1
|
Jiang S, Guo F, Li L. Biological mechanisms and immunotherapy of brain metastases in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189320. [PMID: 40220878 DOI: 10.1016/j.bbcan.2025.189320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide, with Brain Metastases serving as a significant adverse prognostic factor. The blood-brain barrier poses a substantial challenge in the treatment of brain metastases, as it restricts the penetration of many anticancer agents. Novel immunotherapy, such as immune checkpoint inhibitors (ICIs) have emerged as promising treatment for NSCLC and its associated brain metastases. This review summarizes the biological mechanism underlying NSCLC brain metastases and provides an overview of the current landscape of immunotherapy, exploring the mechanism of action and clinical applications of these advanced treatments.
Collapse
Affiliation(s)
- Sitong Jiang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Liu X, Jiang R, Xu Y, Xu X, Fang L, Gao G, Han L, Chen Y, Du H, Cai Y, Zhu F, Chen M, Wang K, Li H, Wang G, Quan C. Dual cytokine-engineered macrophages rejuvenate the tumor microenvironment and enhance anti-PD-1 therapy in renal cell carcinoma. Int Immunopharmacol 2025; 156:114725. [PMID: 40294469 DOI: 10.1016/j.intimp.2025.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Despite advances in PD-1 blockade therapy, the immunosuppressive tumor microenvironment (TME) limits its efficacy in renal cell carcinoma (RCC). Here, we developed dual-cytokine-engineered macrophages co-delivering IL-12 and CXCL-9 to reprogram TME and enhance anti-PD-1 responsiveness. Single-cell RNA sequencing revealed that RCC harbor abundant M2-like tumor-associated macrophages (TAMs), which correlate with T-cell exhaustion. In vitro, engineered macrophages polarized M2-like TAMs to antitumor M1 phenotypes, secreted CXCL-9 to recruit cytotoxic T cells, and released IL-12 to amplify T/NK cell activation. In vivo, intravenously administered engineered macrophages homed to tumors, reshaped the TME by increasing CD8+ T cells, dendritic cells, and NK cells while reducing immunosuppressive Tregs and MDSCs. This approach synergized with PD-1 blockade, resulting in a 2.5-fold greater tumor growth inhibition compared to anti-PD-1 monotherapy. This dual-cytokine macrophage platform offers a novel strategy to overcome resistance to checkpoint inhibitors in RCC by delivering cytokine and remodeling TME, with implications for clinical translation.
Collapse
Affiliation(s)
- Xin Liu
- Tianjin institute of urology,Tianjin Medical University Second Hospital, Tianjin, China; Department of Urology,The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ranran Jiang
- Department of Oncology,The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujun Xu
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaodi Xu
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ge Gao
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Han
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Chen
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongwei Du
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Cai
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fei Zhu
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingjing Chen
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kaidi Wang
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hailong Li
- Department of Urology,The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Gang Wang
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Changyi Quan
- Tianjin institute of urology,Tianjin Medical University Second Hospital, Tianjin, China.
| |
Collapse
|
3
|
Tang Q, Li L, Ge J, Wang D, Qu H, Wu J, Wang Q, Peng Z, Mo Y, Wang Y, Fan C, Yan Q, Chen P, Huang H, Guo W, Shi L, Zeng Z, Xiong W. m 6A modification-dependent upregulation of WNT2 facilitates M2-like macrophage polarization and perpetuates malignant progression of nasopharyngeal carcinoma. Oncogene 2025:10.1038/s41388-025-03452-7. [PMID: 40419792 DOI: 10.1038/s41388-025-03452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/28/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
The development and progression of nasopharyngeal carcinoma (NPC) involves intricate interactions between tumor cells and other surrounding cells in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play pivotal roles in the progression of NPC, but their interactions remain largely unexplored. In this study, we revealed that NPC promoted M2-like polarization of TAMs through enhanced synthesis and secretion of WNT2. These M2-type macrophages, in turn, significantly boosted the proliferation and metastasis of NPC. This vicious cycle perpetuated the malignant progression of NPC. Mechanistically, elevated m6A modification of WNT2 in NPC stabilized its mRNA and facilitated its protein expression, which is coordinately regulated by the m6A "eraser" ALKBH5 and the "reader" YTHDF1. NPC promoted M2-like polarization of macrophages by activating the FZD2/β-catenin signaling axis through paracrine WNT2. Furthermore, elevated WNT2 can also trigger the WNT/β-catenin signaling pathway in NPC cells through autocrine signaling, synergically contributing to NPC development. The research reveals that WNT2 is upregulated in an m6A modification-dependent manner and promotes M2-like macrophages polarization of TAMs and malignant progression of NPC. This discovery provides novel potential molecular markers and therapeutic targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, Hunan, China
| | - Lvyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, Hunan, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China
| | - Qian Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhouying Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - He Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, Hunan, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
4
|
