1
|
Yang Y, Pan M, Xia X, Liang J, Yin X, Ju Q, Hao J. Effect of dietary probiotics intake on cancer mortality: a cohort study of NHANES 1999-2018. Sci Rep 2025; 15:959. [PMID: 39762292 PMCID: PMC11704052 DOI: 10.1038/s41598-024-83722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Limited research has explored the connection between consuming dietary probiotics in the diet and cancer-related deaths. This study aimed to examine how the intake levels of three different groups of dietary probiotics are associated with the risk of dying from cancer in a representative sample of adults in the United States. Using data from the USDA Food Survey Nutrient Database, researchers categorized foods based on their microbial levels as low (104 CFU/g), medium (104-107 CFU/g), or high (> 107 CFU/g). They then used Cox proportional risk regression models to assess the risk of cancer-specific death, with follow-up periods until December 31, 2019. The study included 36,894 participants aged 20 and older, representing 148,639,331 U.S. citizens. After adjusting for various factors, the results showed that low and moderate intake of probiotics significantly reduced the risk of cancer mortality, with no significant association found for high probiotic intake. The findings suggest a notable link between dietary probiotics and cancer-specific mortality, highlighting the potential impact of dietary choices on cancer survival and indicating areas for healthcare interventions.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, China
| | - Mengshu Pan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xi Xia
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, China
| | - Jiajing Liang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, China
| | - Qian Ju
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
| |
Collapse
|
2
|
Zou J, Xu B, Luo P, Chen T, Duan H. Non-coding RNAs in bladder cancer, a bridge between gut microbiota and host? Front Immunol 2024; 15:1482765. [PMID: 39628486 PMCID: PMC11611751 DOI: 10.3389/fimmu.2024.1482765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
In recent years, the role of gut microbiota (GM) in bladder cancer has attracted significant attention. Research indicates that GM not only contributes to bladder carcinogenesis but also influences the efficacy of adjuvant therapies for bladder cancer. Despite this, interventions targeting GM have not been widely employed in the prevention and treatment of bladder cancer, mainly due to the incomplete understanding of the complex interactions between the host and gut flora. Simultaneously, aberrantly expressed non-coding RNAs (ncRNAs) have been frequently associated with bladder cancer, playing crucial roles in processes such as cell proliferation, invasion, and drug resistance. It is widely known that the regulation of GM-mediated host pathophysiological processes is partly regulated through epigenetic pathways. At the same time, ncRNAs are increasingly regarded as GM signaling molecules involved in GM-mediated epigenetic regulation. Accordingly, this review analyzes the ncRNAs that are closely related to the GM in the context of bladder cancer occurrence and treatment, and summarizes the role of their interaction with the GM in bladder cancer-related phenotypes. The aim is to delineate a regulatory network between GM and ncRNAs and provide a new perspective for the study and prevention of bladder cancer.
Collapse
Affiliation(s)
- Jun Zou
- Department of Otorhinolaryngology, The Affiliated Fengcheng Hospital of Yichun University, Fengcheng, Jiangxi, China
| | - Baisheng Xu
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huanglin Duan
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Réthi-Nagy Z, Juhász S. Microbiome's Universe: Impact on health, disease and cancer treatment. J Biotechnol 2024; 392:161-179. [PMID: 39009231 DOI: 10.1016/j.jbiotec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Szilvia Juhász
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary.
| |
Collapse
|
4
|
Xu T, Lyu L, Zheng J, Li L. Advances in omics-based biomarker discovery for biliary tract malignancy Diagnosis:A narrative review. Mol Cell Probes 2024; 76:101970. [PMID: 38964426 DOI: 10.1016/j.mcp.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biliary tract neoplasms, which originate from the intrahepatic or extrahepatic biliary epithelium, are relatively rare but diagnostically challenging types of tumours, and their morbidity and mortality have increased in recent years. Due to ineffective early diagnostic methods, once detected, patients are in an advanced stage with a poor prognosis and few treatment options. With the development of omics technologies, the associations between microorganisms, bile acid and salts, noncoding RNAs and biliary tract malignancies have been gradually revealed, providing new methods for the discovery of diagnostic biomarkers. Here, we review the research advances in microbiomics, transcriptomics, metabolomics, and proteomics in the discovery of diagnostic biomarkers for biliary tract malignancies.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lingna Lyu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Junfu Zheng
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| |
Collapse
|
5
|
Yang Y, Wang J, Su Q, Yang J, Bo Z, Zheng C, Xie Y, Chen K, Wang J, Chen G, Wang Y. The Mediation/Moderation Effects of Gut Microbiota on Sleep Quality and Primary Liver Cancer: A Mendelian Randomization and Case-Control Study. Nat Sci Sleep 2024; 16:663-674. [PMID: 38841051 PMCID: PMC11152056 DOI: 10.2147/nss.s458491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Primary liver cancer (PLC) is a fatal malignancy, sleep quality and gut microbiota were shown to be associated with PLC. However, the mechanism of how sleep quality affects PLC is unclear. This study aims to investigate the mediation/moderation effects of gut microbiota on sleep quality and the occurrence of PLC. Methods The causality of sleep quality and the occurrence of PLC was detected through the Mendelian randomization (MR) analysis based on the data including 305,359 individuals (Finland Database) and 456,348 participants (UK Biobank). The primary method used for MR analysis was inverse-variance weighted analysis. Gut microbiota' mediation/moderation effects were uncovered in the case-control study including 254 patients with PLC and 193 people with benign liver diseases through the mediation/moderation effect analyses. People's sleep quality was evaluated through the Pittsburgh sleep quality index (PSQI). Results Poor sleep quality could lead to PLC through the MR analysis (P = 0.026). The case-control study uncovered that Actinobacteria had mediation effects on the relationship between PSQI score, self-sleep quality, and the occurrence of PLC (P = 0.048, P = 0.046). Actinobacteria and Bifidobacterium could inhibit the development of PLC caused by short night sleep duration (P = 0.021, P = 0.022). Erysipelotrichales could weaken the influence of daytime dysfunction on PLC (P = 0.033). Roseburia modulated the contribution of nocturnal insomnia and poor sleep quality to PLC (P = 0.009, P = 0.017). Conclusion Poor sleep quality was associated with PLC. Gut microbiota' mediation/moderation effects on poor sleep quality and the occurrence of PLC prompted an insightful idea for the prevention of PLC.
Collapse
Affiliation(s)
- Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Chongming Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Yitong Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Zhang Q, Zhou J, Zhai D, Jiang Q, Yang M, Zhou M. Gut microbiota regulates the ALK5/NOX1 axis by altering glutamine metabolism to inhibit ferroptosis of intrahepatic cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167152. [PMID: 38582012 DOI: 10.1016/j.bbadis.2024.167152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a kind of hepatobiliary tumor that is increasing in incidence and mortality. The gut microbiota plays a role in the onset and progression of cancer, however, the specific mechanism by which the gut microbiota acts on ICC remains unclear. In this study, feces and plasma from healthy controls and ICC patients were collected for 16S rRNA sequencing or metabolomics analysis. Gut microbiota analysis showed that gut microbiota abundance and biodiversity were altered in ICC patients compared with controls. Plasma metabolism analysis showed that the metabolite glutamine content of the ICC patient was significantly higher than that of the controls. KEGG pathway analysis showed that glutamine plays a vital role in ICC. In addition, the use of antibiotics in ICC animals further confirmed that changes in gut microbiota affect changes in glutamine. Further experiments showed that supplementation with glutamine inhibited ferroptosis and downregulated ALK5 and NOX1 expression in HuCCT1 cells. ALK5 overexpression or NOX1 overexpression increased NOX1, p53, PTGS2, ACSL4, LPCAT3, ROS, MDA and Fe2+ and decreased FTH1, SLC7A11 and GSH. Knockdown of NOX1 suppressed FIN56-induced ferroptosis. In vivo, supplementation with glutamine promoted tumor growth. Overexpression of ALK5 repressed tumor growth and induced ferroptosis in nude mice, which could be reversed by the addition of glutamine. Our results suggested that the gut microbiota altered glutamine metabolism to inhibit ferroptosis in ICC by regulating the ALK5/NOX1 axis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China; International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jixiang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China
| | - Denggao Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China
| | - Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
7
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Deng Y, Hou X, Wang H, Du H, Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals (Basel) 2024; 17:604. [PMID: 38794174 PMCID: PMC11123941 DOI: 10.3390/ph17050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.
