Clinical Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Moisés Rodríguez-Mañero
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
- Arrhytmia Unit, University Clinical Hospital of Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sonia Eiras
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
- Translational Cardiology Group, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| |
Collapse
|
28
|
Geng J, Zhang Y, Meng Q, Yan H, Wang Y. The role of liver kinase B1 in tumor progression through regulation of lipid metabolism. Clin Transl Oncol 2022; 24:2045-2054. [PMID: 35896782 PMCID: PMC9522762 DOI: 10.1007/s12094-022-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 10/30/2022]
Abstract
The somatic mutation of liver kinase B1 (LKB1) has been implicated in various tumors, which is reflected in the survival, proliferation, and metastasis of tumor cells. However, the regulation of LKB1 in lipid metabolism, a process that is involved in tumor progression is not completely clear. We conclude that LKB1 deficiency results in abnormal expression and activation of multiple molecules related to lipid metabolism which locate downstream of AMP-activated protein kinase (AMPK) or salt-induced kinase (SIK). Abnormal lipid metabolism induced by LKB1 deficiency contributes to the proliferation and metastasis of tumor cells through energy regulation.
Collapse
Affiliation(s)
- Jialu Geng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Hang Yan
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
ACACB is a novel metabolism-related biomarker in the prediction of response to cetuximab therapy inmetastatic colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1671-1683. [PMID: 36111743 PMCID: PMC9828296 DOI: 10.3724/abbs.2022121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cetuximab is one of the most valuable targeted therapy monoclonal antibodies in the treatment of metastatic colorectal cancer (CRC). However, the mechanisms affecting cetuximab resistance in CRC treatment remain unclear. Metabolism, especially fatty acid metabolism, has been reported to play an important role in tumor treatment. The correlation between cetuximab resistance and metabolism and whether it can be a new biomarker to evaluate the sensitivity of cetuximab in CRC treatment still need to be further explored. In this study, we perform a comprehensive analysis to confirm the relationship between fatty acid metabolism and cetuximab resistance, and the differentially expressed genes (DEGs) related to cetuximab drug resistance in CRC are screened by bioinformatics technology. We find that acetyl-CoA carboxylase beta (ACACB), ADH1C, CES1, MGLL, FMO5, and GPT are the hub DEGs, and ACACB is the most important biomarker among them. In addition, we systematically analyze the role of ACACB in the tumorigenesis of CRC, including tissue expression, CRC cell growth, cetuximab sensitivity, and potential downstream pathways, by using bioinformatics techniques, in vitro experiments and clinical cohort validation. Our results confirm that cetuximab resistance is correlated with metabolism. ACACB can lead to decreased sensitivity to cetuximab in CRC, and its mechanism may be related to EGFR phosphorylation, which could affect the activation of the mTOR/Akt signaling pathway and regulation of CDT1-, cyclin D1-, and p21-related cell cycle modulation.
Collapse
|
30
|
Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol 2022; 10:875318. [PMID: 35646898 PMCID: PMC9136290 DOI: 10.3389/fcell.2022.875318] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is one of the primary treatments for most human cancers. Despite great progress in cancer therapeutics, chemotherapy continues to be important for improving the survival of cancer patients, especially for those who has unresectable metastatic tumors or fail to respond to immunotherapy. However, intrinsic or acquired chemoresistance results in tumor recurrence, which remains a major obstacle in anti-cancer treatment. The high prevalence of chemoresistant cancer makes it urgent to deepen our understanding on chemoresistance mechanisms and to develop novel therapeutic strategies. Multiple mechanisms, including drug efflux, enhanced DNA damage reparability, increased detoxifying enzymes levels, presence of cancer stem cells (CSCs), epithelial mesenchymal transition (EMT), autophagy, ferroptosis and resistance to apoptosis, underlie the development of chemoresistance. Recently, accumulating evidence suggests that lipid metabolism alteration is closely related to drug resistance in tumor. Targeting lipid metabolism in combination with traditional chemotherapeutic drugs is a promising strategy to overcome drug resistance. Therefore, this review compiles the current knowledge about aberrant lipid metabolism in chemoresistant cancer, mainly focusing on aberrant fatty acid metabolism, and presents novel therapeutic strategies targeting altered lipid metabolism to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ruixue Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
31
|