Liu S, Jiang A, Tang F, Duan M, Li B. Drug-induced tolerant persisters in tumor: mechanism, vulnerability and perspective implication for clinical treatment. Mol Cancer 2025; 24:150. [PMID: 40413503 DOI: 10.1186/s12943-025-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/04/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer remains a significant global health burden due to its high morbidity and mortality. Oncogene-targeted therapy and immunotherapy have markedly improved the 5-year survival rate in the patients with advanced or metastatic tumors compared to outcomes in the era of chemotherapy/radiation. Nevertheless, the majority of patients remain incurable. Initial therapies eliminate the bulk of tumor cells, yet residual populations termed drug-tolerant persister cells (DTPs) survive, regenerate tumor and even drive distant metastases. Notably, DTPs frequently render tumor cross-resistance, a detrimental phenomenon observed in the patients with suboptimal responses to subsequent therapies. Analogous to species evolution, DTPs emerge as adaptative products at the cellular level, instigated by integrated intracellular stress responses to therapeutic pressures. These cells exhibit profound heterogeneity and adaptability shaped by the intricate feedforward loops among tumor cells, surrounding microenvironments and host ecology, which vary across tumor types and therapeutic regimens. In this review, we revisit the concept of DTPs, with a focus on their generation process upon targeted therapy or immunotherapy. We dissect the critical phenotypes and molecule mechanisms underlying DTPs to therapy from multiple aspects, including intracellular events, intercellular crosstalk and the distant ecologic pre-metastatic niches. We further spotlight therapeutic strategies to target DTP vulnerabilities, including synthetic lethality approaches, adaptive dosing regimens informed by mathematical modeling, and immune-mediated eradication. Additionally, we highlight synergistic interventions such as lifestyle modifications (e.g., exercise, stress reduction) to suppress pro-tumorigenic inflammation. By integrating mechanistic insights with translational perspectives, this work bridges the gap between DTP biology and clinical strategies, aiming for optimal efficacy and preventing relapse.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Minghao Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha , Hunan, 410008, People's Republic of China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
5
|
Qi Y, Yan J, Huang X, Jiang X, Li R, Wan J, Li Y, Miao Z, Song Z, Liu Y, Zhang L, Zhang Z. Targeting Tumor-Associated Macrophage Polarization with Traditional Chinese Medicine Active Ingredients: Dual Reversal of Chemoresistance and Immunosuppression in Tumor Microenvironment. Pharmacol Res 2025; 216:107788. [PMID: 40414586 DOI: 10.1016/j.phrs.2025.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Chemotherapy resistance and immunosuppression are major causes of tumor treatment failure. The polarization state of tumor-associated macrophages (TAMs) is a central regulatory hub for both processes. Traditional Chinese medicine (TCM) has the characteristics of multi-component, multi-target, and multi-pathway. It regulating M1/M2 polarization is promising due to the high plasticity of TAMs. This review comprehensively explores the anti-tumor effects of TCM active components through multiple targets such as metabolic reprogramming. The mechanism includes regulating TAM's polarization, reversing chemotherapy resistance, and modulating immunosuppression. Furthermore, we also summarize the synergistic effects of TCM multi-component and the exploration of mechanisms promoted by new technologies. While most studies are still in the preclinical stage, these insights highlight the potential of TCM as a cancer treatment and highlight avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Yafeng Qi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingnan Yan
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xixi Huang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodan Jiang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rongrong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Wan
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhongyang Song
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Aktay-Cetin Ö, Pullamsetti SS, Herold S, Savai R. Lung tumor immunity: redirecting macrophages through infection-induced inflammation. Trends Immunol 2025:S1471-4906(25)00096-1. [PMID: 40382244 DOI: 10.1016/j.it.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
Macrophages play a central role in maintaining tissue homeostasis and in surveillance against pathogens and disease. In the lung, they can adopt either proinflammatory or anti-inflammatory states depending on the nature of the stimulus. As the predominant immune cells in both the lung tumor microenvironment and in sites of lung infection, the functional plasticity of macrophages makes them key players in determining disease outcome. Accurately defining their inflammatory profiles offers an opportunity to reprogram infection-associated macrophages towards enhanced tumor-killing phenotypes. This review explores how acute inflammation can drive macrophage-mediated antitumor immunity and highlights key molecules and signaling pathways that may be leveraged to therapeutically modulate macrophage function.
Collapse
Affiliation(s)
- Öznur Aktay-Cetin
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Department of Internal Medicine II, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Department of Internal Medicine V, German Center for Lung Research (DZL), German Center for Infection Research (DZIF), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Department of Internal Medicine II, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
7
|
Piffkó A, Yang K, Panda A, Heide J, Tesak K, Wen C, Zawieracz K, Wang L, Naccasha EZ, Bugno J, Fu Y, Chen D, Donle L, Lengyel E, Tilley DG, Mack M, Rock RS, Chmura SJ, Vokes EE, He C, Pitroda SP, Liang HL, Weichselbaum RR. Radiation-induced amphiregulin drives tumour metastasis. Nature 2025:10.1038/s41586-025-08994-0. [PMID: 40369065 DOI: 10.1038/s41586-025-08994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
The anti-tumour effect of radiotherapy beyond the treatment field-the abscopal effect-has garnered much interest1. However, the potentially deleterious effect of radiation in promoting metastasis is less well studied. Here we show that radiotherapy induces the expression of the EGFR ligand amphiregulin in tumour cells, which reprogrammes EGFR-expressing myeloid cells toward an immunosuppressive phenotype and reduces phagocytosis. This stimulates distant metastasis growth in human patients and in pre-clinical mouse tumour models. The inhibition of these tumour-promoting factors induced by radiotherapy may represent a novel therapeutic strategy to improve patient outcomes.