Collapse
Affiliation(s)
- Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| | - Hongzhi Du
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; (Y.D.); (X.H.); (H.W.)
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan 430056, China
| |
Collapse
|
9
|
Wang K, Wang S, Qin X, Chen Y, Chen Y, Wang J, Zhang Y, Guo Q, Zhou C, Zou D. The causal relationship between gut microbiota and biliary tract cancer: comprehensive bidirectional Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1308742. [PMID: 38558852 PMCID: PMC10978781 DOI: 10.3389/fcimb.2024.1308742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Growing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome's utility in facilitating the early diagnosis of BTC. Methods We acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane's Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality. Results The outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy. Conclusion This investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Suijian Wang
- Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University, Shantou, China
| | - Xianzheng Qin
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People’s Hospital, Jieyang, Guangdong, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Han L, Huo Y, Huang L, Zheng Y, Yu X, Zhang N, Yang M. Genome-wide functional integration identified MAZ-controlled RPS14 dysregulation in hepatocellular carcinoma. Arch Toxicol 2024; 98:985-997. [PMID: 38189915 DOI: 10.1007/s00204-023-03669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Chronic infection with Hepatitis B virus (HBV) significantly increases the risk of hepatocellular carcinoma (HCC), particularly in Eastern Asia. However, only a subset of individuals with chronic HBV infection develop HCC, suggesting the role for genetic factors in HCC etiology. Despite genome-wide association studies (GWASs) identifying multiple single nucleotide polymorphisms (SNPs) associated with HBV-related HCC susceptibility, the underlying mechanisms and causal genetic polymorphisms remain largely unclear. To address this, we developed The Updated Integrative Functional Genomics Approach (TUIFGA), an methodology that combines data from transcription factor (TF) cistromics, ATAC-seq, DNAase-seq, and the 1000 Genomes Project to identify cancer susceptibility SNPs within TF-binding sites across human genome. Using TUIFGA, we discovered SNP rs13170300 which located in the TF MAZ binding motif of RPS14. The RPS14 rs13170300 was significantly associated with HCC risk in two case-control sets, with the T allele as the protective allele (Shandong discovery set: TT OR = 0.60, 95% CI = 0.49-0.74, P = 1.0 × 10-6; CT OR = 0.69, 95% CI = 0.55-0.86, P = 0.001; Jiangsu validation set: TT OR = 0.70, 95% CI = 0.56-0.87, P = 0.001; CT OR = 0.65, 95% CI = 0.53-0.82, P = 1.6 × 10-4). SNP rs13170300 affected MAZ binding in the RPS14 promoter, resulting in allele-specific changes in gene expression. RPS14 functions as a novel oncogene in HCC, specifically via activating the AKT signaling. Our findings present important insights into the functional genetics underlying HBV-related HCC development and may contribute to personalized approaches for cancer prevention and novel therapeutics.
Collapse
Affiliation(s)
- Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xinyuan Yu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
- Shandong University Cancer Center, Shandong Province, Jinan, 250117, China.
| |
Collapse
|
11
|
Najjary S, Kros JM, Stricker BH, Ruiter R, Shuai Y, Kraaij R, Van Steen K, van der Spek P, Van Eijck CHJ, Ikram MA, Ahmad S. Association of blood cell-based inflammatory markers with gut microbiota and cancer incidence in the Rotterdam study. Cancer Med 2024; 13:e6860. [PMID: 38366800 PMCID: PMC10904974 DOI: 10.1002/cam4.6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Johan M. Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Bruno H. Stricker
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Rikje Ruiter
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Yu Shuai
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert Kraaij
- Department of Internal MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Kristel Van Steen
- Department of Human Genetics, Laboratory for Systems MedicineCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Peter van der Spek
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | | | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Shahzad Ahmad
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
12
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
13
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Deng X, Chen X, Luo Y, Que J, Chen L. Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data. Front Microbiol 2023; 14:1202454. [PMID: 37664112 PMCID: PMC10469687 DOI: 10.3389/fmicb.2023.1202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Microbiome plays roles in lung adenocarcinoma (LUAD) development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor might promote lactate production that alter tumor microenvironment, affecting microbiome, cancer cells and immune cells. We aimed to construct intratumor microbiome score to predict prognosis of LUAD patients and thoroughly investigate glycolysis and lactate signature's association with LUAD immune cell infiltration. Methods The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data was downloaded from cBioPortal and analyzed to examine its association with overall survival to create a prognostic scoring model. Gene Set Enrichment Analysis (GSEA) was used to find each group's major mechanisms involved. Our study then investigated the glycolysis and lactate pattern in LUAD patients based on 19 genes, which were correlated with the tumor microenvironment (TME) phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate risk score and signature to accurately predict TME phenotypes, prognosis, and response to immunotherapy. Results Using the univariate Cox regression analysis, the abundance of 38 genera were identified with prognostic values and a lung-resident microbial score (LMS) was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis hallmark pathway was significantly enriched in high-LMS group and three distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-lactate score was constructed for predicting prognosis with high accuracy and validated in external cohorts. Gene signature was developed and this signature was elevated in epithelial cells especially in tumor mass on single-cell level. Finally, we found that the glycolysis-lactate signature levels were consistent with the malignancy of histological subtypes. Discussion Our study demonstrated that an 18-microbe prognostic score and a 19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential roles in precision therapy of LUAD patients.
Collapse
Affiliation(s)
| | | | | | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Sumiyoshi A, Fujii H, Okuma Y. Targeting microbiome, drug metabolism, and drug delivery in oncology. Adv Drug Deliv Rev 2023; 199:114902. [PMID: 37263544 DOI: 10.1016/j.addr.2023.114902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Recent emerging scientific evidence shows a relationship between gut microbiota (GM) and immunomodulation. In the recently published "Hallmarks of Cancer", the microbiome has been reported to play a crucial role in cancer research, and perspectives for its clinical implementation to improve the effectiveness of pharmacotherapy were explored. Several studies have shown that GM can affect the outcomes of pharmacotherapy in cancer, suggesting that GM may affect anti-tumor immunity. Thus, studies on GM that analyze big data using computer-based analytical methods are required. In order to successfully deliver GM to an environment conducive to the proliferation of immune cells both within and outside the tumor microenvironment (TME), it is crucial to address a variety of challenges associated with distinct delivery methods, specifically those pertaining to oral, endoscopic, and intravenous delivery. Clinical trials are in progress to evaluate the effects of targeting GM and whether it can enhance immunity or act on the TME, thereby to improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ai Sumiyoshi
- Department of Pharmacy, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan
| | - Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan; Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan.