Marczyk M, Gunasekharan V, Casadevall D, Qing T, Foldi J, Sehgal R, Shan NL, Blenman KRM, O'Meara TA, Umlauf S, Surovtseva YV, Muthusamy V, Rinehart J, Perry RJ, Kibbey R, Hatzis C, Pusztai L. Comprehensive Analysis of Metabolic Isozyme Targets in Cancer. Cancer Res 2022; 82:1698-1711. [PMID: 35247885 PMCID: PMC10883296 DOI: 10.1158/0008-5472.can-21-3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming is a hallmark of malignant transformation, and loss of isozyme diversity (LID) contributes to this process. Isozymes are distinct proteins that catalyze the same enzymatic reaction but can have different kinetic characteristics, subcellular localization, and tissue specificity. Cancer-dominant isozymes that catalyze rate-limiting reactions in critical metabolic processes represent potential therapeutic targets. Here, we examined the isozyme expression patterns of 1,319 enzymatic reactions in 14 cancer types and their matching normal tissues using The Cancer Genome Atlas mRNA expression data to identify isozymes that become cancer-dominant. Of the reactions analyzed, 357 demonstrated LID in at least one cancer type. Assessment of the expression patterns in over 600 cell lines in the Cancer Cell Line Encyclopedia showed that these reactions reflect cellular changes instead of differences in tissue composition; 50% of the LID-affected isozymes showed cancer-dominant expression in the corresponding cell lines. The functional importance of the cancer-dominant isozymes was assessed in genome-wide CRISPR and RNAi loss-of-function screens: 17% were critical for cell proliferation, indicating their potential as therapeutic targets. Lists of prioritized novel metabolic targets were developed for 14 cancer types; the most broadly shared and functionally validated target was acetyl-CoA carboxylase 1 (ACC1). Small molecule inhibition of ACC reduced breast cancer viability in vitro and suppressed tumor growth in cell line- and patient-derived xenografts in vivo. Evaluation of the effects of drug treatment revealed significant metabolic and transcriptional perturbations. Overall, this systematic analysis of isozyme expression patterns elucidates an important aspect of cancer metabolic plasticity and reveals putative metabolic vulnerabilities. SIGNIFICANCE This study exploits the loss of metabolic isozyme diversity common in cancer and reveals a rich pool of potential therapeutic targets that will allow the repurposing of existing inhibitors for anticancer therapy. See related commentary by Kehinde and Parker, p. 1695.
Collapse
Affiliation(s)
- Michal Marczyk
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - David Casadevall
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Tao Qing
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Julia Foldi
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Raghav Sehgal
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Naing Lin Shan
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Kim R M Blenman
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Tess A O'Meara
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Sheila Umlauf
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Viswanathan Muthusamy
- Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Rachel J Perry
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Richard Kibbey
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Christos Hatzis
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol 2022; 12:836058. [PMID: 35359351 PMCID: PMC8963101 DOI: 10.3389/fonc.2022.836058] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the β-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Sha Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yugang Wang,
| |
Collapse
|
33
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Yoo HY, Park SY, Chang SY, Kim SH. Regulation of Butyrate-Induced Resistance through AMPK Signaling Pathway in Human Colon Cancer Cells. Biomedicines 2021; 9:biomedicines9111604. [PMID: 34829834 PMCID: PMC8615665 DOI: 10.3390/biomedicines9111604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Butyrates inhibit cell growth in colon cancer cells by inhibiting histone deacetylases. However, chronic exposure to butyrates induces butyrate resistance in colon cancer cells. The mechanism underlying the acquisition of resistance is not yet fully understood. Here, butyrate-resistant (BR) colon cancer cells were developed in HCT116, HT29, and SW480 human colon cancer cells and were confirmed by the increase in the inhibitory concentrations of cell growth by 50% (IC50) compared to their respective parental (PT) cells. Chronic exposure to butyrate induced autophagy via higher expression of Beclin-1 and LC3B-II. The AMP-activated protein kinase (AMPK) was downregulated along with the activation of Akt and mammalian target of rapamycin (mTOR) and decrease in acetyl-CoA carboxylase (ACC) in BR colon cancer cells compared to those in their respective PT cells. Activation of AMPK by AICAR treatment in BR colon cancer cells suppressed cell proliferation by inhibiting Akt and mTOR and activating ACC. Taken together, chronic exposure to butyrate increased butyrate resistance in human colon cancer by inducing protective autophagy through the downregulation of AMPK/ACC and activation of Akt/mTOR signaling. Activation of AMPK restored sensitivity to butyrate by the inhibition of Akt/mTOR, suggesting that AMPK could be a therapeutic target for BR colon cancers.
