1
|
Chaurasia S, Pandey A. Artocarpus lakoocha seed starch and thymol-based films for extending fresh fruit shelf life: Antioxidant and physicochemical properties. Int J Biol Macromol 2025; 294:139556. [PMID: 39764916 DOI: 10.1016/j.ijbiomac.2025.139556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
This study addresses the need for sustainable fruit preservation packaging by developing biodegradable films from nonconventional starch sources. The purpose was to enhance film properties and antioxidant capabilities using fatty acid-modified Artocarpus lakoocha starch films incorporated with thymol. The objective is to evaluate the impact of fatty acid modification on film characteristics and the antioxidant potential of thymol-unfused films. The films were prepared using the solvent casting method and analysed for physical, mechanical, morphological, thermal, analytical, and antioxidant properties. Results indicate that fatty acid modification reduces moisture content (10.30 ± 1.02) and improves transparency (29.66 ± 0.42) compared to non-modified starch films (42.64 ± 1.18). SEM analysis reveals a smooth and homogeneous surface, and X-ray diffraction indicates A-type crystallinity in native starch. Fourier transform infrared spectroscopy confirms intermolecular hydrogen bonding interactions between fatty acid, thymol, starch, and glycerol. Thermal analysis demonstrates good stability. Starch modification with fatty acid notably enhances film strength, flexibility, and overall functionality. Thymol-infused films exhibit antioxidant properties, with stearic acid-modified starch film showing the highest DPPH radical scavenging activity (90.01 %). In conclusion, this study highlights the utilization of nonconventional starch sources to producing biodegradable films with antioxidant properties, offering promising applications in sustainable fruit preservation packaging.
Collapse
Affiliation(s)
- Surabhi Chaurasia
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
2
|
He M, Chen L, Liu Y, Teng F, Li Y. Effect of ultrasonic pretreatment on physicochemical, thermal, and rheological properties of chemically modified corn starch. Food Chem 2025; 463:141061. [PMID: 39236390 DOI: 10.1016/j.foodchem.2024.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
This study investigated the effects of ultrasonic and three chemical individual and dual modification treatments on corn starch's physicochemical, thermal, and rheological properties. Ultrasonication and the three chemical treatments disrupted the starch granules with a decrease in particle size and a significant increase in the ζ-potential. The hydrophilicity of ultrasonic-oxidized dual-modified starch (U-O-CS) was the highest, at 0.854 g/g. The lipophilicity of ultrasonic-esterified dual-modified starch (U-E-CS) was the highest, at 1.485 g/g. The gelatinization temperature of ultrasonic, oxidation, and cross-linking modified starches increased significantly, with cross-linking starches being the largest. Oxidative treatment significantly decreased the starch's G' and G" and weakened the textural properties. The rheological properties of U-O-CS were further weakened. The G' of the starch decreased after the esterification treatment, while the G" increased, and the textural properties were cut. The maximum rheological and textural properties were obtained for crosslinked modification, with a hardness value of 284.70 g.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Wang T, Liu C, Ma R, Pan X, Shen W, Tian Y. Esterified starches enhance short-term satiety in mice via structural and physicochemical alterations. Food Funct 2024; 15:12058-12068. [PMID: 39564801 DOI: 10.1039/d4fo04174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Starch is the main carbohydrate in the human diet, of which resistant starch (RS) has positive effects on satiety. This study examined the impact of esterified starch with varying degrees of substitution on short-term satiety in mice. Three forms of esterified starch were investigated: phosphorylated starch (SP), acetylated starch (SA), and octenylsuccinic acid starch (OSA). The findings showed that esterified starch increased the RS content by altering the short-range ordered structure. Additionally, esterification modification increased chewiness and viscosity, thereby delaying gastric emptying. Esterified starch stabilized the postprandial blood glucose concentration and increased the secretion of GLP-1 in mice, thereby generating short-term satiety effects, particularly in the SP-8%, SA-8%, and OSA-3% groups. The short-range ordered structure of starch significantly affects the 4-hour intake of mice. The phosphorylation modification exhibited the highest content of RS and the most pronounced effect in reducing postprandial fluctuations in blood glucose concentration, whereas the acetylation modification resulted in the highest increase in GLP-1 concentration. This study lays a theoretical foundation for the production and application of high-satiety foods.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Chen H, Li H, Liu S, Wang Z, Kan J. Insight into esterified and granular esterified-pregelatinized starch formation during esterification modification: Key role of temperature. Food Chem 2024; 460:140809. [PMID: 39142203 DOI: 10.1016/j.foodchem.2024.140809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The formation conditions and functional property differences of esterified starch (ES) and granular esterified-pregelatinized starch (EPS) synchronously prepared by octenyl succinic anhydride (OSA) modification remain unclear. In this study, we explored the formation conditions and physicochemical properties of ES and EPS after OSA modification. The modification temperature controlled the formation amount and time for both starch types during OSA modification. Compared to ES, EPS exhibited a higher degree of substitution, cold-water swelling power, water-absorption capacity and apparent viscosity in cold water. The structural characterization confirmed the molecular weight and short/long-range molecular order of ES and EPS decreased. Moreover, scanning electron microscopy indicated EPS retained its granular morphology. The X-ray diffraction patterns confirmed the presence of more starch-lipid complexes formed in EPS than in ES. This study provides a novel method for preparing esterified and granularly esterified-pregelatinized starches that could be used as promising additives in low-energy formula foods.