Collapse
Affiliation(s)
- András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Arpit Panda
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Janna Heide
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Krystyna Tesak
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Chuangyu Wen
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Katarzyna Zawieracz
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Emile Z Naccasha
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| | - Yanbin Fu
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dapeng Chen
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Leonhard Donle
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Matthias Mack
- Department of Internal Medicine, University of Regensburg, Regensburg, Germany
| | - Ronald S Rock
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Everett E Vokes
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Jiang H, Pang J, Li T, Akofala A, Zhou X, Yi C, Ning S, Gao X, Qiao Y, Kou J. PD-1 regulates the anti-tumor immune function of macrophages through JAK2-STAT3 signaling pathway in colorectal cancer tumor microenvironment. J Transl Med 2025; 23:502. [PMID: 40317043 PMCID: PMC12048993 DOI: 10.1186/s12967-025-06469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/07/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs), as key immune components of the TME, play a pivotal role in tumor progression by fostering an immunosuppressive environment. Programmed death 1 (PD-1), a critical immune checkpoint molecule predominantly expressed on T cells, mediates immune suppression by binding to programmed death-ligand 1 (PD-L1) on tumor cells within the tumor microenvironment (TME). Emerging evidence reveals that TAMs also express PD-1, however, the expression and functional regulatory mechanisms of PD-1 on TAM remain poorly understood. METHODS In this study, we combined bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to investigate the association between PD-1 expression on macrophages and patient prognosis, while also uncovering the molecular mechanisms by which PD-1 regulates macrophage function. To further investigate the role of PD-1 in macrophage activity, we established a fluorescence-labeled tumor-bearing mouse model using CT26 cells, a murine colorectal cancer cell line, to evaluate the relationship between PD-1 expression on TAMs and their phagocytic activity as well as other functions. Additionally, to mimic the TME in vitro, we cultured bone marrow-derived macrophages (BMDMs) with CT26-conditioned medium (CT26-CM). RESULTS Our results suggest that PD-1 expression on TAMs drives macrophage polarization toward an M2-like phenotype, suppresses their phagocytic activity, inhibits the synthesis of interferon-γ (IFN-γ) signaling molecules, and ultimately promotes tumor progression. Mechanistically, we demonstrated that PD-1 regulates the synthesis of IFN-γ signaling molecules and the polarization of M2-type macrophages in BMDMs through the JAK2-STAT3 signaling pathway. Overall, our study demonstrates that PD-1 expression on TAMs facilitates the formation of an immunosuppressive microenvironment, ultimately accelerating tumor progression. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Han Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China
- Department of BioinformaticsScience and Technology, Harbin Medical University, Harbin, 150000, China
| | - Jingjing Pang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China
| | - Tengyue Li
- Department of BioinformaticsScience and Technology, Harbin Medical University, Harbin, 150000, China
| | - Atitso Akofala
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China
| | - Xiaoxi Zhou
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Changhua Yi
- The Second Hospital of Nanjing, Nanjing, 210003, China
| | - Shangwei Ning
- Department of BioinformaticsScience and Technology, Harbin Medical University, Harbin, 150000, China.
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China.
- Basic Medical Institute of Heilongjiang Medical Sciences Academy, Harbin, 150086, China.
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China.
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
9
|
Zhou X, Zeng L, Huang Z, Ruan Z, Yan H, Zou C, Xu S, Zhang Y. Strategies Beyond 3rd EGFR-TKI Acquired Resistance: Opportunities and Challenges. Cancer Med 2025; 14:e70921. [PMID: 40322930 PMCID: PMC12051098 DOI: 10.1002/cam4.70921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The seminal identification of epidermal growth factor receptor (EGFR) mutations as pivotal oncogenic drivers in non-small cell lung cancer (NSCLC) has catalyzed the evolution of biomarker-guided therapeutic paradigms for advanced disease. Currently, third-generation EGFR tyrosine kinase inhibitors (EGFR-TKI) have revolutionized first-line treatment for advanced EGFR-mutated NSCLC, yet acquired resistance remains an inevitable and formidable clinical challenge. This review systematically summarizes molecular mechanisms underlying treatment resistance, with a focus on clinical challenges associated with central nervous system (CNS) metastases. Therapeutic resistance mechanisms are categorized into EGFR-dependent (on-target) pathways, typified by acquired kinase domain mutations (e.g., C797S), and EGFR-independent (off-target) pathways, involving compensatory activation of parallel signaling effectors (e.g., MET amplification, HER2 activation) or phenotypic transformation. We further evaluated contemporary diagnostic modalities for identifying resistance drivers and appraised emerging therapeutic strategies, including fourth-generation EGFR-TKI, various combination therapies, and antibody-drug conjugates (ADCs), and so forth, with emphasis on ongoing clinical trials that may transform the existing treatment paradigm. By synthesizing preclinical and clinical insights, this review aims to advance mechanistic understanding and propose therapeutic strategies to overcome acquired resistance to third-generation EGFR-TKI in first-line treatment.
Collapse
Affiliation(s)
- Xuexue Zhou
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Zhaohui Ruan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chun Zou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Shidong Xu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Yongchang Zhang
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
10
|
Sun J, Zhou S, Sun Y, Zeng Y. The clinical significance and potential therapeutic target of tumor-associated macrophage in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1541104. [PMID: 40370720 PMCID: PMC12076932 DOI: 10.3389/fmed.2025.1541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
One of the leading causes of cancer-related mortality globally is non-small cell lung cancer (NSCLC). It has become a significant public health concern due to its rising incidence rate and fatality. Tumor-associated macrophage (TAM) is important in the tumor microenvironment (TME) of NSCLC because they have an impact on the development, metastasis, and incidence of tumors. As a crucial element of the TME, TAM contributes to tumor immune evasion, facilitates tumor proliferation and metastasis, and modulates tumor angiogenesis, immunosuppression, and treatment resistance through the secretion of diverse cytokines, chemokines, and growth factors. Consequently, TAM assumes a multifaceted and intricate function in the onset, progression, and therapeutic response of NSCLC, serving as a crucial focal point for comprehending the tumor microenvironment and formulating novel therapeutic methods. The study aims to review the biological properties and potential processes of TAM in NSCLC, investigate its involvement in the clinical of NSCLC patients, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiazheng Sun
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalu Sun
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yulan Zeng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang J, Wu X, Liu X, Xu Y. CD47 Contributes to the Proliferation of Breast Cancer. FRONT BIOSCI-LANDMRK 2025; 30:28210. [PMID: 40152385 DOI: 10.31083/fbl28210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND The CD47 molecule (CD47) performs a novel role in regulating immunoreactions by binding to signal-regulatory protein alpha (SIRPα), resulting in the tumorigenesis of multiple malignant neoplasms. However, its effects and mechanisms in breast cancer (BC) remain unknown. METHODS To explore the molecular mechanisms and explicit impacts of CD47, we screened two databases for CD47-associated signaling pathways and cellular functions. BC samples and patients' basic information were collected to identify the statistical significance of CD47 expression. We also constructed experiments to validate the regulatory role of CD47 in BC cell proliferation. RESULTS Analysis of the TCGA-BRCA, GSE42568, and GSE15852 datasets demonstrated an elevated level of CD47 in BC tissues. A Venn diagram revealed 11,194 co-expressed genes, and pathway analysis linked elevated CD47 levels to critical signaling pathways, such as cytokine-receptor interactions and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, which are integral to cell proliferation and invasiveness. Clinical data from 108 BC specimens showed that CD47 localization was primarily membranous, with higher levels correlating with proliferation marker Ki-67 (Ki-67) expression (p < 0.0001) and advanced tumor/node/metastasis (TNM) stage (p < 0.0001). Additionally, functional assays demonstrated that CD47 depletion reduced cell viability (p < 0.01), migration (p < 0.001), and invasion (p < 0.05 in 4T1 cells; p < 0.001 in MDA-MB-231 cells) in vitro and led to smaller tumor volumes (p < 0.0001) in vivo. CONCLUSION CD47 is a key regulator of BC cell proliferation and invasiveness and serves as a potential marker for assessing tumor aggressiveness and guiding therapeutic strategies.