Collapse
Affiliation(s)
| | | | | | - So Hee Kim
- Correspondence: ; Tel.: +82-31-219-3451; Fax: +82-31-219-3435
| |
Collapse
|
35
|
Gong X, Cui HT, Bian YH, Li YT, Wang YX, Peng YF, Wen WB, Li K, Wang HW, Zhang ZY, Zheng F. Ethanol extract of Ardisiae Japonicae Herba inhibits hepatoma carcinoma cell proliferation in vitro through regulating lipid metabolism. CHINESE HERBAL MEDICINES 2021; 13:410-415. [PMID: 36118924 PMCID: PMC9476705 DOI: 10.1016/j.chmed.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of this study is to discover the possible working mechanisms of Ardisiae Japonicae Herba (AJH) on hepatoma carcinoma (HCC). METHODS In this study, ethanol extract of AJH was prepared and used to treat HCC cell in vitro. Furthermore, a genomic wide RNA sequencing (RNA-seq) was performed to screen deregulated genes in HCC cells after the treatment of AJH extract. The gene and protein expression related to lipid metabolism in HCC cells were also investigated to validate the results obtained from RNA-seq. RESULTS AJH extract could inhibit HCC cell proliferation in vitro. RNA-seq analysis has identified 1,601 differentially expressed genes (DEGs, fold change ≥ 2.0 or fold change ≤ 0.5, P < 0.05) in HCC after AJH extract treatment, which included 225 up-regulated genes and 1,376 down-regulated genes. KEGG pathway analysis of DEGs demonstrated that lipid metabolism was a potential pathway related to AJH treatment. In agreement with the RNA-seq data, qPCR and Western-blot analysis indicated that expression of genes and proteins related to lipid metabolism (SREBP1, ACC, ACLY and FASN) were significantly down-regulated in AJH treatment group as compared with the control group. Furthermore, AJH extract could also decrease lipid contents and cellular free fatty acid levels in HCC cells. CONCLUSION Ethanol extract of AJH could inhibit HCC cell proliferation in vitro, the possible mechanism may be related to the inhibition of lipid metabolism.
Collapse
Affiliation(s)
- Xue Gong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huan-tian Cui
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 250100, China
| | - Yu-hong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-ting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang-xue Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan-fei Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei-bo Wen
- First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, China
| | - Kuan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong-wu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhai-yi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fang Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
36
|
Zhirnov VV, Velihina YS, Mitiukhin OP, Brovarets VS. Intrinsic drug potential of oxazolo[5,4-d]pyrimidines and oxazolo[4,5-d]pyrimidines. Chem Biol Drug Des 2021; 98:561-581. [PMID: 34148293 DOI: 10.1111/cbdd.13911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The oxazole and pyrimidine rings are widely displayed in natural products and synthetic molecules. They are known as the prime skeletons for drug discovery. On the account of structural and chemical diversity, oxazole and pyrimidine-based molecules, as central scaffolds, not only provide different types of interactions with various receptors and enzymes, showing broad biological activities, but also occupy a core position in medicinal chemistry, showing their importance for development and discovery of newer potential therapeutic agents (Curr Top Med Chem, 16, 2016, 3133; Int J Pharm Pharm Sci, 8, 2016, 8; BMC Chem, 13, 2019, 44). For a long time, relatively little attention has been paid to their fused rings that are oxazolopyrimidines, whose chemical structure is similar to that of natural purines because probably none of these compounds were found in natural products or their biological activities turned out to be unexpressed (Bull Chem Soc Jpn, 43, 1970, 187). Recently, however, a significant number of studies have been published on the biological properties of oxazolo[5,4-d]pyrimidines, showing their significant activity as agonists and antagonists of signaling pathways involved in the regulation of the cell life cycle, whereas oxazolo[4,5-d]pyrimidines, on the contrary, represent a poorly studied class of compounds. Limited access to this scaffold has resulted in a corresponding lack of biological research (Eur J Organ Chem, 18, 2018, 2148). Actually, oxazolo[5,4-d]pyrimidine is a versatile scaffold used for the design of bioactive ligands against enzymes and receptors. This review focuses on biological targets and associated pathogenetic mechanisms, as well as pathological disorders that can be modified by well-known oxazolopyrimidines that have been proven to date. Many molecular details of these processes are omitted here, which the interested reader will find in the cited literature. This work also does not cover the methods for the synthesis of the oxazolopyrimidines, which are exhaustively described by De Coen et al. (Eur J Organ Chem, 18, 2018, 2148). The review as well does not discuss the structure-activity relationship, which is described in detail in the original works and deliberately, whenever possible, cites not primary sources, but mostly relevant review articles, so that the reader who wants to delve into a particular problem will immediately receive more complete information. It is expected that the information presented in this review will help readers better understand the purpose of the development of oxazolopyrimidines and the possibility of their development as drugs for the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Victor V Zhirnov