Collapse
Affiliation(s)
- Huijing Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Huiying Li
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Sheng Liu
- College of Westa, Southwest University, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Boccia AC, Pulvirenti A, Cerruti P, Silvetti T, Brasca M. Antimicrobial starch-based cryogels and hydrogels for dual-active food packaging applications. Carbohydr Polym 2024; 342:122340. [PMID: 39048188 DOI: 10.1016/j.carbpol.2024.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
The present study reports on the valorisation of starch waste biomass to produce dual-active cryogels and hydrogels able to adsorb water and deliver antimicrobial substances for fresh food packaging applications. Starch hydrogels were prepared by oxidation with sodium metaperiodate in water and mild conditions, while cryogels were obtained by freeze-drying process. To explore the role of starch composition on the final properties of materials, two starches differing in amylose/amylopectin ratio, were evaluated. The prepared materials were microstructurally and morphologically characterized by FTIR and NMR spectroscopy (1D, 2D, and DOSY experiments), and SEM microscopy. To provide the materials with active properties, they were loaded with antimicrobial molecules by absorption, or by crosslinking via Schiff-base reaction. All materials demonstrated high water absorption capacity and ability to deliver volatile molecules, including diacetyl and complex mixtures like mint essential oil. The release profiles of the adsorbed molecules were determined through quantitative NMR spectroscopy over time. The antibacterial activity was successfully demonstrated against Gram-positive bacterial strains for unloaded cryogels and hydrogels, and after loading with diacetyl and essential oil. The developed materials can be regarded as part of active pads for food packaging applications capable to control moisture inside the package and inhibit microbial contamination.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy.
| | - Alfio Pulvirenti
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
6
|
He M, Wu X, Gao T, Chen L, Teng F, Li Y. Effects of ultrasonic and chemical dual modification treatments on the structural, and properties of cornstarch. Food Chem 2024; 451:139221. [PMID: 38688094 DOI: 10.1016/j.foodchem.2024.139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
This study aimed to explore the changes in the structural and functional properties of cornstarch modified by oxidation, esterification, and cross-linking under ultrasonic pretreatment. FT-IR and XRD characteristic peaks revealed successful access to chemical functional groups. Both ultrasonic and the three chemical treatments eroded the surface of starch granules, reducing their particle size and increasing their RC. Meanwhile, the destruction of the granules was further enhanced by the dual modification treatments. The ultrasonic pretreatment synergized and improved the swelling power, solubility, and translucency of all three chemical treatments. Further, it improved the poorer freeze-thaw stability of cross-linked starch, resulting in a lower water precipitation rate. In addition, both ultrasonic and chemical treatments significantly decreased RDS and SDS, and increased RS content. The ultrasonic-chemical dual modification had a synergistic effect on in vitro digestibility, resulting in a further increase in RS. In conclusion, this study provided ideas for developing new starch modification technology and deep processing of cornstarch, expanding its application areas and thus meeting the different needs of starch-based products.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Ma Q, Song Z, Hu W, Li B, Zhang M, Ding C, Chen H. Effects of discharge plasma on seed germination and volatile compounds content of Agropyron Mongolicum. Free Radic Biol Med 2024; 222:467-477. [PMID: 38969272 DOI: 10.1016/j.freeradbiomed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
To investigate the effects of discharge plasma on Agropyron mongolicum seeds, various treatments including direct exposure to discharge plasma, combined treatment with discharge plasma and plasma-activated water (PAW) were applied to the seeds. The changes in germination rate, MDA content, and volatile compound levels of Agropyron mongolicum seeds after different treatments were examined. The results showed that the direct effect of plasma had no significant effect on the MDA content or germination rate of Agropyron mongolicum seeds due to the limited penetration depth. However, the combined effect of plasma and activated water could cause active nitrogen and oxygen particles to enter the seeds and cause oxidative stress damage. After 18 h of combined treatment, the MDA content increased significantly, and the germination rate decreased to below the semilethal dose, which was 33.44 %. After plasma treatment, 55 volatile compounds, mainly alcohols, aldehydes and ketones, were identified from the seeds of Agropyron mongolicum. Due to the oxidation and modification of the plasma, the content of most aldehydes increased with increasing reaction time. After screening, 13 volatile organic compounds could be used as potential markers to distinguish between different treatment methods. These results reveal the mechanism underlying the biological effects of plasma treatment on Agropyron mongolicum seeds.