Collapse
Affiliation(s)
- Junbin Wang
- The Second Clinical Medicine School, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xia Wu
- Department of Oncology, Shandong Provincial Third Hospital, 250031 Jinan, Shandong, China
| | - Xuejian Liu
- Department of General Surgery, The First Rehabilitation Hospital of Shandong, 276000 Linyi, Shandong, China
| | - Ying Xu
- Department of Breast and Thyroid Surgery, Shandong Provincial Third Hospital, 250031 Jinan, Shandong, China
| |
Collapse
|
12
|
Feng Y, Feng L, Wang B, Zhang T, Cui B. Therapeutic Potential of IL-37 in Cervical Cancer: Suppression of Tumour Progression and Enhancement of CD47-Mediated Macrophage Phagocytosis. Mol Carcinog 2025; 64:425-439. [PMID: 39620401 PMCID: PMC11814915 DOI: 10.1002/mc.23855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
As a promising therapeutic approach, immunotherapy is being extensively investigated in cervical cancer. Although immunotherapy has been validated to improve progression-free survival and overall survival in clinical trials, the overall response rate for cervical cancer remains inadequate, necessitating further improvement. Interleukin (IL)-37, an emerging immunomodulator, exhibits antitumour potentials by inhibiting tumour progression and regulating tumour-associated macrophage recognition. We found a significant downregulation of IL-37 expression in cervical cancer, correlated with a poor prognosis. Moreover, the upregulation of IL-37 expression exhibited a suppressive effect on various tumorigenic processes, suppressing the proliferation, invasion, migration, apoptosis and angiogenesis of tumour cells. We also found that the upregulation of IL-37 suppressed cluster of differentiation 47 (CD47) expression in tumour cells via suppression of the signal transducer and activator of transcription 3 (STAT3) expression and phosphorylation, thereby enhancing macrophage recognition and phagocytosis to tumour cells, ultimately reducing immune evasion. Overall, our study highlighted the crucial role of IL-37 in antitumour efficacy and downregulating the expression of CD47 in tumour cells to reduce immune evasion, suggesting the potential of IL-37 as a prognostic biomarker in cervical cancer and offering innovative therapeutic strategies to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Yuan Feng
- Cheeloo College of MedicineShandong UniversityJinan CityShandong ProvinceChina
| | - Lianlian Feng
- Cheeloo College of MedicineShandong UniversityJinan CityShandong ProvinceChina
| | - Bingyu Wang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| | - Teng Zhang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| | - Baoxia Cui
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| |
Collapse
|
13
|
Zhu R, Huang J, Qian F. The role of tumor-associated macrophages in lung cancer. Front Immunol 2025; 16:1556209. [PMID: 40079009 PMCID: PMC11897577 DOI: 10.3389/fimmu.2025.1556209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative treatments. Tumor-associated macrophages (TAMs) are primary immunosuppressive effectors that foster tumor proliferation, angiogenesis, metastasis, and resistance to therapy. They are broadly categorized into proinflammatory M1 and tumor-promoting M2 phenotypes, with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/IL-13-STAT6, TLRs, and CD47-SIRPα, regulate TAM polarization. Additionally, macrophage-based drug delivery systems permit targeted agent transport to hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted therapies with chemotherapy or immune checkpoint inhibitors have yielded improved responses and prolonged survival. Several clinical trials have also reported benefits in previously unresponsive patients. Future work should clarify the roles of macrophage-derived exosomes, cytokines, and additional mediators in shaping the immunosuppressive tumor microenvironment. These insights will inform the design of next-generation drug carriers and optimize combination immunotherapies within precision medicine frameworks. Elucidating TAM phenotypes and their regulatory molecules remains central to developing novel strategies that curb tumor progression and ultimately improve outcomes in lung cancer. Importantly, macrophage-based immunomodulation may offer expanded treatment avenues.
