1
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6473-6508. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Guerra-Andrés M, Fernández ÁF, Fontanil T. Exosomes, autophagy, and cancer: A complex triad. Int J Cancer 2025. [PMID: 40318053 DOI: 10.1002/ijc.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Despite remarkable progress in prevention, diagnosis, and therapy, the incidence of certain types of cancer persists, urging the identification of clinically relevant biomarkers and the development of novel therapeutic strategies to improve clinical outcomes and overcome treatment resistance. Exosomes, small extracellular vesicles released by diverse types of cells, have attracted interest in biomedical research due to their potential as carriers for different treatments. Moreover, exosomes play a pivotal role in intercellular communication, modulating various cellular processes. One of those is autophagy, a pro-survival pathway that is essential for human cells. Even though autophagy is traditionally described as a catabolic route, its machinery is intricately involved in various cellular responses, including vesicle formation and secretion. In this regard, the link between autophagy and exosomes is complex, bidirectional, and highly dependent on the cellular context. Interestingly, both processes have been extensively implicated in cancer pathogenesis, highlighting their potential as therapeutic targets. This review updates our understanding of how exosomes can participate in cancer development and progression, with a specific focus on their influence on tumor growth, angiogenesis, and metastasis. Additionally, the interplay between these extracellular vesicles and autophagy is minutely reviewed and discussed, as we hypothesize that this crosstalk may hold valuable clues for biomarker discovery and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Guerra-Andrés
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Tania Fontanil
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Ordoñez (Astracime S.L), Oviedo, Spain
- Lovinium Biocell CO LTD., Bangkok, Thailand
| |
Collapse
|
3
|
Li X, Liu H, Xing P, Li T, Fang Y, Chen S, Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J Pharm Anal 2025; 15:101067. [PMID: 39957900 PMCID: PMC11830318 DOI: 10.1016/j.jpha.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 02/18/2025] Open
Abstract
Exosomal circular RNA (circRNAs) are pivotal in cancer biology, and tumor pathophysiology. These stable, non-coding RNAs encapsulated in exosomes participated in cancer progression, tumor growth, metastasis, drug sensitivity and the tumor microenvironment (TME). Their presence in bodily fluids positions them as potential non-invasive biomarkers, revealing the molecular dynamics of cancers. Research in exosomal circRNAs is reshaping our understanding of neoplastic intercellular communication. Exploiting the natural properties of exosomes for targeted drug delivery and disrupting circRNA-mediated pro-tumorigenic signaling can develop new treatment modalities. Therefore, ongoing exploration of exosomal circRNAs in cancer research is poised to revolutionize clinical management of cancer. This emerging field offers hope for significant breakthroughs in cancer care. This review underscores the critical role of exosomal circRNAs in cancer biology and drug resistance, highlighting their potential as non-invasive biomarkers and therapeutic targets that could transform the clinical management of cancer.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanzhe Liu
- Department of Critical Care Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Peiyu Xing
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Fang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
4
|
Dahlstroem C, Barezani J, Li J, Sopelniak K, Muhs S, Schneider C, Thünauer R, Reimer R, Windhorst S. Mechanism of Centrosomal Protein 55 (CEP55) Loading Into Exosomes. J Extracell Vesicles 2025; 14:e70046. [PMID: 39976236 PMCID: PMC11840697 DOI: 10.1002/jev2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Up-regulation of Centrosomal Protein 55 (CEP55) in cancer cells increases malignancy, and the protein can be transferred via exosomes. However, the mechanism of how CEP55 is delivered to exosomes is unknown. In this study, we addressed this issue and analysed trafficking of EGFP-CEP55 from early to late endosomes by using high-resolution microscopy. Our data show that endogenous as well as EGFP-CEP55 appeared as dot-like structures in cancer cells. However, we did not find an internalization of CEP55 into early Rab5- and late Rab7-positive endosomes but only into secretory late CD63-positive endosomes. In addition, an association of the CEP55 dots with the endoplasmic reticulum and with ALG-2-interacting protein X (Alix) dots was detected. Moreover, mutation of the CEP55-Alix interaction site strongly reduced the formation of CEP55 dots as well as CEP55 localization in extracellular vesicles. In summary, our data indicate that delivery of CEP55 into exosomes does not occur by the canonical early-to-late endosome pathway but by Alix-mediated recruitment to secretory late secretory CD63 endosomes.