Collapse
Affiliation(s)
- Qingjie Ma
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhiqing Song
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China.
| | - Wenhao Hu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Bufan Li
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Mingjie Zhang
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
8
|
Letoffe A, Hosseinpourpia R, Silveira V, Adamopoulos S. Effect of Fenton reaction parameters on the structure and properties of oxidized wheat starch. Carbohydr Res 2024; 542:109190. [PMID: 38885559 DOI: 10.1016/j.carres.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Wheat starch was oxidized through a Fenton reaction by hydrogen peroxide and Iron II sulfate as a catalyst at various concentrations and reaction duration. The formation of carbonyl and carboxyl groups confirmed the starch oxidation as determined with Fourier-transform infrared (FTIR) spectroscopy. The degree of oxidation was estimated by carbonyl and carboxyl titration. The various oxidized wheat starches presented considerable variations in their oxidation level as a function of the catalyst concentration and oxidative process duration. The effect of the Fenton reaction parameters on the starch macromolecular chains and microstructure was evaluated by X-ray diffraction and amylose content estimation. Significant depolymerization of the starch macromolecules was observed, mainly in the starch amorphous phase, followed by a degradation of the crystalline phase at a higher oxidation level. SEM observations revealed changes in starch structure, which ranged from minor degradation of the starch granules to a more crosslinked morphology.
Collapse
Affiliation(s)
- Adrien Letoffe
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Vallvägen 9C, 75007, Uppsala, Sweden.
| | - Reza Hosseinpourpia
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs Plats 1, 35195, Växjö, Sweden; College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, United States
| | - Valentin Silveira
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Vallvägen 9C, 75007, Uppsala, Sweden
| | - Stergios Adamopoulos
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Vallvägen 9C, 75007, Uppsala, Sweden
| |
Collapse
|
9
|
Hou L, Jia Z, Zhao K, Xiao S, Fu Y, Zhan W, Wu Y, Wang X. Effect of oxidized starch on the storage stability of frozen raw noodles: Water distribution, protein structure, and quality attributes. J Food Sci 2024; 89:4148-4161. [PMID: 38838085 DOI: 10.1111/1750-3841.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Freezing is a popular method of food preservation with multiple advantages. However, it may change the internal composition and quality of food. This study aimed to investigate the effect of modified starch on the storage stability of frozen raw noodles (FRNs) under refrigerated storage conditions. Oxidized starch (OS), a modified starch, is widely used in the food industry. In the present study, texture and cooking loss rate analyses showed that the hardness and chewiness of FRNs with added OS increased and the cooking loss rate decreased during the frozen storage process. Low-field nuclear magnetic resonance characterization confirmed that the water-holding capacity of FRNs with OS was enhanced. When 6% OS was added, the maximum freezable water content of FRNs was lower than the minimum freezable water content (51%) of FRNs without OS during freezing. Fourier-transform infrared spectroscopy showed that after the addition of OS, the secondary structures beneficial for structural maintenance were increased, forming a denser protein network and improving the microstructure of FRNs. In summary, the water state, protein structure, and quality characteristics of FRNs were improved by the addition of OS within an appropriate range.
Collapse
Affiliation(s)
- Lili Hou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Ziyang Jia
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo, Ourense, Spain
| | - Kaifeng Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yang Fu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Wanzhi Zhan
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Li J, Du M, Din ZU, Xu P, Chen L, Chen X, Wang Y, Cao Y, Zhuang K, Cai J, Lyu Q, Chang X, Ding W. Multi-scale structure characterization of ozone oxidized waxy rice starch. Carbohydr Polym 2023; 307:120624. [PMID: 36781277 DOI: 10.1016/j.carbpol.2023.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The elucidation of multi-scale structural variation and oxidation reaction mechanism of ozone oxidized waxy rice starch molecules remains a big challenge, limiting its development of intensive processing. In the present work, the changes in the structure of waxy rice starch after ozone treatment were systematically researched by various characterization methods. The study has shown that with the increase in ozone oxidation time, the granules of oxidized starch were polygons with multiple face depressions. It was also observed that ozone first attacked the amorphous zone of the starch granules and then penetrated the crystalline zone. Combining 1D and 2D NMR (1H NMR, 13C NMR, HSQC and HMBC) and other methods, it was proved that ozone oxidation led to ring splitting between C2 and C3 of the glucose unit. The resulting hemiacetal groups showed different types of structures. Among them, the main structures were intramolecular acetals and intermolecular hemiacetals. This research offered theoretical guidance for the utilization of ozone oxidation technology for starch modification and the development of waxy rice new foods.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Khyber Pakhtunkhawa, Pakistan
| | - Ping Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yang Cao
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qingyun Lyu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xianhui Chang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
11
|
Li Y, Wang F, Xu J, Wang T, Zhan J, Ma R, Tian Y. Improvement in the optical properties of starch coatings via chemical-physical combination strategy for fruits preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Modified starches are used widely in the food industry but often have a low nutritional value, lacking minerals vital for the human body, such as magnesium. Magnesium addition to native starches has been shown to result in changes in pasting properties. However, little work has been done on the addition of magnesium and other divalent cations to highly oxidised starches. In this work, we used dibasic magnesium hypochlorite (DMH) to oxidise potato starch to an industrially relevant degree of oxidation while at the same time introducing magnesium into the starch structure. We found that magnesium incorporation changes the pasting properties of starch and increases the gelatinisation temperature significantly, possibly due to an ionic cross-linking effect. These properties resemble the properties found for heat-moisture-treated potato starches. This change in properties was found to be reversible by performing a straightforward exchange of metal cations, either from sodium to magnesium or from magnesium to sodium. We show in this work the potential of the addition of divalent cations to highly oxidised starches in modifying the rheological and pasting properties of these starches and at the same time adding possible health benefits to modified starches by introducing magnesium.