Collapse
Affiliation(s)
| | | | - Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Peng L, Deng S, Li J, Zhang Y, Zhang L. Single-Cell RNA Sequencing in Unraveling Acquired Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: New Perspectives. Int J Mol Sci 2025; 26:1483. [PMID: 40003951 PMCID: PMC11855476 DOI: 10.3390/ijms26041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated remarkable efficacy in treating non-small cell lung cancer (NSCLC), but acquired resistance greatly reduces efficacy and poses a significant challenge to patients. While numerous studies have investigated the mechanisms underlying EGFR-TKI resistance, its complexity and diversity make the existing understanding still incomplete. Traditional approaches frequently struggle to adequately reveal the process of drug resistance development through mean value analysis at the overall cellular level. In recent years, the rapid development of single-cell RNA sequencing technology has introduced a transformative method for analyzing gene expression changes within tumor cells at a single-cell resolution. It not only deepens our understanding of the tumor microenvironment and cellular heterogeneity associated with EGFR-TKI resistance but also identifies potential biomarkers of resistance. In this review, we highlight the critical role of single-cell RNA sequencing in lung cancer research, with a particular focus on its application to exploring the mechanisms of EGFR-TKI-acquired resistance in NSCLC. We emphasize its potential for elucidating the complexity of drug resistance mechanism and its promise in informing more precise and personalized treatment strategies. Ultimately, this approach aims to advance NSCLC treatment toward a new era of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.P.); (S.D.); (J.L.); (Y.Z.)
| |
Collapse
|
15
|
Liu Y, Xu L, Dou Y, He Y. AXL: shapers of tumor progression and immunosuppressive microenvironments. Mol Cancer 2025; 24:11. [PMID: 39799359 PMCID: PMC11724481 DOI: 10.1186/s12943-024-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance. AXL is highly associated with tumor progression; however, previous studies on AXL have been limited to its impact on the biological behavior of cancer cells. An increasing body of research now demonstrates that AXL can influence the function and differentiation of immune cells, mediating immune suppression and thereby fostering tumor growth. A comprehensive analysis to identify and overcome the causes of immunosuppressive microenvironments represents a novel approach to conquering cancer. In this review, we focus on elucidating the role of AXL within the immunosuppressive microenvironments, discussing and analyzing the effects of AXL on tumor cells, T cells, macrophages, natural killer (NK) cells, fibroblasts, and other immune-stromal cells. We aim to clarify the contributions of AXL to the progression and drug resistance of cancer from its functional role in the immune microenvironment.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Xu
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, 400000, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
16
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
17
|
Xiao S, Kuang J, Yang J, Wang H, Sun Y, Zhang H, Zhang Z, Shi M, Qi K, Jiang M, Zhang Y, Chen Q, Zhang X. APOC1 inhibit NKTCL doxorubicin sensitivity by promoting mitophagy. IUBMB Life 2025; 77:e2942. [PMID: 39817465 DOI: 10.1002/iub.2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025]
Abstract
NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM. The upregulation of APOC1 may promote mitophagy, clear damaged mitochondria, stabilize the intracellular environment, and enhance the tolerance of tumor cells to ADM. Furthermore, APOC1 may further affect the formation of mitophagy and drug resistance by activating specific signaling pathways, such as the STAT3 signaling pathway. Animal experiments further confirm the conclusions of in vitro experiments, showing that APOC1 regulates mitophagy through p-STAT3Tyr705, thereby promoting the drug resistance of NKTCL. These findings provide a new perspective for the development of novel therapeutic strategies targeting APOC1 and its associated signaling pathways, which may help overcome the issue of ADM resistance in NKTCL.
Collapse
Affiliation(s)
- Sa Xiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jing Kuang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jiamei Yang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Haili Wang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yuanyuan Sun
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Haipeng Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Zhongyu Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Mengyuan Shi
- Zhengzhou Seventh People's Hospital, Guancheng, Zhengzhou, Henan Province, People's Republic of China
| | - Kai Qi
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Miao Jiang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yanyan Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Qingjiang Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xudong Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
18
|
Huang Z, Huang R, Zhu J, Zhou Y, Shi J. PRKDC regulates cGAMP to enhance immune response in lung cancer treatment. Front Immunol 2024; 15:1497570. [PMID: 39660143 PMCID: PMC11628376 DOI: 10.3389/fimmu.2024.1497570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Background Despite its involvement in nucleotide metabolism, tumor immune landscape, and immunotherapy response, the role of 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in lung adenocarcinoma (LUAD) remails unelucidated. This study aimed to investigate the antitumor effects of 2',3'-cGAMP in LUAD. Method Herein, patients with LUAD were screened for prognostic biomarkers, which were then assessed for sensitivity to immunotherapy and chemotherapy utilizing the "TIDE" algorithm and CellMiner database. The results were validated using a mouse xenograft model. Additionally, macrophages and lung cancer cells were co-cultured, and macrophage polarization and apoptosis levels in the lung cancer cells were detected through flow cytometry. Protein levels were analyzed through western blotting and immunofluorescence. Finally, drug-encapsulated nanoparticles were designed to systematically examine the antitumor efficacy of the treatment against LUAD. Result Notably, 2',3'-cGAMP-mediated protein kinase, DNA-activated, catalytic subunit (PRKDC) inhibition induced macrophage polarization toward the M1 phenotype, thereby triggering apoptosis in LUAD cells. Furthermore, in vivo experiments showed that M1 macrophage infiltration enhancement and apoptosis induction in lung cancer cells were achieved by suppressing PRKDC expression via 2',3'-cGAMP, which inhibited lung cancer growth. The machine-learning approaches revealed SB505124 to be an effective antitumor agent in LUAD cells with high PRKDC levels owing to its ability to promote 2',3'-cGAMP-mediated apoptosis. Encapsulation of 2',3'-cGAMP, and SB505124 within a nano-delivery system markedly reduced tumor volumes in murine lung cancer tissues compared with that by individual agents. Conclusion The findings of this study reveal that PRKDC can predict poor survival of patients with LUAD. Additionally, SB505124 enhances the efficacy of 2',3'-cGAMP-based immunotherapy in patients exhibiting a high PRKDC expression.