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Yevheniia S Velihina
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Oleg P Mitiukhin
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr S Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
37
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
38
|
Zhang H, Liu S, Cai Z, Dong W, Ye J, Cai Z, Han Z, Liang Y, Zhuo Y, Luo Y, Zhu X, Deng Y, Zhang Y, Liu R, Feng Y, Lai J, Zhou R, Tan H, Zhong W. Down-regulation of ACACA suppresses the malignant progression of Prostate Cancer through inhibiting mitochondrial potential. J Cancer 2021; 12:232-243. [PMID: 33391420 PMCID: PMC7738814 DOI: 10.7150/jca.49560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background and aim: Silencing the expression of ACACA inhibits cell proliferation and induces apoptosis in prostate cancer LNCaP cells. However, the role of ACACA in other prostate cancer cells is not fully understood. Also, the effect of knocking down ACACA gene on mitochondria remains unclear. This study aimed to discover the specific role of ACACA gene in prostate cancer (PCa) DU145 and PC3 cells as well as its effects on mitochondrial potential. Methods: The expression of ACACA gene was detected in human prostate cancer tissue microarrays and assessed in different clinical stages. Then, prostate cancer cell lines with low expression of ACACA were constructed to evaluate the changes in their cell cycle, proliferation, and metabolites. The effect of ACACA on tumor formation in vivo was analyzed. Also, mito-ATP production, mitochondrial staining, and mtDNA, nicotinamide adenine dinucleotide (NAD+/NADH), and reactive oxygen species (ROS) levels were detected. Results: ACACA was expressed more strongly in prostate cancer tissues. The expression level of ACACA was higher in patients with advanced PCa than in patients with lower grades. The proliferation ability reduced in ACACA-knockdown cells. In in vivo tests, the tumor volume and weight were lower in the experimental group than in the control group. Mito-ATP production decreased significantly after ACACA suppression, mtDNA levels and MitoTracker staining decreased in the experimental group. The ratio of NAD+/NADH and ROS levels were upregulated in the experimental group. Conclusion: Targeting ACACA gene and mitochondria might serve as a novel therapy for prostate cancer treatment.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Shaoyou Liu
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhouda Cai
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Weimin Dong
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Zhiduan Cai
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yuxiang Liang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yangjia Zhuo
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yong Luo
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xuejin Zhu
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yulin Deng
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yixun Zhang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Ren Liu
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuanfa Feng
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Jiarun Lai
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Rui Zhou
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Huijing Tan
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.,Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China.,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, 510800, China
| |
Collapse
|
39
|
Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: Lipid Metabolism in Antitumoral Therapy Response and Resistance. Trends Cancer 2020; 7:198-213. [PMID: 33281098 DOI: 10.1016/j.trecan.2020.10.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Lipid metabolic reprogramming is an established trait of cancer metabolism that guides response and resistance to antitumoral therapies. Enhanced lipogenesis, increased lipid content (either free or stored into lipid droplets), and lipid-dependent catabolism sustain therapy desensitization and the emergence of a resistant phenotype of tumor cells exposed to chemotherapy or targeted therapies. Aberrant lipid metabolism, therefore, has emerged as a potential metabolic vulnerability of therapy-resistant cancers that could be exploited for therapeutic interventions or for identifying tumors more likely to respond to further lines of therapies. This review gathers recent findings on the role of aberrant lipid metabolism in influencing antitumoral therapy response and in sustaining the emergence of resistance.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
40
|