Collapse
Affiliation(s)
- Christian Dahlstroem
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johanna Barezani
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jing Li
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kostiantyn Sopelniak
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefanie Muhs
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carola Schneider
- Technology Platform Microscopy and Image Analysis (TPMIA)Leibniz Institute of VirologyHamburgGermany
| | - Roland Thünauer
- Technology Platform Microscopy and Image Analysis (TPMIA)Leibniz Institute of VirologyHamburgGermany
- Center for Structural Systems Biology (CSSB)HamburgGermany
- Technology Platform Light Microscopy (TPLM)Universität HamburgHamburgGermany
| | - Rudolph Reimer
- Technology Platform Microscopy and Image Analysis (TPMIA)Leibniz Institute of VirologyHamburgGermany
| | - Sabine Windhorst
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
5
|
Li Y, Shao F, Huang Y, Yin Q, Liu J, Zhao Y, Yuan L. SYT7 as a Potential Prognostic Marker Promotes the Metastasis of Epithelial Ovarian Cancer Cells by Activating the STAT3 Pathway. Mol Carcinog 2024; 63:2441-2455. [PMID: 39329325 DOI: 10.1002/mc.23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
The study aimed to investigate the impact of synaptotagmin 7 (SYT7) on the metastasis of epithelial ovarian cancer (EOC) and its potential mechanisms. This was achieved through the analysis of SYT7 expression levels and clinical relevance in EOC using bioinformatics analysis from TCGA. Additionally, the study examined the influence of SYT7 on the migration and invasion of EOC cells, as well as explored its molecular mechanisms using in vitro EOC cell lines and in vivo mouse xenograft models. Our research revealed that human EOC tissues exhibit significantly elevated levels of SYT7 compared to normal ovarian tissues, and that SYT7 expression is inversely correlated with overall survival. Suppression of SYT7 effectively impeded the migratory and invasive capabilities of CAOV3 cells, whereas overexpression of SYT7 notably accelerated tumor progression in A2780 cells. Mechanistic investigations demonstrated that SYT7 upregulates p-STAT3 and MMP2 in EOC cells. Importantly, treatment with the STAT3 inhibitor niclosamide effectively counteracted the oncogenic effects of SYT7 in EOC. The inhibition of SYT7 was found to significantly reduce in vivo tumor metastasis in a nude mouse xenograft model. Our findings suggest that the upregulation of SYT7 in EOC is associated with a negative prognosis, as it enhances tumor migration and invasion by activating the STAT3 signaling pathway. Thus, SYT7 might be utilized as a EOC prognostic marker and treatment target.
Collapse
Affiliation(s)
- Yinguang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Fengping Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Ying Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Qian Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jun Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Yunhe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Linjing Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
6
|
Ma Y, Guo J, Song X, Rao H, Zhang J, Miao M, Pan F, Guo Z. G-Quadruplex-Mediated Transcriptional Regulation of SYT7: Implications for Tumor Progression and Therapeutic Strategies. Biochemistry 2024; 63:2609-2620. [PMID: 39320967 DOI: 10.1021/acs.biochem.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Synaptotagmin 7 (SYT7), a member of the synaptotagmin family, exhibits high expression in various tumors and is closely associated with patient prognosis. The tight regulation of SYT7 expression assumes paramount significance in the progression of tumorigenesis. In this study, we detected a high GC content in the first 1000 bp of the promoter region of SYT7, suggesting a potential role of the G-quadruplex in its transcriptional regulation. Circular dichroism spectroscopy results showed that -187 to -172 bp sequence can form a typical parallel G-quadruplex structure, and site mutation revealed the critical role of the ninth guanine in its formation. Then, treatment of two ligands of G-quadruplex (TMPyP4 and Pyridostatin) reduced both the expression of SYT7 and subsequent tumor proliferation, demonstrating the potential of the G-quadruplex as a targeted therapy for tumors. By shedding light on the pivotal role of the G-quadruplex in regulating SYT7 transcription, our study not only advances our comprehension of this intricate regulatory mechanism but also emphasizes the significance of SYT7 in tumor proliferation. These findings collectively contribute to a more comprehensive understanding of the interplay between G-quadruplex regulation and SYT7 function in tumor development.
Collapse
Affiliation(s)
- Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Jiarong Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Xinyi Song
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Haipeng Rao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Jinxin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Miao Miao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Liu B, Rui Y, Li M, Huang L. Cancer cell-derived exosomes promote NSCLC progression via the miR-199b-5p/HIF1AN axis. Mol Immunol 2024; 174:32-40. [PMID: 39154583 DOI: 10.1016/j.molimm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Exosomes are mediators of intercellular communication. Cancer cell-secreted exosomes allow exosome donor cells to promote cancer growth, as well as metastasis. METHODS Here, exosomes were isolated from the serum of non-small cell lung cancer (NSCLC) patients and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. NSCLC cell proliferation and migration were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. H1299 tumor formation and pulmonary metastasis were examined in a xenograft model in nude mice. RESULTS We found that exosomes derived from NSCLC (NSCLC-Exos) promoted NSCLC cell migration and proliferation, and that NSCLC-Exo-mediated malignant progression of NSCLC was mediated by miR-199b-5p. Inhibition of miR-199b-5p decreased the effects of NSCLC-Exos on NSCLC malignant progression. HIF1AN was identified as a downstream target of miR-199b-5p. Furthermore, overexpression of HIF1AN reversed the effects of miR-199b-5p on NSCLC malignant progression. CONCLUSION In summary, our findings demonstrated that exosomal-specific miR-199b-5p promoted proliferation in distant or neighboring cells via the miR-199b-5p/HIF1AN axis, resulting in enhanced tumor growth.