Collapse
Affiliation(s)
- Zhanghao Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Runqi Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Medical School of Nantong University, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Zhou L, Hong H, Chu F, Chen X, Wang C. Predicting the Recurrence of Ovarian Cancer Based on Machine Learning. Cancer Manag Res 2024; 16:1375-1387. [PMID: 39399640 PMCID: PMC11471083 DOI: 10.2147/cmar.s482837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Background Recurrence is the main factor for poor prognosis in ovarian cancer, but few prognostic biomarkers were reported. In this study, we used machine learning methods based on multiple biomarkers to develop a specific prediction model for the recurrence of ovarian cancer. Methods A total of 277 ovarian cancer patients were enrolled in this study and randomly classified into training and testing cohorts. The prediction information was obtained through 47 clinical parameters using six supervised clustering machine learning algorithms, including K-Nearest Neighbor (K-NN), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost). Results In predicting the recurrence of ovarian cancer, machine learning algorithm was superior to conventional logistic regression analysis. In this study, XGBoost showed the best performance in predicting the recurrence of ovarian cancer, with an accuracy of 0.95. In addition, neoadjuvant chemotherapy, Monocyte ratio (MONO%), Hematocrit (HCT), Prealbumin (PAB), Aspartate aminotransferase (AST), and carbohydrate antigen 125 (CA125) are the most important biomarkers to predict the recurrence of ovarian cancer. Conclusion The machine learning techniques can achieve a more accurate assessment of the recurrence of ovarian cancer, which can help clinicians make decisions, and develop personalized treatment strategies.
Collapse
Affiliation(s)
- Lining Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University and Nantong City No.1 People’s Hospital, Nantong, People’s Republic of China
| | - Hong Hong
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, People’s Republic of China
| | - Fuying Chu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University and Nantong City No.1 People’s Hospital, Nantong, People’s Republic of China
| | - Xiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University and Nantong City No.1 People’s Hospital, Nantong, People’s Republic of China
| | - Chenlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University and Nantong City No.1 People’s Hospital, Nantong, People’s Republic of China
| |
Collapse
|
20
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
21
|
Chen Y, Liang J, Chen S, Lin N, Xu S, Miao J, Zhang J, Chen C, Yuan X, Xie Z, Zhu E, Cai M, Wei X, Hou S, Tang H. Discovery of vitexin as a novel VDR agonist that mitigates the transition from chronic intestinal inflammation to colorectal cancer. Mol Cancer 2024; 23:196. [PMID: 39272040 PMCID: PMC11395219 DOI: 10.1186/s12943-024-02108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.
Collapse
Affiliation(s)
- Yonger Chen
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jian Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shuoxi Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jindian Miao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jing Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xin Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhuoya Xie
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China
| | - Enlin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingsheng Cai
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| | - Shaozhen Hou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
23
|
Li YS, Lai WP, Yin K, Zheng MM, Tu HY, Guo WB, Li L, Lin SH, Wang Z, Zeng L, Jiang BY, Chen ZH, Zhou Q, Zhang XC, Yang JJ, Zhong WZ, Yang XN, Wang BC, Pan Y, Chen HJ, Xiao FM, Sun H, Sun YL, Bai XY, Ke EE, Lin JX, Liu SYM, Li Y, Luo OJ, Wu YL. Lipid-associated macrophages for osimertinib resistance and leptomeningeal metastases in NSCLC. Cell Rep 2024; 43:114613. [PMID: 39116206 DOI: 10.1016/j.celrep.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Leptomeningeal metastases (LMs) remain a devastating complication of non-small cell lung cancer (NSCLC), particularly following osimertinib resistance. We conducted single-cell RNA sequencing on cerebrospinal fluid (CSF) from EGFR-mutant NSCLC with central nervous system metastases. We found that macrophages of LMs displayed functional and phenotypic heterogeneity and enhanced immunosuppressive properties. A population of lipid-associated macrophages, namely RNASE1_M, were linked to osimertinib resistance and LM development, which was regulated by Midkine (MDK) from malignant epithelial cells. MDK exhibited significant elevation in both CSF and plasma among patients with LMs, with higher MDK levels correlating to poorer outcomes in an independent cohort. Moreover, MDK could promote macrophage M2 polarization with lipid metabolism and phagocytic function. Furthermore, malignant epithelial cells in CSF, particularly after resistance to osimertinib, potentially achieved immune evasion through CD47-SIRPA interactions with RNASE1_M. In conclusion, we revealed a specific subtype of macrophages linked to osimertinib resistance and LM development, providing a potential target to overcome LMs.
Collapse
Affiliation(s)
- Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Oncology, Heyuan Hospital of Guangdong Provincial People's Hospital, Heyuan People's Hospital, Heyuan 517000, China
| | - Wen-Pu Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kai Yin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Shou-Heng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lu Zeng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fa-Man Xiao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yue-Li Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao-Yan Bai
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - E-E Ke
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jia-Xin Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Si-Yang Maggie Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
24
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
25
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Chuang CH, Zhen YY, Ma JY, Lee TH, Hung HY, Wu CC, Wang PH, Huang CT, Huang MS, Hsiao M, Lee YR, Huang CYF, Chang YC, Yang CJ. CD47-mediated immune evasion in early-stage lung cancer progression. Biochem Biophys Res Commun 2024; 720:150066. [PMID: 38749193 DOI: 10.1016/j.bbrc.2024.150066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.
Collapse
Affiliation(s)
- Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juei-Yang Ma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Huang Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Yang Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Hui Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Tang Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | | | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Li W, Yuan Q, Li M, He X, Shen C, Luo Y, Tai Y, Li Y, Deng Z, Luo Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front Immunol 2024; 15:1452078. [PMID: 39144141 PMCID: PMC11321980 DOI: 10.3389/fimmu.2024.1452078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Quan Yuan
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu He
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yurui Luo
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunze Tai
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Chen X, Yuan M, Zhong T, Wang M, Wu F, Lu J, Sun D, Xiao C, Sun Y, Hu Y, Wu M, Wang L, Yu J, Chen D. LILRB2 inhibition enhances radiation sensitivity in non-small cell lung cancer by attenuating radiation-induced senescence. Cancer Lett 2024; 593:216930. [PMID: 38705566 DOI: 10.1016/j.canlet.2024.216930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.