| |
Collapse
|
16
|
Xie N, Wang Z, Shu Q, Liang X, Wang J, Wu K, Nie Y, Shi Y, Fan D, Wu J. Association between Gut Microbiota and Digestive System Cancers: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:2937. [PMID: 37447263 DOI: 10.3390/nu15132937] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that gut microbiota closely correlates with the tumorigenesis of digestive system cancers (DSCs). However, whether the causality between gut microbiota and DSCs exists is unknown. Genome-wide association study (GWAS) summary statistics for gut microbiota and DSCs and the bidirectional two-sample Mendelian randomization (MR) analysis were utilized to assess the causality between gut microbiota and DSCs. Sensitivity analyses were performed to evaluate the robustness of our results. We found that the genus Eggerthella (OR = 0.464, 95%CI: 0.27 to 0.796, p = 0.005) was negatively associated with the risk of gastric cancer. The genetically predicted genus Lachnospiraceae FCS020 group (OR = 0.607, 95%CI: 0.439 to 0.84, p = 0.003) correlated with a lower risk of colorectal cancer, and genus Turicibacter (OR = 0.271, 95%CI: 0.109 to 0.676, p = 0.005) was a protective factor for liver cancer. In the reverse MR, DSCs regulated the relative abundance of specific strains of gut microbiota. We comprehensively screened the association between gut microbiota and DSCs using a bidirectional two-sample MR analysis and identified the causality between several microbial taxa and DSCs. Our discoveries are beneficial for the development of novel microbial markers and microbiota-modifying therapeutics for DSC patients.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaichun Wu
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Yongquan Shi
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Daiming Fan
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| | - Jian Wu
- National Clinical Research Center for Digestive Diseases, State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Lin Q, Guan SW, Yu HB. Immuno-oncology-microbiome axis of gastrointestinal malignancy. World J Gastrointest Oncol 2023; 15:757-775. [PMID: 37275452 PMCID: PMC10237027 DOI: 10.4251/wjgo.v15.i5.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Research on the relationship between the microbiome and cancer has been controversial for centuries. Recent works have discovered that the intratumor microbiome is an important component of the tumor microenvironment (TME). Intratumor bacteria, the most studied intratumor microbiome, are mainly localized in tumor cells and immune cells. As the largest bacterial reservoir in human body, the gut microbiome may be one of the sources of the intratumor microbiome in gastrointestinal malignancies. An increasing number of studies have shown that the gut and intratumor microbiome play an important role in regulating the immune tone of tumors. Moreover, it has been recently proposed that the gut and intratumor microbiome can influence tumor progression by modulating host metabolism and the immune and immune tone of the TME, which is defined as the immuno-oncology-microbiome (IOM) axis. The proposal of the IOM axis provides a new target for the tumor microbiome and tumor immunity. This review aims to reveal the mechanism and progress of the gut and intratumor microbiome in gastrointestinal malignancies such as esophageal cancer, gastric cancer, liver cancer, colorectal cancer and pancreatic cancer by exploring the IOM axis. Providing new insights into the research related to gastrointestinal malignancies.
Collapse
Affiliation(s)
- Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
18
|
Liu J, Luo F, Wen L, Zhao Z, Sun H. Current Understanding of Microbiomes in Cancer Metastasis. Cancers (Basel) 2023; 15:1893. [PMID: 36980779 PMCID: PMC10047396 DOI: 10.3390/cancers15061893] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer has been the first killer that threatens people's lives and health. Despite recent improvements in cancer treatment, metastasis continues to be the main reason for death from cancer. The functions of microbiome in cancer metastasis have been studied recently, and it is proved that microbiome can influence tumor metastasis, as well as positive or negative responses to therapy. Here, we summarize the mechanisms of microorganisms affecting cancer metastasis, which include epithelial-mesenchymal transition (EMT), immunity, fluid shear stress (FSS), and matrix metalloproteinases (MMPs). This review will not only give a further understanding of relationship between microbiome and cancer metastasis, but also provide a new perspective for the microbiome's application in cancer metastasis prevention, early detection, and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
19
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Meza L, Feng M, Lee K, Sperandio R, Pal SK. The Gut Microbiome and Metastatic Renal Cell Carcinoma. J Clin Med 2023; 12:jcm12041502. [PMID: 36836036 PMCID: PMC9960560 DOI: 10.3390/jcm12041502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The introduction of targeted therapy (TT) and immuno-oncology (IO) agents have revolutionized the treatment of metastatic renal cell carcinoma (mRCC). However, despite the significant improvements in survival and clinical response yielded by these agents, a significant percentage of patients still experience progressive disease. Evidence now suggests that microorganisms living in the gut (i.e., the gut microbiome) could be used as a biomarker for response and may also have utility in increasing response to these treatments. In this review, we present an overview of the role of the gut microbiome in cancer and its potential implications in the treatment of mRCC.
Collapse
Affiliation(s)
- Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Matthew Feng
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Kyle Lee
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Sumanta Kumar Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-(626)-256-4673; Fax: +1-(626)-301-8233
| |
Collapse
|
21
|
Zhang N, Kandalai S, Zhou X, Hossain F, Zheng Q. Applying multi-omics toward tumor microbiome research. IMETA 2023; 2:e73. [PMID: 38868335 PMCID: PMC10989946 DOI: 10.1002/imt2.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Rather than a "short-term tenant," the tumor microbiome has been shown to play a vital role as a "permanent resident," affecting carcinogenesis, cancer development, metastasis, and cancer therapies. As the tumor microbiome has great potential to become a target for the early diagnosis and treatment of cancer, recent research on the relevance of the tumor microbiota has attracted a wide range of attention from various scientific fields, resulting in remarkable progress that benefits from the development of interdisciplinary technologies. However, there are still a great variety of challenges in this emerging area, such as the low biomass of intratumoral bacteria and unculturable character of some microbial species. Due to the complexity of tumor microbiome research (e.g., the heterogeneity of tumor microenvironment), new methods with high spatial and temporal resolution are urgently needed. Among these developing methods, multi-omics technologies (combinations of genomics, transcriptomics, proteomics, and metabolomics) are powerful approaches that can facilitate the understanding of the tumor microbiome on different levels of the central dogma. Therefore, multi-omics (especially single-cell omics) will make enormous impacts on the future studies of the interplay between microbes and tumor microenvironment. In this review, we have systematically summarized the advances in multi-omics and their existing and potential applications in tumor microbiome research, thus providing an omics toolbox for investigators to reference in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Xiaozhuang Zhou
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Farzana Hossain
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
- Center for Cancer Metabolism, Ohio State University Comprehensive Cancer Center ‐ James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityOhioColumbusUSA
- Department of Biological Chemistry and Pharmacology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
22
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Multifactorial Diseases of the Heart, Kidneys, Lungs, and Liver and Incident Cancer: Epidemiology and Shared Mechanisms. Cancers (Basel) 2023; 15:cancers15030729. [PMID: 36765688 PMCID: PMC9913123 DOI: 10.3390/cancers15030729] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Within the aging population, the frequency of cancer is increasing dramatically. In addition, multiple genetic and environmental factors lead to common multifactorial diseases, including cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-associated fatty liver disease. In recent years, there has been a growing awareness of the connection between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored, some progress has been made in uncovering the common pathologic mechanisms. In this review, we focus on the nature of the link between cancer and common multifactorial conditions, as well as specific shared mechanisms, some of which may represent either preventive or therapeutic targets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the multifactorial diseases, which may explain the increased cancer risk. More research on this subject will highlight the significance of developing new drugs that target multiple systems rather than just one disease.