Collapse
Affiliation(s)
- Bangzhu Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiratory Medicine, Wuhu Hospital, East China Normal University (The People's Second Hospital of Wuhu), Wuhu, Anhui, 241000, China
| | - Yan Rui
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Linan Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
8
|
Huang G, Zheng W, Zhou Y, Wan M, Hu T. Recent advances to address challenges in extracellular vesicle-based applications for lung cancer. Acta Pharm Sin B 2024; 14:3855-3875. [PMID: 39309489 PMCID: PMC11413688 DOI: 10.1016/j.apsb.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer, highly prevalent and the leading cause of cancer-related death globally, persists as a significant challenge due to the lack of definitive tumor markers for early diagnosis and personalized therapeutic interventions. Recently, extracellular vesicles (EVs), functioning as natural carriers for intercellular communication, have received increasing attention due to their ability to traverse biological barriers and deliver diverse biological cargoes, including cytosolic proteins, cell surface proteins, microRNA, lncRNA, circRNA, DNA, and lipids. EVs are increasingly recognized as a valuable resource for non-invasive liquid biopsy, as well as drug delivery platforms, and anticancer vaccines for precision medicine in lung cancer. Herein, given the diagnostic and therapeutic potential of tumor-associated EVs for lung cancer, we discuss this topic from a translational standpoint. We delve into the specific roles that EVs play in lung cancer carcinogenesis and offer a particular perspective on how advanced engineering technologies can overcome the current challenges and expedite and/or enhance the translation of EVs from laboratory research to clinical settings.
Collapse
Affiliation(s)
- Gaigai Huang
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yu Zhou
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610200, China
- The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Wan YX, Qi XW, Lian YY, Liu ZY, Wang H, Qiu YQ, Zhang CG, Li WN, Jiang HL, Yang DH, Zhao W, Chen ZS, Huang JC. Electroacupuncture facilitates vascular normalization by inhibiting Glyoxalase1 in endothelial cells to attenuate glycolysis and angiogenesis in triple-negative breast cancer. Cancer Lett 2024; 598:217094. [PMID: 38945204 DOI: 10.1016/j.canlet.2024.217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.
Collapse
Affiliation(s)
- Yu-Xiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Wei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100029, China
| | - Yan-Yan Lian
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze-Yu Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Qin Qiu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Zhang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Na Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hong-Lin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Wei Zhao
- Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100029, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Jin-Chang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
11
|
Lu G, Liu H, Wang H, Tang X, Luo S, Du M, Christiani DC, Wei Q. Potentially functional variants of INPP5D and EXOSC3 in immunity B cell-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15:1440454. [PMID: 39176091 PMCID: PMC11338758 DOI: 10.3389/fimmu.2024.1440454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
B cells are adaptive immune cells in the tumor microenvironment and play an important role in tumor development and metastasis. However, the roles of genetic variants of the immunity B cell-related genes in the survival of patients with non-small cell lung cancer (NSCLC) remain unknown. In the present study, we first evaluated associations between 10,776 single nucleotide polymorphisms (SNPs) in 220 immunity B cell-related genes and survival of NSCLC in a discovery dataset of 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We found that 369 SNPs were significantly associated with overall survival (OS) of NSCLC in multivariable Cox proportional hazards regression analysis (P ≤ 0.05, Bayesian false discovery probability ≤ 0.80), of which 18 SNPs were validated in another independent genotyping dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. We then performed linkage disequilibrium (LD) analysis, followed by stepwise analysis with a multivariable Cox regression model. Finally, two independent SNPs, inositol polyphosphate-5-phosphatase D (INPP5D) rs13385922 C>T and exosome component 3 (EXOSC3) rs3208406 A>G, remained significantly associated withNSCLC OS with a combined hazards ratio (HR) of 1.14 (95% confidence interval = 1.06-1.23, P = 2.41×10-4) and 1.20 (95% confidence interval = 1.14-1.28, P = 3.41×10-9), respectively. Furthermore, NSCLC patients with the combination of unfavorable genotypes for these two SNPs were associated with a poor OS (P trend = 0.0002) and disease-specific survival (DSS, P trend < 0.0001) in the PLCO dataset. Expression quantitative trait loci (eQTL) analysis suggested that the INPP5D rs6782875 T allele was significantly correlated with elevated INPP5D mRNA expression levels in normal lung tissues and whole blood samples, while the EXOSC3 rs3208406 G allele was significantly correlated with increased EXOSC3 mRNA expression levels in normal lung tissues. Our data indicated that genetic variants in these immunity B cell-related genes may predict NSCLC survival possibly by influencing the gene expression.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Head and Neck Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024; 31:67. [PMID: 38992695 PMCID: PMC11238361 DOI: 10.1186/s12929-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program in Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, 406040, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei, 11696, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
| |
Collapse
|
13
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Liang M, Lyu ZS, Zhang YY, Tang SQ, Xing T, Chen YH, Wang Y, Jiang Q, Xu LP, Zhang XH, Huang XJ, Kong Y. Activation of PPARδ in bone marrow endothelial progenitor cells improves their hematopoiesis-supporting ability after myelosuppressive injury. Cancer Lett 2024; 592:216937. [PMID: 38704134 DOI: 10.1016/j.canlet.2024.216937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.