Xiong Y, Si Y, Feng Y, Zhuo S, Cui B, Zhang Z. Prognostic value of lipid metabolism-related genes in head and neck squamous cell carcinoma. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:196-209. [PMID: 33277966 PMCID: PMC7860527 DOI: 10.1002/iid3.379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered lipid metabolism is involved in the development of many tumors. However, the role of dissimilar lipid metabolism in head and neck squamous cell carcinoma (HNSCC) is not fully established. AIMS Here, we sought to determine the prognostic value of lipid metabolism-related genes in HNSCC. METHODS RNA-seq data and clinical features of 545 HNSCC cases were obtained from The Cancer Genome Atlas database. A regulatory network of transcription factors-lipid metabolism genes and a risk prognostic model of lipid metabolism-related genes was developed using bioinformatics and Cox regression modeling. We used tumor immune estimation resource to analyze immune cell infiltration in patients with HNSCC based on the prognostic index (PI) of lipid metabolism-related genes. RESULTS A total of 136 differentially expressed lipid metabolism genes were identified. Of these, 23 are related to prognosis. In addition to predicting HNSCC prognosis, 11 lipid metabolism-related genes (ARSI, CYP27B1, CYP2D6, DGKG, DHCR7, LPIN1, PHYH, PIP5K1B, PLA2G2D, RDH16, and TRIB3) also affect HNSCC clinical features (stage, gender, and pathological stage). The PI of lipid metabolism-related genes embodied the state of HNSCC tumor immune microenvironment.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Si
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yisi Feng
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shipei Zhuo
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bozhen Cui
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhigang Zhang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Lipid Regulatory Proteins as Potential Therapeutic Targets for Ovarian Cancer in Obese Women. Cancers (Basel) 2020; 12:cancers12113469. [PMID: 33233362 PMCID: PMC7700662 DOI: 10.3390/cancers12113469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a recognized global epidemic that is associated with numerous comorbidities including type II diabetes, cardiovascular disease, hypertension, and cancer incidence and progression. Ovarian cancer (OvCa) has a unique mechanism of intra-peritoneal metastasis, already present in 80% of women at the time of diagnosis, making it the fifth leading cause of death from gynecological malignancy. Meta-analyses showed that obesity increases the risk of OvCa progression, leads to enhanced overall and organ-specific tumor burden, and adversely effects survival of women with OvCa. Recent data discovered that tumors grown in mice fed on a western diet (40% fat) have elevated lipid levels and a highly increased expression level of sterol regulatory element binding protein 1 (SREBP1). SREBP1 is a master transcription factor that regulates de novo lipogenesis and lipid homeostasis, and induces lipogenic reprogramming of tumor cells. Elevated SREBP1 levels are linked to cancer cell proliferation and metastasis. This review will summarize recent findings to provide a current understanding of lipid regulatory proteins in the ovarian tumor microenvironment with emphasis on SREBP1 expression in the obese host, the role of SREBP1 in cancer progression and metastasis, and potential therapeutic targeting of SREBPs and SREBP-pathway genes in treating cancers, particularly in the context of host obesity.
Collapse
|
42
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
43
|
Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020; 42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucose, as the main consuming nutrient of the body, faces different destinies in cancer cells. Glycolysis, oxidative phosphorylation, and pentose phosphate pathways produce different glucose-derived metabolites and thus affect cells' bioenergetics differently. Tumor cells' dependency to aerobic glycolysis and other cancer-specific metabolism changes are known as the cancer hallmarks, distinct cancer cells from normal cells. Therefore, these tumor-specific characteristics receive the limelight as targets for cancer therapy. Glutamine, serine, and fatty acid oxidation together with 5-lipoxygenase are main pathways that have attracted lots of attention for cancer therapy. In this review, we not only discuss different tumor metabolism aspects but also discuss the metabolism roles in the promotion of cancer cells at different stages and their difference with normal cells. Besides, we dissect the inhibitors potential in blocking the main metabolic pathways to introduce the effective and non-effective inhibitors in the field.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Sadat Dokaneheifard
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Cruz-Gil S, Fernández LP, Sánchez-Martínez R, Gómez de Cedrón M, Ramírez de Molina A. Non-Coding and Regulatory RNAs as Epigenetic Remodelers of Fatty Acid Homeostasis in Cancer. Cancers (Basel) 2020; 12:E2890. [PMID: 33050166 PMCID: PMC7599548 DOI: 10.3390/cancers12102890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA-sncRNAs-long non-coding RNAs-lncRNAs-and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.