Collapse
|
24
|
Cammarota A, Zanuso V, Manfredi GF, Murphy R, Pinato DJ, Rimassa L. Immunotherapy in hepatocellular carcinoma: how will it reshape treatment sequencing? Ther Adv Med Oncol 2023; 15:17588359221148029. [PMID: 36643654 PMCID: PMC9837292 DOI: 10.1177/17588359221148029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
The treatment landscape of advanced hepatocellular carcinoma (HCC) has broadened with immune checkpoint inhibitors (ICIs) setting a novel standard of care. With the increased number of therapies either in first or in further line, disentangling the possible treatment sequences has become much more complex. Yet, all the second-line therapies have been evaluated after sorafenib. After ICIs, offering multikinase inhibitors is a widespread approach, either shifting forward sorafenib or lenvatinib, or choosing among regorafenib or cabozantinib, already approved in the refractory setting. Under specific circumstances, ICIs could be maintained beyond disease progression in patients with proven clinical benefit, as supported by some data emerging from phase III clinical trials with immunotherapy in HCC. Rechallenge with ICIs is an additional attractive alternative, although requiring careful and individual evaluation as efficacy and safety of such a strategy have not been yet clarified. Still, a considerable number of patients displays primary resistance to ICIs and might benefit from antiangiogenics either alone or in addition to ICIs instead. Hopefully, the ongoing clinical trials will enlighten regarding the most effective treatment pathways. The identification of predictive correlates of response to immunotherapy will help treatment allocation at each stage, thus representing an urgent matter to address in HCC research. With programmed death ligand 1 expression, tumor mutational burden, and microsatellite status being inadequate biomarkers in HCC, patient characteristics, drug safety profile, and regulatory approval remain key elements to acknowledge in routine practice. Despite the tissue remaining a preferred source, biomarkers discovery could take advantage of liquid biopsy to overcome the matter of tissue availability and track tumor changes. Lastly, tumor genetic phenotypes, tumor microenvironment features, gut microbiome, and markers of immune response and systemic inflammation are all potential emergent predictors of response to ICIs, pending validation in the clinical setting.
Collapse
Affiliation(s)
- Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Giulia Francesca Manfredi
- Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Ravindhi Murphy
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| |
Collapse
|
25
|
Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, Cucchetti A, Ercolani G, Sambri V, Fabbri C. Microbiota in the Natural History of Pancreatic Cancer: From Predisposition to Therapy. Cancers (Basel) 2022; 15:cancers15010001. [PMID: 36611999 PMCID: PMC9817971 DOI: 10.3390/cancers15010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Early microbiome insights came from gut microbes and their role among intestinal and extraintestinal disease. The latest evidence suggests that the microbiota is a true organ, capable of several interactions throughout the digestive system, attracting specific interest in the biliopancreatic district. Despite advances in diagnostics over the last few decades and improvements in the management of this disease, pancreatic cancer is still a common cause of cancer death. Microbiota can influence the development of precancerous disease predisposing to pancreatic cancer (PC). At the same time, neoplastic tissue shows specific characteristics in terms of diversity and phenotype, determining the short- and long-term prognosis. Considering the above information, a role for microbiota has also been hypothesized in the different phases of the PC approach, providing future revolutionary therapeutic insights. Microbiota-modulating therapies could open new issues in the therapeutic landscape. The aim of this narrative review is to assess the most updated evidence on microbiome in all the steps regarding pancreatic adenocarcinoma, from early development to response to antineoplastic therapy and long-term prognosis.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Correspondence: ; Tel.: +39-3488609557
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Maria Cazzato
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Lorenzo Carloni
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
26
|
Cutting-Edge Developments in Oncology Research. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractThe field of oncology research has made many successful advances, and new discoveries have started making headlines. As an example, the identification of immune checkpoint inhibition mechanisms in carcinogenic cells led to the development of immunoassays, which have helped many cancer convalescents recover. This article covers the most advanced cutting-edge areas of cancer research: exosomes, microbiomes, immunotherapy, nanocarriers, and organoids. Research on exosomes advances cancer detection and treatment modalities, as well as further understanding of mechanisms that regulate carcinogen cell division, proliferation, invasion, and metastasis. Microbiome consents the researchers to understand the disease cancer. Immunotherapy is the third method in the treatment of cancer. Organoid biology will be further expanded with the aim of translating research into customized therapeutic therapies. Nanocarriers enable cancer specific drug delivery by inherent unreceptive targeting phenomena and implemented active targeting strategies. These areas of research may also bring about the advent of the latest cancer treatments in the future. Malignant infections are one of the leading grounds for demise in the society. Patients are treated with surgery, radiation, and chemotherapy. In chemotherapy, the malignant cells are destroyed and the tumor burden is reduced. However, in most cases, resistance to chemotherapy develops. Therefore, there is a constant need for new additional treatment modalities and chemotherapeutic complex rules. Due to the rapid development in cancer research, I can only mention a few goals and treatment options that I have chosen; However, this review specializes in new and admirable significant strategies and compounds.
Collapse
|
27
|
Xu K, Cai J, Xing J, Li X, Wu B, Zhu Z, Zhang Z. Broad-spectrum antibiotics associated gut microbiome disturbance impairs T cell immunity and promotes lung cancer metastasis: a retrospective study. BMC Cancer 2022; 22:1182. [DOI: 10.1186/s12885-022-10307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Gut microbiome has been linked to a regulatory role in cancer progression. However, whether broad-spectrum antibiotics (ATB) associated gut microbiome dysbiosis contributes to an impaired T cell immune function, and ultimately promotes lung cancer metastasis is not well known.
Methods
In this study, a retrospective analysis was performed in a cohort of 263 patients initially diagnosed with non-small cell lung cancer (NSCLC) patients, including the ATB group (patients with broad-spectrum antibiotics treatment) (n = 124), and non-ATB group (n = 139) as control. ATB patients were prescribed ATB for over 5 days within 30 days prior to the collection of blood and fecal specimens and followed surgical treatment or first-line therapy. T cell immune function and metastasis-free survival (MFS) were evaluated between the two groups. Gut microbiota was evaluated by 16S rDNA sequencing. The predictive value of T cell immunity for MFS was evaluated by ROC analysis and Cox regression analysis.
Results
Our results suggest that broad-spectrum antibiotics (ATB) impair T cell immune function in patients with either early-stage or advanced NSCLC, which likely contribute to the promotion of lung cancer metastasis. Results of the survival analysis show that metastasis-free survival (MFS) is significantly shorter in the ATB patients than that in the non-ATB patients with stage III NSCLC. The 16S rDNA sequencing shows that ATB administration contributes to a significant dysbiosis of the composition and diversity of gut microbiota. Moreover, ROC analysis results of CD4 (AUC 0.642, p = 0.011), CD8 (AUC was 0.729, p < 0.001), CD16 + 56 + (AUC 0.643, p = 0.003), and the combination of CD4, CD8 and CD16 + 56+ (AUC 0.810, p < 0.001), or Cox regression analysis results of CD4 (HR 0.206, p < 0.001), CD8 (HR 0.555, p = 0.009), which is likely regulated by ATB administration, have significantly predictive values for MFS.
Conclusion
These results provide evidence of gut microbiome disturbance due to ATB administration is involved in the regulation of T cell immunity, and their predictive value for the tumor metastasis in lung cancer patients. Thus, gut microbiota may serve as a therapeutic target for lung cancer. Consequently, caution should be exercised before the long-term administration of broad-spectrum antibiotics in cancer patients.
Collapse
|
28
|
Tateishi AT, Okuma Y. Onco-biome in pharmacotherapy for lung cancer: a narrative review. Transl Lung Cancer Res 2022; 11:2332-2345. [PMID: 36519027 PMCID: PMC9742621 DOI: 10.21037/tlcr-22-299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND AND OBJECTIVE The gut microbiota (GM) was recently recognized to play an important role in modulating systemic immune responses and is known to influence the effects or adverse events of immune checkpoint blockade (ICB) or carcinogenesis by crosstalk with regulators of cancer-related immunity, and this relationship is complex and multifactorial. Diversity in the gut microbiome and the abundance of specific bacterial species have been identified to be associated with better response and prognosis. Therefore, the purpose of the current interest in the gut microbiome is to enable modulation of the immune system in donor cancer patients by the administration of specific bacterial species and enabling their dominance. To understand this "terra incognita" is to uncover the role of the mechanisms underlying unknown organ functions, and this knowledge will lead to enhanced immunotherapy for lung cancer patients. METHODS In this article, we summarized the literature on the relationship between the microbiome and lung cancer and the potential of the microbiome as a therapeutic target. KEY CONTENT AND FINDINGS This article is organized into the following sections: introduction, methods, microbiota and cancer development, microbiota and lung cancer treatment, future directions, and conclusion. CONCLUSIONS The gut microbiome is currently becoming the hallmark of cancer research and has an established and critical role in regulating antitumor immunity and the response to ICB in patients with lung cancers.