Collapse
|
13
|
Shen H, Yan M, Liu Y, Liu X, Ge X, Muratkhan M, Ospankulova G, Zhang G, Li W. Multiscale structure-property relationships of oxidized wheat starch prepared assisted with electron beam irradiation. Int J Biol Macromol 2023; 235:123908. [PMID: 36870652 DOI: 10.1016/j.ijbiomac.2023.123908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, two promising eco-friendly modification techniques, electron beam (EB) irradiation and hydrogen peroxide (H2O2) oxidation, were used to prepare oxidized wheat starch. Neither irradiation nor oxidation changed starch granule morphology, crystalline pattern, and Fourier transform infrared spectra pattern. Nevertheless, EB irradiation decreased the crystallinity and the absorbance ratios of 1047/1022 cm-1 (R1047/1022), but oxidized starch exhibited the opposite results. Both irradiation and oxidation treatments reduced the amylopectin molecular weight (Mw), pasting viscosities, and gelatinization temperatures, while increasing the amylose Mw, solubility and paste clarity. Notably, EB irradiation pretreatment dramatically elevated the carboxyl content of oxidized starch. In addition, irradiated-oxidized starches displayed higher solubility, paste clarity, and lower pasting viscosities than single oxidized starches. The main reason was that EB irradiation preferentially attacks the starch granules, degrades the starch molecules, and depolymerizes the starch chains. Therefore, this green method of irradiation-assisted oxidation of starch is promising and may promote the appropriate application of modified wheat starch.
Collapse
Affiliation(s)
- Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Mengting Yan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yili Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Guoquan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Li Y, Wang JH, Wang EC, Tang ZS, Han Y, Luo XE, Zeng XA, Woo MW, Han Z. The microstructure and thermal properties of pulsed electric field pretreated oxidized starch. Int J Biol Macromol 2023; 235:123721. [PMID: 36801303 DOI: 10.1016/j.ijbiomac.2023.123721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The structure and thermal properties of pulsed electric field (PEF) assisted sodium hypochlorite oxidized starch were investigated. The carboxyl content of the oxidized starch was increased by 25 % when compared with the traditional oxidation method. Dents and cracks were evident on the surface of the PEF-pretreated starch. Compared with native starch, the peak gelatinization temperature (Tp) of PEF-assisted oxidized starch (POS) was reduced by 10.3 °C, while that of the oxidized starch without PEF treatment (NOS) was only reduced by 7.4 °C. In addition, PEF treatment further reduces the viscosity and improve the thermal stability of the starch slurry. Therefore, PEF treatment combined with hypochlorite oxidation is an effective method to prepare oxidized starch. PEF showed great potential in expanding starch modification, to promote a wider application of oxidized starch in the paper, the textile and the food industry.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. Co., Ltd, Foshan 528300, China
| | - Er-Chun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500,China
| | - Yu Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500,China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
16
|
Nazerian M, Karimi J, Torshizi HJ, Papadopoulos AN, Hamedi S, Vatankhah E. An Improved Optimization Model to Predict the MOR of Glulam Prepared by UF-Oxidized Starch Adhesive: A Hybrid Artificial Neural Network-Modified Genetic Algorithm Optimization Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9074. [PMID: 36556880 PMCID: PMC9785485 DOI: 10.3390/ma15249074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the present article is to study the bending strength of glulam prepared by plane tree (Platanus Orientalis-L) wood layers adhered by UF resin with different formaldehyde to urea molar ratios containing the modified starch adhesive with different NaOCl concentrations. Artificial neural network (ANN) as a modern tool was used to predict this response, too. The multilayer perceptron (MLP) models were used to predict the modulus of rapture (MOR) and the statistics, including the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used to validate the prediction. Combining the ANN and the genetic algorithm by using the multiple objective and nonlinear constraint functions, the optimum point was determined based on the experimental and estimated data, respectively. The characterization analysis, performed by FTIR and XRD, was used to describe the effect of the inputs on the output. The results indicated that the statistics obtained show excellent MOR predictions by the feed-forward neural network using Levenberg-Marquardt algorithms. The comparison of the optimal output of the actual values obtained by the genetic algorithm resulting from the multi-objective function and the optimal output of the values estimated by the nonlinear constraint function indicates a minimum difference between both functions.
