1
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
2
|
Zhang Y, Liu T, He W. The application of organoids in cancers associated with pathogenic infections. Clin Exp Med 2024; 24:168. [PMID: 39052148 PMCID: PMC11272814 DOI: 10.1007/s10238-024-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cancers associated with pathogen infections are gradually becoming important threats to human health globally, and it is of great significance to study the mechanisms of pathogen carcinogenesis. Current mechanistic studies rely on animal and two-dimensional (2D) cell culture models, but traditional methods have been proven insufficient for the rapid modeling of diseases caused by new pathogens. Therefore, research focus has shifted to organoid models, which can replicate the structural and genetic characteristics of the target tissues or organs in vitro, providing new platforms for the study of pathogen-induced oncogenic mechanisms. This review summarizes the application of organoid technology in the studies of four pathogen-associated cancers: gastric cancer linked to Helicobacter pylori, liver cancer associated with hepatitis B virus or hepatitis C virus, colorectal cancer caused by Escherichia coli, and cervical cancer related to human papillomavirus. This review also proposes several limitations of organoid technology to optimize organoid models and advance the treatment of cancer associated with pathogen infections in the future.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
4
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
5
|
Rao S, Romal S, Torenvliet B, Slotman JA, Huijs T, Mahmoudi T. A 3D organoid platform that supports liver-stage P.falciparum infection can be used to identify intrahepatic antimalarial drugs. Heliyon 2024; 10:e30740. [PMID: 38770342 PMCID: PMC11103482 DOI: 10.1016/j.heliyon.2024.e30740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Malaria, a major public health burden, is caused by Plasmodium spp parasites that first replicate in the human liver to establish infection before spreading to erythrocytes. Liver-stage malaria research has remained challenging due to the lack of a clinically relevant and scalable in vitro model of the human liver. Here, we demonstrate that organoids derived from intrahepatic ductal cells differentiated into a hepatocyte-like fate can support the infection and intrahepatic maturation of Plasmodium falciparum. The P.falciparum exoerythrocytic forms observed expressed both early and late-stage parasitic proteins and decreased in frequency in response to treatment with both known and putative antimalarial drugs that target intrahepatic P.falciparum. The P.falciparum-infected human liver organoids thus provide a platform not only for fundamental studies that characterise intrahepatic parasite-host interaction but can also serve as a powerful translational tool in pre-erythrocytic vaccine development and to identify new antimalarial drugs that target the liver stage infection.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Bram Torenvliet
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| | - Johan A. Slotman
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Optical Imaging Centre, Erasmus University Medical Centre, Zuid Holland, 3015, GD, Netherlands
| | | | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Zuid Holland, 3015, GD, Netherlands
| |
Collapse
|
6
|
Sakata N, Yoshimatsu G, Kawakami R, Nakano K, Yamada T, Yamamura A, Nagashima H, Kodama S. The porcine islet-derived organoid showed the characteristics as pancreatic duct. Sci Rep 2024; 14:6401. [PMID: 38493252 PMCID: PMC10944495 DOI: 10.1038/s41598-024-57059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
Organoid is a tissue-engineered organ-like structure that resemble as an organ. Porcine islet-derived organoid might be used as an alternative donor of porcine islet xenotransplantation, a promising therapy for severe diabetes. In this study, we elucidated the characteristics of porcine islet organoids derived from porcine islets as a cell source for transplantation. Isolated porcine islets were 3D-cultured using growth factor-reduced matrigel in organoid culture medium consist of advanced DMEM/F12 with Wnt-3A, R-spondin, EGF, Noggin, IGF-1, bFGF, nicotinamide, B27, and some small molecules. Morphological and functional characteristics of islet organoids were evaluated in comparison with 2D-cultured islets in advanced DMEM/F12 medium. Relatively short-term (approximately 14 days)-cultured porcine islet organoids were enlarged and proliferated, but had an attenuated insulin-releasing function. Long-term (over a month)-cultured islet organoids could be passaged and cryopreserved. However, they showed pancreatic duct characteristics, including cystic induction, strong expression of Sox9, loss of PDX1 expression, and no insulin-releasing function. These findings were seen in long-term-cultured porcine islets. In conclusion, our porcine islet organoids showed the characteristics of pancreatic ducts. Further study is necessary for producing porcine islet-derived organoids having characteristics as islets.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Teppei Yamada
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
| | - Akihiro Yamamura
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba, Sendai, Miyagi, 980-0872, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan, Fukuoka, Fukuoka, 814-0180, Japan
| |
Collapse
|
7
|
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm (Beijing) 2023; 4:e367. [PMID: 37750089 PMCID: PMC10518040 DOI: 10.1002/mco2.367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Collapse
Affiliation(s)
- Qing Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiyu Huang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiwei Yan
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shu Liu
- Department of Breast SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiyi Fang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
9
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
11
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Liver Organoids, Novel and Promising Modalities for Exploring and Repairing Liver Injury. Stem Cell Rev Rep 2023; 19:345-357. [PMID: 36199007 PMCID: PMC9534590 DOI: 10.1007/s12015-022-10456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed great advances in organoid technology. Liver is the biggest solid organ, performing multifaceted physiological functions. Nowadays, liver organoids have been applied in many fields including pharmaceutical research, precision medicine and disease models. Compared to traditional 2-dimensional cell line cultures and animal models, liver organoids showed the unique advantages. More importantly, liver organoids can well model the features of the liver and tend to be novel and promising modalities for exploring liver injury, thus finding potential treatment targets and repairing liver injury. In this review, we reviewed the history of the development of liver organoids and summarized the application of liver organoids and recent studies using organoids to explore and further repair the liver injury. These novel modalities could provide new insights about the process of liver injury.