Collapse
|
29
|
Son YM, Kim J. The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. J Microbiol Biotechnol 2022; 32:1086-1097. [PMID: 36116940 PMCID: PMC9628962 DOI: 10.4014/jmb.2208.08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
During the last decades, research and therapeutic methods in cancer treatment have been evolving. As the results, nowadays, cancer patients are receiving several types of treatments, ranging from chemotherapy and radiation therapy to surgery and immunotherapy. In fact, most cancer patients take a combination of current anti-cancer therapies to improve the efficacy of treatment. However, current strategies still cause some side effects to patients, such as pain and depression. Therefore, there is the need to discover better ways to eradicate cancer whilst minimizing side effects. Recently, immunotherapy, particularly immune checkpoint blockade, is rising as an effective anti-cancer treatment. Unlike chemotherapy or radiation therapy, immunotherapy has few side effects and a higher tumor cell removal efficacy depend on cellular immunological mechanisms. Moreover, recent studies suggest that tissue immune responses are regulated by their microbiome composition. Each tissue has their specific microenvironment, which makes their microbiome composition different, particularly in the context of different types of cancer, such as breast, colorectal, kidney, lung, and skin. Herein, we review the current understanding of the relationship of immune responses and tissue microbiome in cancer in both animal and human studies. Moreover, we discuss the cancermicrobiome-immune axis in the context of cancer development and treatment. Finally, we speculate on strategies to control tissue microbiome alterations that may synergistically affect the immune system and impact cancer treatment outcomes.
Collapse
Affiliation(s)
- Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-4792 E-mail:
| | - Jihwan Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
30
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
31
|
Chifiriuc MC, Filip R, Constantin M, Pircalabioru GG, Bleotu C, Burlibasa L, Ionica E, Corcionivoschi N, Mihaescu G. Common themes in antimicrobial and anticancer drug resistance. Front Microbiol 2022; 13:960693. [PMID: 36003940 PMCID: PMC9393787 DOI: 10.3389/fmicb.2022.960693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial and anticancer drug resistance represent two of the main global challenges for the public health, requiring immediate practical solutions. In line with this, we need a better understanding of the origins of drug resistance in prokaryotic and eukaryotic cells and the evolutionary processes leading to the occurrence of adaptive phenotypes in response to the selective pressure of therapeutic agents. The purpose of this paper is to present some of the analogies between the antimicrobial and anticancer drug resistance. Antimicrobial and anticancer drugs share common targets and mechanisms of action as well as similar mechanisms of resistance (e.g., increased drug efflux, drug inactivation, target alteration, persister cells’ selection, protection of bacterial communities/malignant tissue by an extracellular matrix, etc.). Both individual and collective stress responses triggered by the chemotherapeutic agent involving complex intercellular communication processes, as well as with the surrounding microenvironment, will be considered. The common themes in antimicrobial and anticancer drug resistance recommend the utility of bacterial experimental models for unraveling the mechanisms that facilitate the evolution and adaptation of malignant cells to antineoplastic drugs.
Collapse
Affiliation(s)
- Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- Coralia Bleotu, ;
| | | | - Elena Ionica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine—King Michael I of Romania, Timisoara, Romania
| | | |
Collapse
|
32
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
33
|
Anipindi M, Bitetto D. Diagnostic and Therapeutic Uses of the Microbiome in the Field of Oncology. Cureus 2022; 14:e24890. [PMID: 35698690 PMCID: PMC9184241 DOI: 10.7759/cureus.24890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a leading cause of death worldwide and it can affect almost every part of the human body. Effective screening and early diagnosis of cancers is extremely difficult due to the multifactorial etiology of the disease and delayed presentation of the patients. The available treatments are usually not specific to the affected organ system, leading to intolerable systemic side effects and early withdrawal from therapies. In vivo and in vitro studies have revealed an association of specific microbiome signatures with individual cancers. The cancer-related human microbiome has also been shown to affect the response of tissues to chemotherapy, immunotherapy, and radiation. This is an excellent opportunity for us to design specific screening markers using the microbiome to prevent cancers and diagnose them early. We can also develop precise treatments that can target cancer-affected specific organ systems and probably use a lesser dose of chemotherapy or radiation for the same effect. This prevents adverse effects and early cessation of treatments. However, we need further studies to exactly clarify and characterize these associations. In this review article, we focus on the association of the microbiome with individual cancers and highlight its future role in cancer screenings, diagnosis, prognosis, and treatments.
Collapse
Affiliation(s)
- Manasa Anipindi
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| | - Daniel Bitetto
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| |
Collapse
|
34
|
Bourdeleau P, Larrey E, Allaire M, Charlotte F, Vaillant JC, Lebray P. "De novo" cholangiocarcinoma 20 years after liver transplantation for primary sclerosing cholangitis: Lifelong screening needed! Clin Res Hepatol Gastroenterol 2022; 46:101827. [PMID: 34740844 DOI: 10.1016/j.clinre.2021.101827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 02/04/2023]
Abstract
We report a rare and very late case of de novo cholangiocarcinoma in a patient transplanted for primary sclerosing cholangitis. An exhaustive analysis of the literature and of our case highlight the very poor prognosis of this type of tumor due to the delay in diagnosis and the potential value of a six-monthly MRI surveillance as soon as cholangitis recurs, but also in the presence of chronic digestive inflammation, whatever the mechanism.
Collapse
Affiliation(s)
- Pauline Bourdeleau
- Médecine Sorbonne Université, Service d'Hépato-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, Paris 75013, France
| | - Edouard Larrey
- Médecine Sorbonne Université, Service d'Hépato-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, Paris 75013, France
| | - Manon Allaire
- Médecine Sorbonne Université, Service d'Hépato-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, Paris 75013, France; Inserm U1149, Centre de Recherche sur l'Inflammation, France Faculté de Médecine Xavier Bichat, Université Paris Diderot, Paris, France
| | - Frederic Charlotte
- Médecine Sorbonne Université, Service d'anatomopathologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Jean Christophe Vaillant
- Médecine Sorbonne Université, Service de Chirurgie Digestive et Hépato-Bilio-pancréatique - Transplantation Hépatique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Pascal Lebray
- Médecine Sorbonne Université, Service d'Hépato-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, Paris 75013, France.
| |
Collapse
|
35
|
Roles of Microbiota in Cancer: From Tumor Development to Treatment. JOURNAL OF ONCOLOGY 2022; 2022:3845104. [PMID: 35342407 PMCID: PMC8941494 DOI: 10.1155/2022/3845104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
Cancer as a second leading cause of death arises from multifactorial pathology. The association of microbiota and their products with various pathologic conditions including cancer is receiving significant attention over the past few years. Mounting evidence showed that human microbiota is an emerging target in tumor onset, progression, prevention, and even diagnosis. Accordingly, modulating this composition might influence the response to tumor therapy and therapeutic resistance as well. Through this review, one could conceive of complex interaction between the microbiome and cancer in either positive or negative manner by which may hold potential for finding novel preventive and therapeutic strategies against cancer.
Collapse
|
36
|
The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1429869. [PMID: 35211240 PMCID: PMC8863487 DOI: 10.1155/2022/1429869] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the greatest causes of death worldwide. With the development of surgery, radiotherapy, and medical agents, the outcomes of cancer patients have greatly improved. However, the underlying mechanisms of cancer are not yet fully understood. Recently, natural products have been proven to be beneficial for various conditions and have played important roles in the development of novel therapies. A substantial amount of evidence indicates that bioactive compounds could improve the outcomes of cancer patients via various pathways, such as endoplasmic reticulum stress, epigenetic modification, and modulation of oxidative stress. Here, we review the current evidence of bioactive compounds in natural products for the treatment of cancer and summarize the underlying mechanisms in this pathological process.