Collapse
Affiliation(s)
| | | | | | - Marta Gómez de Cedrón
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-67-213-49-21 (A.R.d.M.); Fax: +34-91-830-59-61 (A.R.d.M.)
| | - Ana Ramírez de Molina
- Laboratory of Molecular Oncology, IMDEA-Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain; (S.C.-G.); (L.P.F.); (R.S.-M.)
| |
Collapse
|
45
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
46
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
47
|
Ye H, Liu Y, Wu K, Luo H, Cui L. AMPK activation overcomes anti-EGFR antibody resistance induced by KRAS mutation in colorectal cancer. Cell Commun Signal 2020; 18:115. [PMID: 32703218 PMCID: PMC7376720 DOI: 10.1186/s12964-020-00584-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies (both acquired and intrinsic), owing to the amplification or mutation of the KRAS oncogene. However, the mechanism underlying this resistance is incompletely understood. Methods DLD1 cells with WT (+/−) or KRAS G13D mutant allele were treated with different concentrations of Cetuximab (Cet) or panitumumab (Pab) to study the mechanism underlying the KRAS mutation-induced resistance to anti-EGFR antibodies. The function of AMPK in KRAS mutation-induced resistance to anti-EGFR antibodies in CRC cells, and the regulatory role of Bcl-2 family proteins in DLD1 cells with WT or mutated KRAS upon AMPK activation were investigated. In addition, xenograft tumor models with the nude mouse using DLD1 cells with WT or mutated KRAS were established to examine the effects of AMPK activation on KRAS mutation-mediated anti-EGFR antibody resistance. Results Higher levels of AMPK activity in CRC cells with wild-type KRAS treated with anti-EGFR antibody resulted in apoptosis induction. In contrast, CRC cells with mutated KRAS showed lower AMP-activated protein kinase (AMPK) activity and decreased sensitivity to the inhibitory effect of anti-EGFR antibody. CRC cells with mutated KRAS showed high levels of glycolysis and produced an excessive amount of ATP, which suppressed AMPK activation. The knockdown of AMPK expression in CRC cells with WT KRAS produced similar effects to those observed in cells with mutated KRAS and decreased their sensitivity to cetuximab. On the contrary, the activation of AMPK by metformin (Met) or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could overcome the KRAS-induced resistance to the anti-EGFR antibody in vivo and in vitro. The activation of AMPK resulted in the inhibition of myeloid cell leukemia 1 (Mcl-1) translation through the suppression of the mammalian target of rapamycin (mTOR) pathway. Conclusion The results established herein indicate that targeting AMPK is a potentially promising and effective CRC treatment strategy. Video abstract
Collapse
Affiliation(s)
- Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China. .,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong Province, China.
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong Province, China
| |
Collapse
|
48
|
Dickinson A, Saraswat M, Joenväärä S, Agarwal R, Jyllikoski D, Wilkman T, Mäkitie A, Silén S. Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism - A Pilot study. Transl Oncol 2020; 13:100807. [PMID: 32559714 PMCID: PMC7303674 DOI: 10.1016/j.tranon.2020.100807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolic reprogramming is one hallmark of cancer. Lipid metabolism is regulated by numerous enzymes, many of which are targeted by several drugs on the market. We aimed to characterize the lipid alterations in oral squamous cell carcinoma (OSCC) as a basis for understanding its lipid metabolism, thus identifying potential therapeutic targets. We compared lipid species, classes, and glycerophospholipid (GPL) fatty acid species between paired tumor tissue and healthy oral tongue mucosa samples from 10 OSCC patients using a QExactive mass spectrometer. After filtering the 1370 lipid species identified, we analyzed 349 species: 71 were significantly increased in OSCC. The GPL metabolism pathway was most represented by the lipids differing in OSCC (P = .005). Cholesterol and the GPLs phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols were most significantly increased in OSCC tissue (FC 1.8, 2.0, 2.1, and 2.3 and, P = .003, P = .005, P = .002, P = .007). In conclusion, we have demonstrated a shift in the lipid metabolism in these OSCC samples by characterizing the detailed landscape. Predominantly, cholesterol and GPL metabolism were altered, suggesting that interactions with sterol regulatory binding proteins may be involved. The FA composition changes of the GPLs suggest increased de novo lipogenesis.