Collapse
Affiliation(s)
- Morteza Nazerian
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Jalal Karimi
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Hossin Jalali Torshizi
- Department of Bio Refinery, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Antonios N. Papadopoulos
- Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece
| | - Sepideh Hamedi
- Department of Bio Refinery, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Elham Vatankhah
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
17
|
Yuan TZ, Ai Y. Pasting and gelation behaviors and in vitro digestibility of high-amylose maize starch blended with wheat or potato starch evaluated at different heating temperatures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Dufour D, Rolland-Sabaté A, Mina Cordoba HA, Luna Melendez JL, Moreno Alzate JL, Pizzaro M, Guilois Dubois S, Sánchez T, Eiver Belalcazar J, Morante N, Tran T, Moreno-Santander M, Vélez-Hernández G, Ceballos H. Native and fermented waxy cassava starch as a novel gluten-free and clean label ingredient for baking and expanded product development. Food Funct 2022; 13:9254-9267. [PMID: 35980275 DOI: 10.1039/d2fo00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amylose-free and wild-type cassava starches were fermented for up to 30 days and oven- or sun-dried. The specific volume (ν) after baking was measured in native and fermented starches. The average ν (across treatments) for waxy starch was 3.5 times higher than that in wild-type starches (17.6 vs. 4.8 cm3 g-1). The best wild-type starch (obtained after fermentation and sun-drying) had considerably poorer breadmaking potential than native waxy cassava (8.4 vs. 16.4 cm3 g-1, respectively). The best results were generally obtained through the synergistic combination of fermentation (for about 10-14 days) and sun-drying. Fermentation reduced viscosities and the weight average molar mass led to denser macromolecules and increased branching degree, which are linked to a high loaf volume. The absence of amylose, however, was shown to be a main determinant as well. Native waxy starch (neutral in taste, gluten-free, and considerably less expensive than the current alternatives to cassava) could become a new ingredient for the formulation of clean label-baked or fried expanded products.
Collapse
Affiliation(s)
- Dominique Dufour
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Hansel A Mina Cordoba
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jorge Luis Luna Melendez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jhon Larry Moreno Alzate
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mónica Pizzaro
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Teresa Sánchez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - John Eiver Belalcazar
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nelson Morante
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Thierry Tran
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | | | - Hernán Ceballos
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
19
|
Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Structural Modifications and Strategies for Native Starch for Applications in Advanced Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2188940. [PMID: 35993055 PMCID: PMC9385375 DOI: 10.1155/2022/2188940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Pharmaceutical excipients are compounds or substances other than API which are added to a dosage form, these excipients basically act as carriers, binders, bulk forming agents, colorants, and flavouring agents, and few excipients are even used to enhance the activity of active pharmaceutical ingredient (API) and various more properties. However, despite of these properties, there are problems with the synthetic excipients such as the possibility of causing toxicity, inflammation, autoimmune responses, lack of intrinsic bioactivity and biocompatibility, expensive procedures for synthesis, and water solubility. However, starch as an excipient can overcome all these problems in one go. It is inexpensive, there is no toxicity or immune response, and it is biocompatible in nature. It is very less used as an excipient because of its high digestibility and swelling index, high glycemic index, paste clarity, film-forming property, crystalline properties, etc. All these properties of starch can be altered by a few modification processes such as physical modification, genetic modification, and chemical modification, which can be used to reduce its digestibility and glycemic index of starch, improve its film-forming properties, and increase its paste clarity. Changes in some of the molecular bonds which improve its properties such as binding, crystalline structure, and retrogradation make starch perfect to be used as a pharmaceutical excipient. This research work provides the structural modifications of native starch which can be applicable in advanced drug delivery. The major contributions of the paper are advances in the modification of native starch molecules such as physically, chemically, enzymatically, and genetically traditional crop modification to yield a novel molecule with significant potential for use in the pharmaceutical industry for targeted drug delivery systems.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
- Department of Pharmaceutical Science, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| | - Vipin Kumar
- Department of Pharmaceutical Science, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| | - Richa Goel
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Somesh Kumar Sharma
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Shikha Kaushik
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Shivani Sharma
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, India
| | - Alankar Shrivastava
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Mulugeta Tesema
- Department of Chemistry (Analytical), College of Natural and Computational Sciences, Dambi Dollo University, Dambi Dollo, Oromia Region, Ethiopia
| |
Collapse
|
20
|
Wang Z, Mhaske P, Farahnaky A, Kasapis S, Majzoobi M. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Boonsuk P, Sukolrat A, Chantarak S, Kelarakis A, Chaibundit C. Poly(vinyl alcohol)/modified cassava starch blends plasticized with glycerol and sorbitol. J Appl Polym Sci 2022. [DOI: 10.1002/app.52362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Phetdaphat Boonsuk
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Apinya Sukolrat
- Office of Scientific Instrument and Testing Prince of Songkla University Hat Yai Songkhla Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Natural Sciences University of Central Lancashire Preston UK
| | - Chiraphon Chaibundit
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| |
Collapse
|
22
|
Hoogstad TM, Timmer SM, van Boxtel AJB, Buwalda PL, Bitter JH, Kiewidt L. Environmental Impact Evaluation for Heterogeneously Catalysed Starch Oxidation. Chemistry 2022; 11:e202200029. [PMID: 35233991 PMCID: PMC9535500 DOI: 10.1002/open.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Oxidised starch is currently produced from native starch using sodium hypochlorite as an oxidising agent. The use of hypochlorite has undesired side reactions and produces stoichiometric amounts of waste (salt), thus alternative oxidation methods are desired. In this study, the potential of two catalysed starch oxidation methods to reduce the environmental impact (EI) of oxidised starch production are assessed. We compared the EI of oxidation with molecular oxygen (heterogeneously catalysed) and hydrogen peroxide (homogeneously catalysed) to hypochlorite oxidation through life cycle assessment (LCA). The results confirm that hypochlorite oxidation is the main environmental hotspot in the current process of oxidised starch production, and that both hydroperoxide oxidation and molecular oxygen oxidation can significantly lower the EI of the process. The impact reduction is most significant in the categories of freshwater eutrophication (∼67 %), ozone depletion (∼66 %), climate change (35-60 %) and resource use (40 %-78 %) for peroxide and molecular oxygen oxidation, respectively.