Collapse
|
37
|
Cammann S, Karabulut S, DeTemple DE, Oldhafer F, Kulik U, Schroeter A, Vondran FWR, Klempnauer J, Kleine M, Timrott K, Beetz O. Antibiotic-Resistant Bacteria Colonizing the Bile Duct Are Associated with Increased Morbidity and Mortality after Resection of Extrahepatic Cholangiocarcinoma. Surg Infect (Larchmt) 2022; 23:270-279. [PMID: 35172114 DOI: 10.1089/sur.2021.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Patients with extrahepatic cholangiocarcinoma (CCA) face considerable morbidity including septic complications after surgery. The aim of this study was to characterize the bacterial spectrum of the common hepatic duct (CHD) and its clinical relevance regarding morbidity and mortality after resection of extrahepatic CCA. Methods: We retrospectively analyzed data from 205 patients undergoing surgery for extrahepatic CCA in our department between January 2000 and March 2015. Patients were reviewed for pre-operative medical conditions, biliary bacterial flora obtained from intra-operative swabs, different septic complications, and post-operative outcome. Results: Bacterial colonization of the CHD was observed in 84.9% of the patients, with Enterococcus faecalis being detected most frequently (28.3%). Wound infections occurred in 30.7% of patients. Bacterial flora of the CHD and of the post-operatively colonized wounds coincided in 51.5% and of intra-abdominal swabs obtained during surgical revisions in 40.0%. Ciprofloxacin-resistant bacteria in the CHD were identified as independent risk factor for wound infections (odds ratio [OR], 3.330; 95% confidence interval [CI], 1.771-6.263; p < 0.001) and for complications requiring surgical revision (OR, 2.417; 95% CI, 1.288-4.539; p = 0.006). Most important independent risk factors for intra-hospital mortality were ampicillin-sulbactam-resistant bacteria in the CHD (OR, 3.969; 95% CI, 1.515-10.399; p = 0.005) and American Society of Anesthesiologists (ASA) grading >2 (OR, 2.936; 95% CI, 1.337-6.451; p = 0.007). Conclusions: Antibiotic-resistant bacteria from the CHD are associated with increased morbidity and mortality in patients undergoing resection for extrahepatic CCA.
Collapse
Affiliation(s)
- Sebastian Cammann
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Sultan Karabulut
- Department of General and Visceral Surgery, Diakovere Henriettenstift and Friederikenstift, Hannover, Germany
| | - Daphne E DeTemple
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Felix Oldhafer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Moritz Kleine
- Department of General, Visceral and Vascular Surgery and Coloproctology, Vinzenzkrankenhaus Hannover, Hannover, Germany
| | - Kai Timrott
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Mattos VCD, Nascimento FSD, Suzuki MO, Taba JV, Pipek LZ, Moraes WAF, Cortez VS, Kubrusly MS, Torsani MB, Iuamoto L, Hsing WT, Carneiro-D'Albuquerque LA, Meyer A, Andraus W. MICRObiota on BILIOpancreatic malignant diseases [MICROBILIO]: A systematic review. Clinics (Sao Paulo) 2022; 77:100101. [PMID: 36122499 PMCID: PMC9489953 DOI: 10.1016/j.clinsp.2022.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/21/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The increase in the incidence of pancreatic and biliary cancers has attracted the search for methods of early detection of diseases and biomarkers. The authors propose to analyze new findings on the association between microbiota and Pancreatic Ductal Adenocarcinoma (PDAC) or Cholangiocarcinoma (CCA). METHODS This systematic review was carried out according to the items of Preferred Reports for Systematic Reviews and Protocol Meta-Analysis (PRISMA-P). This study was registered by the Prospective Register of Systematic Reviews (PROSPERO), identification code CRD42020192748 before the review was carried out. Articles were selected from the PUBMED, EMBASE, and Cochrane databases. RESULTS Most studies (86.67%) used 16s rRNA as a sequencing method. The main comorbidities found were diabetes mellitus, systemic arterial hypertension, and dyslipidemia. Many studies were limited by the small number of participants, but the biases were mostly low. There was very little concordance about the composition of the microbiome of different sites, for both case and control groups when compared to other studies' results. Bile sample analysis was the one with a greater agreement between studies, as three out of four studies found Escherichia in cases of CCA. CONCLUSION There was great disagreement in the characterization of both the microbiota of cases and control groups. Studies are still scarce, making it difficult to adequately assess the data in this regard. It was not possible to specify any marker or to associate any genus of microbiota bacteria with PDAC or CCA.
Collapse
Affiliation(s)
| | | | | | - João Victor Taba
- Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | - Vitor Santos Cortez
- Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Márcia Saldanha Kubrusly
- Department of Gastroenterology (LIM-37), Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Leandro Iuamoto
- Center of Acupuncture, Department of Orthopaedics and Traumatology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Wu Tu Hsing
- Center of Acupuncture, Department of Orthopaedics and Traumatology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Alberto Meyer
- Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Wellington Andraus
- Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
39
|
Kesh K, Mendez R, Mateo-Victoriano B, Garrido VT, Durden B, Gupta VK, Oliveras Reyes A, Merchant N, Datta J, Banerjee S, Banerjee S. Obesity enriches for tumor protective microbial metabolites and treatment refractory cells to confer therapy resistance in PDAC. Gut Microbes 2022; 14:2096328. [PMID: 35816618 PMCID: PMC9275504 DOI: 10.1080/19490976.2022.2096328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity causes chronic inflammation and changes in gut microbiome. However, how this contributes to poor survival and therapy resistance in patients with pancreatic cancer remain undetermined. Our current study shows that high fat diet-fed obese pancreatic tumor bearing mice do not respond to standard of care therapy with gemcitabine and paclitaxel when compared to corresponding control diet-fed mice. C57BL6 mice were put on control and high fat diet for 1 month following with pancreatic tumors were implanted in both groups. Microbiome of lean (control) and obese (high fat diet fed) mice was analyzed. Fecal matter transplant from control mice to obese mice sensitized tumors to chemotherapy and demonstrated extensive cell death. Analysis of gut microbiome showed an enrichment of queuosine (Q) producing bacteria in obese mice and an enrichment of S-adenosyl methionine (SAM) producing bacteria in control diet-fed mice. Further, supplementation of obese animals with SAM sensitized pancreatic tumors to chemotherapy. Treatment of pancreatic cancer cells with Q increased PRDX1 involved in oxidative stress protection. In parallel, tumors in obese mice showed increase in CD133+ treatment refractory tumor populations compared to control animals. These observations indicated that microbial metabolite Q accumulation in high fat diet-fed mice protected tumors from chemotherapy induced oxidative stress by upregulating PRDX1. This protection could be reversed by treatment with SAM. We conclude that relative concentration of SAM and queuosine in fecal samples of pancreatic cancer patients can be developed as a potential biomarker and therapeutic target in chemotherapy refractory pancreatic cancer.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Roberto Mendez
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Vanessa T Garrido
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Brittany Durden
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vineet K Gupta
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Nipun Merchant
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jashodeep Datta
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
40
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
41
|
Huang PY, Yang YC, Wang CI, Hsiao PW, Chiang HI, Chen TW. Increase in Akkermansiaceae in Gut Microbiota of Prostate Cancer-Bearing Mice. Int J Mol Sci 2021; 22:9626. [PMID: 34502535 PMCID: PMC8431795 DOI: 10.3390/ijms22179626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota are reported to be associated with many diseases, including cancers. Several bacterial taxa have been shown to be associated with cancer development or response to treatment. However, longitudinal microbiota alterations during the development of cancers are relatively unexplored. To better understand how microbiota changes, we profiled the gut microbiota composition from prostate cancer-bearing mice and control mice at five different time points. Distinct gut microbiota differences were found between cancer-bearing mice and control mice. Akkermansiaceae was found to be significantly higher in the first three weeks in cancer-bearing mice, which implies its role in the early stage of cancer colonization. We also found that Bifidobacteriaceae and Enterococcaceae were more abundant in the second and last sampling week, respectively. The increments of Akkermansiaceae, Bifidobacteriaceae and Enterococcaceae were previously found to be associated with responses to immunotherapy, which suggests links between these bacteria families and cancers. Additionally, our function analysis showed that the bacterial taxa carrying steroid biosynthesis and butirosin and neomycin biosynthesis were increased, whereas those carrying naphthalene degradation decreased in cancer-bearing mice. Our work identified the bacteria taxa altered during prostate cancer progression and provided a resource of longitudinal microbiota profiles during cancer development in a mouse model.