Collapse
Affiliation(s)
- Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Yuan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Zhong
- Clinical College of Medicine, Jining Medical University, Jining, Shandong, China
| | - Minglei Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dongfeng Sun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changyan Xiao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
| |
Collapse
|
29
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
30
|
Lu C, Gao Z, Wu D, Zheng J, Hu C, Huang D, He C, Liu Y, Lin C, Peng T, Dou Y, Zhang Y, Sun F, Jiang W, Yin G, Han R, He Y. Understanding the dynamics of TKI-induced changes in the tumor immune microenvironment for improved therapeutic effect. J Immunother Cancer 2024; 12:e009165. [PMID: 38908857 PMCID: PMC11328648 DOI: 10.1136/jitc-2024-009165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.
Collapse
Affiliation(s)
- Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Ziyuan Gao
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Tao Peng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Fenfen Sun
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Weiling Jiang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Guoqing Yin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
31
|
Wang C, Gao Q, Wu J, Lu M, Wang J, Ma T. The Biological Role of Macrophage in Lung and Its Implications in Lung Cancer Immunotherapy. Adv Biol (Weinh) 2024; 8:e2400119. [PMID: 38684453 DOI: 10.1002/adbi.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The lungs are the largest surface of the body and the most important organ in the respiratory system, which are constantly exposed to the external environment. Tissue Resident Macrophages in lung constitutes the important defense against external pathogens. Macrophages connects the innate and adaptive immune system, and also plays important roles in carcinogenesis and cancer immunotherapy. Lung cancer is the leading cause of cancer-related death worldwide, with an overall five-year survival rate of only 21%. Macrophages that infiltrate or aggregate in lung tumor microenvironment are defined as tumor-associated macrophages (TAMs). TAMs are the main components of immune cells in the lung tumor microenvironment. The differentiation and maturation process of TAMs can be roughly divided into two different types: classical activation pathway produces M1 tumor-associated macrophages, and bypass activation pathway produces M2 tumor-associated macrophages. Studies have found that TAMs are related to tumor invasion, metastasis, and treatment resistance, and show potential as a new target for tumor immunotherapy. Therefore, the biological function of macrophages in lung and the role of TAMs in the occurrence, development, and treatment of lung cancer are discussed in this paper.
Collapse
Affiliation(s)
- Chenyang Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Teng Ma
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| |
Collapse
|
32
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
33
|
Gracia-Hernandez M, Yende AS, Gajendran N, Alahmadi Z, Li X, Munoz Z, Tan K, Noonepalle S, Shibata M, Villagra A. Targeting HDAC6 improves anti-CD47 immunotherapy. J Exp Clin Cancer Res 2024; 43:60. [PMID: 38414061 PMCID: PMC10898070 DOI: 10.1186/s13046-024-02982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cancer cells can overexpress CD47, an innate immune checkpoint that prevents phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) expressed in macrophages and other myeloid cells. Several clinical trials have reported that CD47 blockade reduces tumor growth in hematological malignancies. However, CD47 blockade has shown modest results in solid tumors, including melanoma. Our group has demonstrated that histone deacetylase 6 inhibitors (HDAC6is) have immunomodulatory properties, such as controlling macrophage phenotype and inflammatory properties. However, the molecular and cellular mechanisms controlling these processes are not fully understood. In this study, we evaluated the role of HDAC6 in regulating the CD47/SIRPα axis and phagocytosis in macrophages. METHODS We tested the role of HDAC6is, especially Nexturastat A, in regulating macrophage phenotype and phagocytic function using bone marrow-derived macrophages and macrophage cell lines. The modulation of the CD47/SIRPα axis and phagocytosis by HDAC6is was investigated using murine and human melanoma cell lines and macrophages. Phagocytosis was evaluated via coculture assays of macrophages and melanoma cells by flow cytometry and immunofluorescence. Lastly, to evaluate the antitumor activity of Nexturastat A in combination with anti-CD47 or anti-SIRPα antibodies, we performed in vivo studies using the SM1 and/or B16F10 melanoma mouse models. RESULTS We observed that HDAC6is enhanced the phenotype of antitumoral M1 macrophages while decreasing the protumoral M2 phenotype. In addition, HDAC6 inhibition diminished the expression of SIRPα, increased the expression of other pro-phagocytic signals in macrophages, and downregulated CD47 expression in mouse and human melanoma cells. This regulatory role on the CD47/SIRPα axis translated into enhanced antitumoral phagocytic capacity of macrophages treated with Nexturastat A and anti-CD47. We also observed that the systemic administration of HDAC6i enhanced the in vivo antitumor activity of anti-CD47 blockade in melanoma by modulating macrophage and natural killer cells in the tumor microenvironment. However, Nexturastat A did not enhance the antitumor activity of anti-SIRPα despite its modulation of macrophage populations in the SM1 tumor microenvironment. CONCLUSIONS Our results demonstrate the critical regulatory role of HDAC6 in phagocytosis and innate immunity for the first time, further underscoring the use of these inhibitors to potentiate CD47 immune checkpoint blockade therapeutic strategies.