Collapse
Affiliation(s)
- Tim M Hoogstad
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Stijn M Timmer
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Anton J B van Boxtel
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Pieter L Buwalda
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Lars Kiewidt
- Biobased Chemistry and Technology (BCT), Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
23
|
Yuan L, Li Z, Li X, Qiu S, Lei J, Li D, Mu C, Ge L. Functionalization of an Injectable Self-Healing pH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS APPLIED POLYMER MATERIALS 2022. [DOI: 10.1021/acsapm.1c01637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zijing Li
- Panxi Institute of Vanadium and Titanium Inspection and Testing/National Quality Inspection Center of Vanadium and Titanium Products, Panzhihua 617000, Sichuan, China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
24
|
Sumardiono S, Jos B, Pudjihastuti I, Sari RJ, Kumala WDN, Cahyono H. Effect of chemical modification, drying method, and drying temperature on baking expansion and the physicochemical properties of cassava starch. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siswo Sumardiono
- Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang Indonesia
| | - Bakti Jos
- Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang Indonesia
| | - Isti Pudjihastuti
- Department of Industrial Chemical Engineering, Vocational School Universitas Diponegoro Semarang Indonesia
| | - Ratna Juwita Sari
- Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang Indonesia
| | - Wiwik Dwi Novia Kumala
- Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang Indonesia
| | - Heri Cahyono
- Department of Chemical Engineering, Faculty of Engineering Universitas Diponegoro Semarang Indonesia
| |
Collapse
|
25
|
Chapagai MK, Fletcher B, Witt T, Dhital S, Flanagan BM, Gidley MJ. Multiple length scale structure-property relationships of wheat starch oxidized by sodium hypochlorite or hydrogen peroxide. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Tung NT, Thuy LTH, Luong NT, Van Khoi N, Ha PTT, Thang NH. The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Properties of Ozone-Oxidized Tapioca Starch and Its Use in Coating of Fried Peanuts. Molecules 2021; 26:molecules26206281. [PMID: 34684860 PMCID: PMC8538255 DOI: 10.3390/molecules26206281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidation of tapioca via ozone oxidation was carried out under different conditions in comparison with H2O2. The impact of ozonation on physicochemical properties of tapioca was studied and fried peanuts coated with different tapioca were characterized. Different ozone oxidation times (10, 20, and 30 min) and various pH values (5, 7, and 9) were used for tapioca modification. Tapioca oxidized by ozone for 20 min at pH 7 had higher swelling power (SP), water holding capacity (WHC), oil holding capacity (OHC), and viscosity than the native counterpart (P < 0.05). This coincided with the higher carbonyl and carboxyl contents (P < 0.05). The highest frying expansion (FE) with the lowest hardness was attained for fried peanut coated with tapioca oxidized under the aforementioned condition. Therefore, oxidation of tapioca using ozone under optimal conditions could be a potential means to improve frying expansion as well as the crispiness of the fried coated peanuts.
Collapse
|
28
|
The Influence of H2O2 on The Photocatalytic Pretreatment of Cellulose for 5-Hydroxymethyl Furfural (5-HMF) Production. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10311.565-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photocatalysis has been widely known as a simple green technology to be applied in the synthesis and degradation process of organic molecules. An application of photocatalysis in a biomass pretreatment for a 5-hydroxymethylfurfural (5-HMF) production was investigated in this study. The results have revealed that photocatalysis, applied during pretreatment, facilitates the breakdown of cellulose. The presence of oxidizing agent (H2O2) in the ratios to cellulose of 11:1, 18:1, and 37:1 mol.mol-1 has been investigated for its effect on the production of 5-HMF. The optimum conditions obtained for the pretreatment process was the presence of H2O2 at 37:1 mol.mol-1, which was followed by the process of evaporation of the remaining H2O2 after pretreatment. The 5-HMF yield from the hydrolysis process involving pretreatment was 13.07%, while the yield from the process without pretreatment was 9.79%. The application of the pretreatment has succeeded in increasing the 5-HMF yield by 25.09%. The progress in the pretreatment was also marked by the presence of the carboxyl groups in the pretreated samples which were observed by the Fourier Transforms Infrared spectroscopy (FTIR). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
29
|
Physicochemical Properties of Sago Ozone Oxidation: The Effect of Reaction Time, Acidity, and Concentration of Starch. Foods 2021; 10:foods10061309. [PMID: 34200263 PMCID: PMC8228979 DOI: 10.3390/foods10061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
The disadvantageous properties of sago starch has limited its application in food and industrial processes. The properties of sago starch can be improved by changing its physicochemical and rheological characteristics. This study examined the influence of reaction time, acidity, and starch concentration on the oxidation of sago starch with ozone, a strong oxidant. Swelling, solubility, carbonyl, carboxyl, granule morphology, thermal profile, and functional groups are comprehensively observed parameters. With starch concentrations of 10–30% (v/w) and more prolonged oxidation, sago starch was most soluble at pH 10. The swelling power decreased with a longer reaction time, reaching the lowest pH 10. In contrast, the carbonyl and carboxyl content exhibited the same pattern as solubility. A more alkaline environment tended to create modified starch with more favorable properties. Over time, oxidation shows more significant characteristics, indicating a superb product of this reaction. At the starch concentration of 20%, modified sago starch with the most favorable properties was created. When compared to modified starch, native starch is generally shaped in a more oval and irregular manner. Additionally, native starch and modified starch had similar spectral patterns and identical X-ray diffraction patterns. Meanwhile, oxidized starch had different gelatinization and retrogradation temperatures to those of the native starch.