Collapse
|
13
|
Tumor organoid biobank-new platform for medical research. Sci Rep 2023; 13:1819. [PMID: 36725963 PMCID: PMC9892604 DOI: 10.1038/s41598-023-29065-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Organoids are a new type of 3D model for tumor research, which makes up for the shortcomings of cell lines and xenograft models, and promotes the development of personalized precision medicine. Long-term culture, expansion and storage of organoids provide the necessary conditions for the establishment of biobanks. Biobanks standardize the collection and preservation of normal or pathological specimens, as well as related clinical information. The tumor organoid biobank has a good quality control system, which is conducive to the clinical transformation and large-scale application of tumor organoids, such as disease modeling, new drug development and high-throughput drug screening. This article summarized the common tumor types of patient-derived organoid (PDO) biobanks and the necessary information for biobank construction, such as the number of organoids, morphology, success rate of culture and resuscitation, pathological types. In our results, we found that patient-derived tumor organoid (PDTO) biobanks were being established more and more, with the Netherlands, the United States, and China establishing the most. Biobanks of colorectal, pancreas, breast, glioma, and bladder cancers were established more, which reflected the relative maturity of culture techniques for these tumors. In addition, we provided insights on the precautions and future development direction of PDTO biobank building.
Collapse
|
14
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
15
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci 2022; 12:152. [PMID: 36085085 PMCID: PMC9463833 DOI: 10.1186/s13578-022-00890-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, and its morbidity unceasingly increases these years. Hepatitis B virus (HBV) infection accounted for approximately 50% of hepatocellular carcinoma (HCC) cases globally in 2015. Due to the lack of an effective model to study HBV-associated liver carcinogenesis, research has made slow progress. Organoid, an in vitro 3D model which maintains self-organization, has recently emerged as a powerful tool to investigate human diseases. In this review, we first summarize the categories and development of liver organoids. Then, we mainly focus on the functions of culture medium components and applications of organoids for HBV infection and HBV-associated liver cancer studies. Finally, we provide insights into a potential patient-derived organoid model from those infected with HBV based on our study, as well as the limitations and future applications of organoids in liver cancer research.
Collapse
|
17
|
Gao Y, Kruithof-de Julio M, Peng RW, Dorn P. Organoids as a Model for Precision Medicine in Malignant Pleural Mesothelioma: Where Are We Today? Cancers (Basel) 2022; 14:3758. [PMID: 35954422 PMCID: PMC9367391 DOI: 10.3390/cancers14153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients.
Collapse
Affiliation(s)
- Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department for BioMedical Research (DBMR), Translation Organoid Research, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
18
|
Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. BIOSENSORS 2022; 12:485. [PMID: 35884289 PMCID: PMC9313202 DOI: 10.3390/bios12070485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (μPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. μPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to μPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of μPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for μPADs are summarized, and the innovative achievements of μPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of μPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent μPAD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.Z.); (F.D.); (Y.Y.); (G.Z.); (C.Z.); (R.W.)
| |
Collapse
|
19
|
Lee J, Mun SJ, Shin Y, Lee S, Son MJ. Advances in liver organoids: model systems for liver disease. Arch Pharm Res 2022; 45:390-400. [DOI: 10.1007/s12272-022-01390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
20
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
21
|
The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases. Cells 2022; 11:cells11091410. [PMID: 35563716 PMCID: PMC9101582 DOI: 10.3390/cells11091410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials.