Collapse
Affiliation(s)
- Pin-Yu Huang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nangang District, Taipei City 115, Taiwan; (Y.-C.Y.); (P.-W.H.)
| | - Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Nangang District, Taipei City 115, Taiwan; (Y.-C.Y.); (P.-W.H.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
42
|
Kang YB, Cai Y. Faecal microbiota transplantation enhances efficacy of immune checkpoint inhibitors therapy against cancer. World J Gastroenterol 2021; 27:5362-5375. [PMID: 34539138 PMCID: PMC8409158 DOI: 10.3748/wjg.v27.i32.5362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Even though immune checkpoint inhibitors (ICIs) are effective on multiple cancer types, there are still many non-responding patients. A possible factor put forward that may influence the efficacy of ICIs is the gut microbiota. Additionally, faecal microbiota transplantation may enhance efficacy of ICIs. Nevertheless, the data available in this field are insufficient, and relevant scientific work has just commenced. As a result, the current work reviewed the latest research on the association of gut microbiota with ICI treatments based on anti-programmed cell death protein 1 antibody and anti- cytotoxic T-lymphocyte-associated protein 4 antibody and explored the therapeutic potential of faecal microbiota transplantation in combination with ICI therapy in the future.
Collapse
Affiliation(s)
- Yong-Bo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030600, Shanxi Province, China
| | - Yue Cai
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030600, Shanxi Province, China
| |
Collapse
|
43
|
Fulgenzi CAM, Talbot T, Murray SM, Silletta M, Vincenzi B, Cortellini A, Pinato DJ. Immunotherapy in Hepatocellular Carcinoma. Curr Treat Options Oncol 2021; 22:87. [PMID: 34424422 PMCID: PMC8382645 DOI: 10.1007/s11864-021-00886-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Patients with hepatocellular carcinoma (HCC) have been traditionally deprived from highly effective systemic therapy options in the past decades. The multi-targeted tyrosine kinase inhibitor sorafenib, approved in 2008, remained the only treatment option for advanced HCC for over a decade. A number of molecularly targeted therapies such as lenvatinib, regorafenib, cabozantinib, and ramucirumab have significantly widened treatment options in patients with advanced HCC. However, emergence of resistance and long-term toxicity from treatment are barriers to long-term survivorship. Immunotherapy is at the focus of intense research efforts in HCC. Whilst targeting of programmed cell death 1 (PD-1) and cytotoxic T lymphocyte 4 (CTLA-4) is associated with radiologically measurable disease-modulating effects in HCC, monotherapies fell short of demonstrating evidence of significant survival extension in advanced disease. Atezolizumab and bevacizumab were the first immunotherapy regimen to demonstrate clear superiority in improving the survival of patients with unresectable HCC compared to sorafenib, paving the way for immunotherapy combinations. As the treatment landscape of HCC rapidly evolves, with immunotherapy integrating within early- and intermediate-stage disease treatment algorithms, lack of level 1 evidence on sequencing of therapeutic strategies and lack of head-to-head comparisons across immunotherapy combinations will affect prescribing of immunotherapy in routine practice. In the absence of predictive biomarkers, choice of immunotherapy over kinase inhibitors will continue to remain an empirical exercise, guided by balancing anti-tumour efficacy with toxicity considerations in the individual patient.
Collapse
Affiliation(s)
- Claudia A M Fulgenzi
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Thomas Talbot
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS, London, UK
| | - Sam M Murray
- Department of Infectious Disease, Faculty of Medicine, Hammersmith Hospital, Imperial College London, W12 0NN, London, UK
| | - Marianna Silletta
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Bruno Vincenzi
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessio Cortellini
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS, London, UK
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - David J Pinato
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS, London, UK.
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
44
|
The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. Int J Mol Sci 2021; 22:ijms22158309. [PMID: 34361075 PMCID: PMC8347749 DOI: 10.3390/ijms22158309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.
Collapse
|
45
|
Hack SP, Verret W, Mulla S, Liu B, Wang Y, Macarulla T, Ren Z, El-Khoueiry AB, Zhu AX. IMbrave 151: a randomized phase II trial of atezolizumab combined with bevacizumab and chemotherapy in patients with advanced biliary tract cancer. Ther Adv Med Oncol 2021; 13:17588359211036544. [PMID: 34377158 PMCID: PMC8326820 DOI: 10.1177/17588359211036544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Biliary tract cancers (BTCs) are heterogenous, highly aggressive tumors that harbor a dismal prognosis for which more effective treatments are needed. The role of cancer immunotherapy in BTC remains to be characterized. The tumor microenvironment (TME) of BTC is highly immunosuppressed and combination treatments are needed to promote effective anticancer immunity. Vascular endothelial growth factor (VEGF) drives immunosuppression in the TME by disrupting antigen presentation, limiting T-cell infiltration, or potentiating immune-suppressive cells. Many VEGF-regulated mechanisms are thought to be relevant to repressed antitumor immunity in BTC, making dual targeting of VEGF and programmed cell death protein 1 (PD-1)/PD-L1 pathways a rational approach. Gemcitabine and Cisplatin (Gem/Cis) can also modulate anticancer immunity through overlapping and complementary mechanisms to those regulated by VEGF. Anti-PD-L1/VEGF inhibition, coupled with chemotherapy, may potentiate antitumor immunity leading to enhanced clinical benefit. Methods: IMbrave 151 is a randomized, double-blind, placebo-controlled, multicenter, international phase II study to evaluate atezolizumab (a PD-L1 inhibitor) in combination with chemotherapy (gemcitabine and cisplatin) and bevacizumab (an anti-VEGF monoclonal antibody) as a first-line treatment for advanced BTC. Approximately 150 patients with previously untreated, advanced BTC will be randomized to either Arm A (atezolizumab + bevacizumab + Gem/Cis) or Arm B (atezolizumab + placebo + Gem/Cis). Randomization is stratified by the presence of metastatic disease, primary tumor location, and geographic region. The primary efficacy endpoint is investigator-assessed progression-free survival (PFS) per RECIST 1.1. Secondary endpoints include objective response rate (ORR), duration of response (DoR), disease control rate (DCR), overall survival (OS), and safety and patient reported outcomes (PROs). Tissue, blood, and stool samples will be collected at baseline and on-treatment in order to perform correlative biomarker analyses. Discussion: IMbrave 151 represents the first randomized study to evaluate combined PD-L1/VEGF blockade on a chemotherapy backbone in BTC. Trial registration: NCT identifier: NCT04677504; EUDRACT number: 2020-003759-14
Collapse
Affiliation(s)
- Stephen P Hack
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Sohail Mulla
- Hoffmann-La Roche Limited, Mississauga, ON, Canada
| | - Bo Liu
- Genentech, South San Francisco, CA, USA
| | | | - Teresa Macarulla
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Zhenggang Ren
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anthony B El-Khoueiry
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
46
|