Collapse
Affiliation(s)
- Mi Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, China.
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
15
|
Chen Q, Deng Y, Li Y, Chen J, Zhang R, Yang L, Guo R, Xing B, Ding P, Cai J, Zhao H. Association of preoperative aspartate aminotransferase to platelet ratio index with outcomes and tumour microenvironment among colorectal cancer with liver metastases. Cancer Lett 2024; 588:216778. [PMID: 38458593 DOI: 10.1016/j.canlet.2024.216778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
This study aims to investigate applicable robust biomarkers that can improve prognostic predictions for colorectal liver metastasis (CRLM) patients receiving simultaneous resection. A total of 1323 CRLM patients from multiple centres were included. The preoperative aspartate aminotransferase to platelet ratio index (APRI) level from blood of patients were obtained. Patients were stratified into a high APRI group and a low APRI group, and comparisons were conducted by analyzing progression-free survival (PFS), overall survival (OS) and postoperative early recurrence. Tumour samples of CRLM were collected to perform single-cell RNA sequencing and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) to investigate the association of APRI levels and the tumour microenvironment of CRLM. Compared with APRI <0.33, PFS disadvantage (IPTW-adjusted HR = 1.240, P = 0.015) and OS disadvantage (IPTW- adjusted HR = 1.507, P = 0.002) of APRI ≥0.33 were preserved in the IPTW-adjusted Cox hazards regression analyses. An APRI ≥0.25 was associated with a significantly increased risk of postoperative early recurrence after adjustment (IPTW-adjusted OR = 1.486, P = 0.001). The external validation showed consistent results with the training cohort. In the high APRI group, the single-cell RNA sequencing results revealed a heightened malignancy of epithelial cells, the enrichment of inflammatory-like cancer-associated fibroblasts and SPP1+ macrophages associated with activation of malignant cells and fibrotic microenvironment, and a more suppressed-function T cells; mIHC/IF showed that PD1+ CD4+ T cells, FOXP3+ CD4+ T cells, PD1+ CD8+ T cells, FOXP3+ CD8+ T cells, SPP1+ macrophages and iCAFs were significantly increased in the intratumoral region and peritumoral region. This study contributed valuable evidence regarding preoperative APRI for predicting prognoses among CRLM patients receiving simultaneous resection and provided underlying clues supporting the association between APRI and clinical outcomes by single-cell sequencing bioinformatics analysis and mIHC/IF.
Collapse
Affiliation(s)
- Qichen Chen
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yuan Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China
| | - Lang Yang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department I, School of Oncology, Beijing Cancer Hospital and Institute, Peking University, Ministry of Education, Beijing, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department I, School of Oncology, Beijing Cancer Hospital and Institute, Peking University, Ministry of Education, Beijing, China.
| | - Peirong Ding
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
16
|
Liu Y, Wu H, Sang Y, Chong W, Shang L, Li L. Research progress of exosomes in the angiogenesis of digestive system tumour. Discov Oncol 2024; 15:33. [PMID: 38341827 PMCID: PMC10859358 DOI: 10.1007/s12672-024-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
Malignant tumours of the digestive system cover a wide range of diseases that affect the health of people to a large extent. Angiogenesis is indispensable in the development, and metastasis of tumours, mainly in two ways: occupation or formation. Vessels can provide nutrients, oxygen, and growth factors for tumours to encourage growth and metastasis, so cancer progression depends on simultaneous angiogenesis. Recently, exosomes have been proven to participate in the angiogenesis of tumours. They influence angiogenesis by binding to tyrosine kinase receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 with different affinities, regulating Yap-VEGF pathway, Akt pathway or other signaling pathway. Additionally, exosomes are potential therapeutic vectors that can deliver many types of cargoes to different cells. In this review, we summarize the roles of exosomes in the angiogenesis of digestive system tumours and highlight the clinical application prospects, directly used as targers or delivery vehicles, in antiangiogenic therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Hao Wu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|