Collapse
|
22
|
Abstract
The in vitro maintenance and expansion of primary hepatocytes provide immense opportunities for disease modeling and other biological, viral, and toxicological studies, as well as for applications in regenerative medicine such as cell transplantation for the treatment of metabolic liver diseases. Here, we describe a protocol for the isolation and in vitro culture of primary hepatocytes in a three-dimensional extracellular matrix gel. The inflammatory cytokine tumor necrosis factor alpha (TNFα) is crucial for the long-term expansion of mouse hepatocyte organoids by mimicking the regenerative response in vitro. Long-term cultured hepatocyte organoids express high levels of hepatocyte markers upon differentiation.
Collapse
Affiliation(s)
- Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
24
|
Wang Y, Wang P, Qin J. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases. Acc Chem Res 2021; 54:3550-3562. [PMID: 34459199 DOI: 10.1021/acs.accounts.1c00411] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infectious diseases present tremendous challenges to human progress and public health. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) pandemic continue to pose an imminent threat to humanity. These infectious diseases highlight the importance of developing innovative strategies to study disease pathogenesis and protect human health. Although conventional in vitro cell culture and animal models are useful in facilitating the development of effective therapeutics for infectious diseases, models that can accurately reflect human physiology and human-relevant responses to pathogens are still lacking. Microfluidic organs-on-a-chip (organ chips) are engineered microfluidic cell culture devices lined with living cells, which can resemble organ-level physiology with high fidelity by rebuilding tissue-tissue interfaces, mechanical cues, fluidic flow, and the biochemical cellular microenvironment. They present a unique opportunity to bridge the gap between in vitro experimental models and in vivo human pathophysiology and are thus a promising platform for disease studies and drug testing. In this Account, we first introduce how recent progress in organ chips has enabled the recreation of complex pathophysiological features of human infections in vitro. Next, we describe the progress made by our group in adopting organ chips and other microphysiological systems for the study of infectious diseases, including SARS-CoV-2 viral infections and intrauterine bacterial infections. Respiratory symptoms dominate the clinical manifestations of many COVID-19 patients, even involving the systemic injury of many distinct organs, such as the lung, the gastrointestinal tract, and so forth. We thus particularly highlight our recent efforts to explore how lung-on-a-chip and intestine-on-a-chip might be useful in addressing the ongoing viral pandemic of COVID-19 caused by SARS-CoV-2. These organ chips offer a potential platform for studying virus-host interactions and human-relevant responses as well as accelerating the development of effective therapeutics against COVID-19. Finally, we discuss opportunities and challenges in the development of next-generation organ chips, which are urgently needed for developing effective and affordable therapies to combat infectious diseases. We hope that this Account will promote awareness about in vitro organ microphysiological systems for modeling infections and stimulate joint efforts across multiple disciplines to understand emerging and re-emerging pandemic diseases and rapidly identify innovative interventions.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Zhu X, Zhang B, He Y, Bao J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med 2021; 18:573-585. [PMID: 34132985 DOI: 10.1007/s13770-021-00357-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The liver is the most important digestive organ in the body. Several studies have explored liver biology and diseases related to the liver. However, most of these studies have only explored liver development, mechanism of liver regeneration and pathophysiology of liver diseases mainly based on two-dimensional (2D) cell lines and animal models. Traditional 2D cell lines do not represent the complex three-dimensional tissue architecture whereas animal models are limited by inter-species differences. These shortcomings limit understanding of liver biology and diseases. Liver organoid technology is effective in elucidating structural and physiological characteristics and basic tissue-level functions of liver tissue. In this review, formation strategies and a wide range of applications in biomedicine of liver organoid are summarized. Liver organoids are derived from single type cell culture, such as induced pluripotent stem cells (iPSCs), adult stem cells, primary hepatocytes, and primary cholangiocytes and multi-type cells co-culture, such as iPSC-derived hepatic endoderm cells co-cultured with mesenchymal stem cells and umbilical cord-derived endothelial cells. In vitro studies report that liver organoids are a promising model for regenerative medicine, organogenesis, liver regeneration, disease modelling, drug screening and personalized treatment. Liver organoids are a promising in vitro model for basic research and for development of clinical therapeutic interventions for hepatopathy.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Bingqi Zhang
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|