Herreros-Pomares A, Llorens C, Soriano B, Zhang F, Gallach S, Bagan L, Murillo J, Jantus-Lewintre E, Bagan J. Oral microbiome in Proliferative Verrucous Leukoplakia exhibits loss of diversity and enrichment of pathogens. Oral Oncol 2021; 120:105404. [PMID: 34225130 DOI: 10.1016/j.oraloncology.2021.105404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oral microbiome plays an important role in oral diseases. Among them, proliferative verrucous leucoplakia (PVL) is an uncommon form of progressive multifocal leukoplakia with a worryingly rate of malignant transformation. Here, we aimed to characterize the oral microbiome of PVL patients and compare it with those of healthy controls. MATERIAL AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their microbial communities. The sequence of the V3-V4 region of 16S rRNA gene was used as the taxonomic basis to estimate and analyze the composition and diversity of bacterial populations present in the samples. RESULTS Our results show that the oral microbial composition and diversity are significantly different among PVL patients and healthy donors. The average number of observed operational taxonomic units (OTUs) was higher for healthy donors than for PVL, proving a loss of diversity in PVL. Several OTUs were found to be more abundant in either group. Among those that were significantly enriched in PVL patients, potential protumorigenic pathogens like Oribacterium sp. oral taxon 108, Campylobacter jejuni, uncultured Eubacterium sp., Tannerella, and Porphyromonas were identified. CONCLUSION Oral microbiome dysbiosis was found in patients suffering from PVL. To the best of our knowledge, this is the first study investigating the oral microbiome alterations in PVL and, due to the limited number of participants, additional studies are needed. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of PVL.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Judith Murillo
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
47
|
Ando K, Hu Q, Kasagi Y, Oki E, Mori M. Recent developments in cancer research: Expectations for a new remedy. Ann Gastroenterol Surg 2021; 5:419-426. [PMID: 34337290 PMCID: PMC8316733 DOI: 10.1002/ags3.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer research has made remarkable progress and new discoveries are beginning to be made. For example, the discovery of immune checkpoint inhibition mechanisms in cancer cells has led to the development of immune checkpoint inhibitors that have benefited many cancer patients. In this review, we will introduce and describe the latest novel areas of cancer research: exosomes, microbiome, immunotherapy. and organoids. Exosomes research will lead to further understanding of the mechanisms governing cancer proliferation, invasion, and metastasis, as well as the development of cancer detection and therapeutic methods. Microbiome are important in understanding the disease. Immunotherapy is the fourth treatment in cancer therapy. Organoid biology will further develop with a goal of translating the research into personalized therapy. These research areas may result in the creation of new cancer treatments in the future.
Collapse
Affiliation(s)
- Koji Ando
- Department of Surgery and ScienceKyushu UniversityFukuokaJapan
| | - Qingjiang Hu
- Department of Surgery and ScienceKyushu UniversityFukuokaJapan
| | - Yuta Kasagi
- Department of Surgery and ScienceKyushu UniversityFukuokaJapan
| | - Eiji Oki
- Department of Surgery and ScienceKyushu UniversityFukuokaJapan
| | - Masaki Mori
- Department of Surgery and ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
48
|
Ma Y, Qiu M, Wang S, Meng S, Yang F, Jiang G. Distinct tumor bacterial microbiome in lung adenocarcinomas manifested as radiological subsolid nodules. Transl Oncol 2021; 14:101050. [PMID: 33765542 PMCID: PMC8022255 DOI: 10.1016/j.tranon.2021.101050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Increasing evidence indicates that microbiota dysbiosis in the human body may play vital roles in carcinogenesis. However, the relationship between microbiome and lung cancer remains unclear. In this study, we aimed to characterize the microbiome in early stage of lung adenocarcinoma (LUAD), which presented as subsolid nodules (SSN) or solid nodules (SN). MATERIALS AND METHODS We performed 16S rRNA sequencing of 35 pairs (10 SSN and 25 SN) of LUAD tumor tissues and paired adjacent normal tissues. Machine learning was used to identify microbial signatures and construct predictive models. RESULTS SSN has higher microbiome richness and diversity compared with SN (richness p = 0.017, Shannon index p = 0.17), and the microbiome composition of SSN is distinct from that of SN (Bray-Curtis p = 0.013, unweighted unifrac p = 0.001). Phylum Chloroflexi (p = 0.009), Gemmatimonadetes (p = 0.018) and genus including Cloacibacterium (p = 0.003), Subdoligranulum (p = 0.002), and Mycobacterium (p = 0.034) were significantly increased in SSN. Tumor and normal tissues had similar richness and diversity, as well as overall microbiome composition. Probiotics with anti-cancer potential, like Lactobacillus, showed elevated levels in normal tissues (p = 0.018). A random forest model with 20 genera-based biomarkers achieved high accuracy for LUAD prediction (area under curve, AUC = 0.879). Meanwhile, a five genera-based signature can accurately discriminate SSN between SN (AUC = 0.950). Cross-validation of these two models also showed high predictive performance (LUAD AUC = 0.813, SSN AUC = 0.933). CONCLUSIONS This study demonstrates, for the first time, the tumor bacterial microbiome composition of LUAD manifested as SSN is distinct from that presented as SN, which adds new knowledge to SSN in the perspective of microbiome. Furthermore, microbiome signatures showed good performance to predict LUAD or SSN.
Collapse
Affiliation(s)
- Yi Ma
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Shushi Meng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Guanchao Jiang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
49
|
Dikilitas M. Why Adjuvant and Neoadjuvant Therapy Failed in HCC. Can the New Immunotherapy Be Expected to Be Better? J Gastrointest Cancer 2021; 51:1193-1196. [PMID: 32869146 DOI: 10.1007/s12029-020-00497-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION HCC remains a challenging disease with its unique characteristics and aggressive behavior. Although there are some curative-intent treatments such as liver transplantation and surgical resection, they themselves did not cure the patients with relatively high recurrence rates. Several modalities including local ablation methods like TACE or TARE, systemic treatments such as chemotherapy, tyrosine kinase inhibitors or antiviral therapies are tested in adjuvant or neoadjuvant setting, but none of them offered a survival benefit (except antiviral therapy in HBV-related HCC). CONCLUSION After a decade of plateau in drug development, ICPIs came into podium with their different mechanism of action consistent with immunogenic nature of the disease and with high expectations, and ongoing trials will show if these agents can satisfy unmet demand in this area.
Collapse
Affiliation(s)
- Mustafa Dikilitas
- Department of Medical Oncology, Inonu University Liver transplantation İnstitute, Malatya, Turkey.
| |
Collapse
|
50
|
Wang Q, Ding H, Dong G, Xu L, Jiang F, Mao Q. Bi-direction effects between microbiome and MiRNAs in carcinogenesis. J Cancer Res Clin Oncol 2021; 147:1299-1305. [PMID: 33765216 DOI: 10.1007/s00432-021-03567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
There is evidence from numerous studies that dysbiosis of the microbiome provokes various immune-mediated diseases, obesity, diabetes, and cancers by regulating metabolites, host genetics, environmental elements, and stress. Such reports are yet to define an accurate regulatory network for host-gut microbiome communication. miRNAs have recently emerged as crucial mediators of this communication, as portrayed by their interaction with the host microbiome. This mini-review summarizes the bi-direction effects between miRNA and microbiome and elucidates their role in carcinogenesis. An in-depth understanding of the association of miRNA with host-microbiome could be valuable to improve cancer remission, diagnosis, and treatment, and may help to potential tumor markers.
Collapse
Affiliation(s)
- Qinglin Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Hanlin Ding
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, 210009, People's Republic of China.
| |
Collapse
|