Collapse
|
30
|
do Evangelho JA, Biduski B, da Silva WMF, de Mello El Halal SL, Lenhani GC, Zanella Pinto V, Dias ARG, da Rosa Zavareze E. Carioca bean starch upon synergic modification: characteristics and films properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:253-261. [PMID: 33460192 DOI: 10.1002/jsfa.10637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The use of damaged beans for starch isolation comprises an end-use alternative for a product that is not accepted by the consumer. For that reason, isolation and modification of Carioca bean starch should be explored and evaluated as a suitable source for biodegradable material. The present study aimed to evaluate the synergism of physical and chemical modifications on Carioca bean starch with respect to improving the properties of biodegradable films. A heat-moisture treatment (HMT) followed by oxidation by sodium hypochlorite was performed and vice versa. RESULTS Synergism was noted in the starch properties compared to the single modification. When the oxidation was applied first, a higher amylose and carbonyl content was noted. HMT, isolated and as a second modification, caused a more pronounced effect on viscosity profile than the oxidized starch, with an increase in paste temperature and a decrease in viscosity, breakdown and final viscosity. CONCLUSION The results obtained in the present study reflect a decrease in water vapor permeability, although a higher tensile strength was noted when oxidation was applied, as a single and as a first modification. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jarine A do Evangelho
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Barbara Biduski
- Programa de Pós-Graduação em Ciência e Tecnologia Agroindustrial, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Wyller M F da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Gabriela C Lenhani
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal da Fronteira Sul, Paraná, Brazil
| | - Vânia Zanella Pinto
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal da Fronteira Sul, Paraná, Brazil
| | - Alvaro R G Dias
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | | |
Collapse
|
31
|
Lima DC, Villar J, Castanha N, Maniglia BC, Matta Junior MD, Duarte Augusto PE. Ozone modification of arracacha starch: Effect on structure and functional properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ma L, Xiong F, Kong H, Gu Z, Li Z, Hong Y, Cheng L, Li C. Moderate Vinyl Acetate Acetylation Improves the Pasting Properties of Oxidized Corn Starch. STARCH-STARKE 2020. [DOI: 10.1002/star.202000079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Ma
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Feiyang Xiong
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Haocun Kong
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Zhengbiao Gu
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synergetic and Biological Colloids Ministry of Education Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Wuxi 214122 China
| | - Zhaofeng Li
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synergetic and Biological Colloids Ministry of Education Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Wuxi 214122 China
| | - Yan Hong
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synergetic and Biological Colloids Ministry of Education Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Wuxi 214122 China
| | - Li Cheng
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synergetic and Biological Colloids Ministry of Education Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Wuxi 214122 China
| | - Caiming Li
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synergetic and Biological Colloids Ministry of Education Wuxi 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Wuxi 214122 China
| |
Collapse
|
33
|
Liu L, An X, Zhang H, Lu Z, Nie S, Cao H, Xu Q, Liu H. Ball milling pretreatment facilitating α-amylase hydrolysis for production of starch-based bio-latex with high performance. Carbohydr Polym 2020; 242:116384. [PMID: 32564822 DOI: 10.1016/j.carbpol.2020.116384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Starch based bio-latex has been widely researched in the coating paper area for the purpose of partial replacement of petroleum-based binders. In this paper, a green and facile ball milling pretreatment was proposed to modify the starch granules before α-amylase hydrolysis by breaking up their crystalline structure, thus improving the accessibility and susceptibility of amylase into starch structure. It was found that the improved hydrolysis process after 8 h ball milling can generate suitable degree of polymerization of polysaccharides or oligosaccharides, which further facilitated the following H2O2 oxidation and SHMP crosslinking processes. In addition, a mechanism was also demonstrated to illustrate the improvement induced by ball milling pretreatment. The prepared bio-latex with crosslinking-structure performed excellent adhesive properties when substituted 25 % of petroleum-based latex during paper coating application, which showed great potential in improving the economic, cost, and environment benefits of traditional production of coated paper.