Collapse
Affiliation(s)
- Maria Gracia-Hernandez
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Ashutosh S Yende
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, USA
| | - Nithya Gajendran
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Zubaydah Alahmadi
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Xintang Li
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Zuleima Munoz
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Karen Tan
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Satish Noonepalle
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
34
|
Shen Y, Ji M, Yi H, Shen R, Fu D, Cheng S, Huang C, Wang L, Xu P, Dou H, Zhao W. CD47 overexpression is related to tumour-associated macrophage infiltration and diffuse large B-cell lymphoma progression. Clin Transl Med 2024; 14:e1532. [PMID: 38193627 PMCID: PMC10775178 DOI: 10.1002/ctm2.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Yi‐Ge Shen
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Meng Ji
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong‐Mei Yi
- Department of PathologyRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rong Shen
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Fu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shu Cheng
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chuan‐Xin Huang
- Department of Immunobiology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Pôle de Recherches Sino‐Français en Science du Vivant et GénomiqueLaboratory of Molecular PathologyShanghaiChina
| | - Peng‐Peng Xu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong‐Jing Dou
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringNational Research Center for Translational Medicine at ShanghaiShanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Li Zhao
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Pôle de Recherches Sino‐Français en Science du Vivant et GénomiqueLaboratory of Molecular PathologyShanghaiChina
| |
Collapse
|
35
|
Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, Baran N. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol 2023; 13:1259034. [PMID: 38033495 PMCID: PMC10682792 DOI: 10.3389/fonc.2023.1259034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
37
|
Yang Z, Li H, Dong T, Li G, Chen D, Li S, Wang Y, Pan Y, Lu T, Yang G, Zhang G, Cheng P, Wang X. Comprehensive analysis of resistance mechanisms to EGFR-TKIs and establishment and validation of prognostic model. J Cancer Res Clin Oncol 2023; 149:13773-13792. [PMID: 37532906 DOI: 10.1007/s00432-023-05129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the first-line therapy for patients with lung adenocarcinoma (LUAD) harboring activating EGFR mutations. However, the emergence of drug resistance to EGFR-TKIs remains a critical obstacle for successful treatment and is associated with poor patient outcomes. The overarching objective of this study is to apply bioinformatics tools to gain insights into the mechanisms underlying resistance to EGFR-TKIs and develop a robust predictive model. METHODS The genes associated with gefitinib resistance in the LUAD cell Gene Expression Omnibus (GEO) database were identified using gene chip expression data. Functional enrichment analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis were performed to comprehensively explore the mechanism of gefitinib resistance. Furthermore, a GRRG_score was constructed by integrating genes related to LUAD prognosis from The Cancer Genome Atlas (TCGA) database with the screened Gefitinib Resistant Related differentially expressed genes (GRRDEGs) using the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analyses. Furthermore, we conducted an in-depth analysis of the tumor microenvironment (TME) features and their association with immune infiltration between different GRRG_score groups. A prognostic model for LUAD was developed based on the GRRG_score and validated. The HPA database was used to validate protein expression. The CTR-DB database was utilized to validate the results of drug therapy prediction based on the relevant genes. RESULTS A total of 110 differentially expression genes were identified. Pathway enrichment analysis of DEGs showed that the differentially expressed genes were mainly enriched in Mucin type O-glycan biosynthesis, Cytokine-cytokine receptor interaction, Sphingolipid metabolism. Gene set enrichment analysis showed that biological processes strongly correlated with gefitinib resistance were cell proliferation and immune-related pathways, EPITHELIAL_MESENCHYMAL_TRANSITION, APICAL_SURFACE, and APICAL_JUNCTION were highly expressed in the drug-resistant group; KRAS_SIGNALING_DN, HYPOXIA, and HEDGEHOG_SIGNALING were highly expressed in the drug-resistant group. The GRRG_score was constructed based on the expression levels of 13 genes, including HSPA2, ATP8B3, SPOCK1, EIF6, NUP62CL, BCAR3, PCSK9, NT5E, FLNC, KRT8, FSCN1, ANGPTL4, and ID1. We further screened and validated two key genes, namely, NUP62CL and KRT8, which exhibited predictive value for both prognosis and drug resistance. CONCLUSIONS Our study identified several novel GRRDEGs and provided insight into the underlying mechanisms of gefitinib resistance in LUAD. Our results have implications for developing more effective treatment strategies and prognostic models for LUAD patients.
Collapse
Affiliation(s)
- Zhengzheng Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haiming Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tongjing Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guangda Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Taicheng Lu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guowang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peiyu Cheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
39
|
Lau APY, Khavkine Binstock SS, Thu KL. CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:5229. [PMID: 37958404 PMCID: PMC10649163 DOI: 10.3390/cancers15215229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.
Collapse
Affiliation(s)
- Asa P. Y. Lau
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Sharon S. Khavkine Binstock
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
40
|
Cheng D, Ge K, Yao X, Wang B, Chen R, Zhao W, Fang C, Ji M. Tumor-associated macrophages mediate resistance of EGFR-TKIs in non-small cell lung cancer: mechanisms and prospects. Front Immunol 2023; 14:1209947. [PMID: 37649478 PMCID: PMC10463184 DOI: 10.3389/fimmu.2023.1209947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-line standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutation. However, resistance to EGFR-TKIs is inevitable. Currently, most studies on the mechanism of EGFR-TKIs resistance mainly focus on the spontaneous resistance phenotype of NSCLC cells. Studies have shown that the tumor microenvironment (TME) also mediates EGFR-TKIs resistance in NSCLC. Tumor-associated macrophages (TAMs), one of the central immune cells in the TME of NSCLC, play an essential role in mediating EGFR-TKIs resistance. This study aims to comprehensively review the current mechanisms underlying TAM-mediated resistance to EGFR-TKIs and discuss the potential efficacy of combining EGFR-TKIs with targeted TAMs therapy. Combining EGFR-TKIs with TAMs targeting may improve the prognosis of NSCLC with EGFR mutation to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Fang
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mei Ji
- Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
41
|
Cheng D, Wang B, Wu L, Chen R, Zhao W, Fang C, Ji M. Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation. Med Oncol 2023; 40:254. [PMID: 37505345 DOI: 10.1007/s12032-023-02125-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30-150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Lige Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| |
Collapse
|