Collapse
Affiliation(s)
- Amy Dickinson
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, PO Box 263, FI-00029, HUS, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, FI-00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, FI-00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Rahul Agarwal
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniel Jyllikoski
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, PO Box 263, FI-00029, HUS, Helsinki, Finland
| | - Tommy Wilkman
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, PO Box 263, FI-00029, HUS, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Suvi Silén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, PO Box 263, FI-00029, HUS, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Construction and application of a "superplasmid" for enhanced production of antibiotics. Appl Microbiol Biotechnol 2019; 104:1647-1660. [PMID: 31853567 DOI: 10.1007/s00253-019-10283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
More than two-third of known antibiotics are produced by actinomycetes of the genus Streptomyces. Unfortunately, the production rate from Streptomyces natural antibiotic is extremely slow and thus cannot satisfy industrial demand. In this study, the production of antibiotics by Streptomyces is enhanced by a "superplasmid" which including global regulatory factors afsR, cyclic adenosine receptor protein (CRP), RNA polymerase beta subunits (rpoB) with point mutation and acetyl coenzyme A carboxylase gene (accA2BE), these elements are controlled by the PermE* promoter and then transfer into Streptomyces coelicolor M145, Streptomyces mutabilis TRM45540, Streptomyces hygroscopicus XM201, and Streptomyces hygroscopicus ATCC29253 by conjugation to generate exconjugants. NMR, HPLC, and LC-MS analyses revealed that the superplasmid led to the overproduction of actinorhodin (101.90%), undecylprodigiosin (181.60%) in S. coelicolor M145:: pLQ003, of rapamycin (110%), hygrocin A (163.4%) in S. hygroscopicus ATCC29253:: pLQ003, and of actinomycin D (11.78%) in S. mutabilis TRM45540:: pLQ003, and also to the downregulation of geldanamycin in S. hygroscopicus XM201, but we found that mutant strains in mutant strains of S. hygroscopicus XM201 with regulatory factors inserted showed several peaks that were not found in wild-type strains. The results of the present work indicated that the regulator net working in Streptomyces was not uniform, the superplasmid we constructed possibly caused this overproduction and downregulation in different Streptomyces.
Collapse
|
50
|
Mignion L, Acciardo S, Gourgue F, Joudiou N, Caignet X, Goebbels RM, Corbet C, Feron O, Bouzin C, Cani PD, Machiels JP, Schmitz S, Jordan BF. Metabolic Imaging Using Hyperpolarized Pyruvate-Lactate Exchange Assesses Response or Resistance to the EGFR Inhibitor Cetuximab in Patient-Derived HNSCC Xenografts. Clin Cancer Res 2019; 26:1932-1943. [PMID: 31831557 DOI: 10.1158/1078-0432.ccr-19-1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Optimal head and neck squamous cell carcinoma (HNSCC) patient selection for anti-EGFR-based therapy remains an unmet need since only a minority of patients derive long-term benefit from cetuximab treatment. We assessed the ability of state-of-the-art noninvasive in vivo metabolic imaging to probe metabolic shift in cetuximab-sensitive and -resistant HNSCC patient-derived tumor xenografts (PDTXs). EXPERIMENTAL DESIGN Three models selected based on their known sensitivity to cetuximab in patients (cetuximab-sensitive or acquired-resistant HNC007 PDTXs, cetuximab-naïve UCLHN4 PDTXs, and cetuximab-resistant HNC010 PDTXs) were inoculated in athymic nude mice. RESULTS Cetuximab induced tumor size stabilization in mice for 4 weeks in cetuximab-sensitive and -naïve models treated with weekly injections (30 mg/kg) of cetuximab. Hyperpolarized 13C-pyruvate-13C-lactate exchange was significantly decreased in vivo in cetuximab-sensitive xenograft models 8 days after treatment initiation, whereas it was not modified in cetuximab-resistant xenografts. Ex vivo analysis of sensitive tumors resected at day 8 after treatment highlighted specific metabolic changes, likely to participate in the decrease in the lactate to pyruvate ratio in vivo. Diffusion MRI showed a decrease in tumor cellularity in the HNC007-sensitive tumors, but failed to show sensitivity to cetuximab in the UCLHN4 model. CONCLUSIONS This study constitutes the first in vivo demonstration of cetuximab-induced metabolic changes in cetuximab-sensitive HNSCC PDTXs that were not present in resistant tumors. Using metabolic imaging, we were able to identify hyperpolarized 13C-pyruvate as a potential marker for response and resistance to the EGFR inhibitor in HNSCC.
Collapse
Affiliation(s)
- Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Stefania Acciardo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Florian Gourgue
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Caignet
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Rose-Marie Goebbels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform 2IP, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Pascal Machiels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Schmitz
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|