Collapse
Affiliation(s)
- Liqin Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Zonghong Lu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Haibing Cao
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province, 314214, PR China
| | - Qingliang Xu
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province, 314214, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin, 300457, PR China.
| |
Collapse
|
34
|
Boonsuk P, Sukolrat A, Kaewtatip K, Chantarak S, Kelarakis A, Chaibundit C. Modified cassava starch/poly(vinyl alcohol) blend films plasticized by glycerol: Structure and properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Phetdaphat Boonsuk
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Apinya Sukolrat
- Office of Scientific Instrument and TestingPrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Kaewta Kaewtatip
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Antonios Kelarakis
- School of Physical Sciences and ComputingUniversity of Central Lancashire Preston PR1 2HE UK
| | - Chiraphon Chaibundit
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
35
|
Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus). SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Soto D, León O, Urdaneta J, Muñoz-Bonilla A, Fernández-García M. Modified Starch as a Filter Controller in Water-Based Drilling Fluids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2794. [PMID: 32575779 PMCID: PMC7345978 DOI: 10.3390/ma13122794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
Herein, the effectiveness of an itaconic acid (IA) graft copolymer on native corn starch (NCS) as a filter control agent in fresh water-based drilling fluids (WBDFs) was evaluated. The copolymer (S-g-IA_APS) was synthesized by conventional radical dispersion polymerization using the redox initiation system (NH4)2S2O8/NaHSO3. The modification of the starches was verified by volumetry, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Then, three WBDFs were formulated in which only the added polymer (NCS, S-g-IA_APS, and a commercial starch (CPS)) was varied to control the fluid losses. The physico-chemical, rheological, and filtering properties of the formulated systems were evaluated in terms of density (ρ), pH, plastic viscosity (µp), apparent viscosity (µa), yield point (Yp), gel strength (Rg), and filtrated volume (VAPI). In order to evaluate the resistance to temperature and contaminants of the WBDFs, they were subjected to high pressure and high temperature filtering (VHPHT). The filter control agents were also subjected to aging and contamination with cement and salt. The S-g-IA_APS addition improved the filtering behavior at a high pressure and temperature by 38%.
Collapse
Affiliation(s)
- Diana Soto
- Laboratorio de Polímeros y Reacciones, Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad del Zulia, Sector Grano de Oro, Maracaibo 4011, Venezuela; (D.S.); (J.U.)
| | - Orietta León
- Laboratorio de Polímeros y Reacciones, Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad del Zulia, Sector Grano de Oro, Maracaibo 4011, Venezuela; (D.S.); (J.U.)
| | - José Urdaneta
- Laboratorio de Polímeros y Reacciones, Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad del Zulia, Sector Grano de Oro, Maracaibo 4011, Venezuela; (D.S.); (J.U.)
| | - Alexandra Muñoz-Bonilla
- Departamento de Química y Propiedades de Materiales Poliméricos, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Departamento de Química y Propiedades de Materiales Poliméricos, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| |
Collapse
|
37
|
Oderinde AA, Ibikunle AA, Bakre LG, Babarinde NAA. Modification of African breadfruit (Treculia africana, Decne) kernel starch: Physicochemical, morphological, pasting, and thermal properties. Int J Biol Macromol 2020; 153:79-87. [DOI: 10.1016/j.ijbiomac.2020.02.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/31/2023]
|
38
|
Zhang C, An D, Xiao Q, Weng H, Zhang Y, Yang Q, Xiao A. Preparation, characterization, and modification mechanism of agar treated with hydrogen peroxide at different temperatures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Zhang D, Wu Y, Zhang X, Li W, Li Y, Li A, Pan Y. Identification, formation and control of polar brominated disinfection byproducts during cooking with edible salt, organic matter and simulated tap water. WATER RESEARCH 2020; 172:115526. [PMID: 32000127 DOI: 10.1016/j.watres.2020.115526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Edible salt is essential to the health of humans and serves as a seasoning universally. Besides chloride, edible salt also contains other anions such as bromide, fluoride, sulfate, and carbonate due to incomplete removal during raw salt refinement. In a household cooking (e.g., soup making) process, a chlorine/monochloramine residual in tap water could react with bromide in edible salt and organic matter in food (e.g., rice, wheat) to form numerous brominated disinfection byproducts (Br-DBPs) at significant levels, which might induce adverse health effects to human beings. In this study, we solicited 20 edible salts of different types (i.e., sea salts, well and rock salts, lake salts, and bamboo salts) from nine countries and determined their bromide levels to be 67-375 mg/kg, with an average level of 173 mg/kg. A total of 25 polar Br-DBPs were detected and identified with structures/formulae in cooking water samples using ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry (UPLC/ESI-tqMS) and high-resolution mass spectrometry. Effects of cooking conditions (e.g., disinfectant type and level, edible salt dose, organic matter type and dose, sequence and time interval of adding organic matter and salt, etc.) on the formation of polar Br-DBPs were investigated, and optimized cooking conditions with minimized formation of polar Br-DBPs were determined. Further aided with an Hep G2 cell cytotoxicity assay, it was found that the overall cytotoxicity of chlorinated and chloraminated cooking water samples prepared after cooking condition optimization was reduced by 57% and 22%, respectively, compared with those prepared before cooking condition optimization.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wenbin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
40
|
Handarini K, Hamdani JS, Cahyana Y, Setiasih IS. Functional, thermal, and molecular properties of ozonated starches. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/443/1/012102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Oxidation of dextran using H2O2 and NaClO/NaBr and their applicability in iron chelation. Int J Biol Macromol 2020; 144:615-623. [DOI: 10.1016/j.ijbiomac.2019.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
|
42
|
Chen H, Xiao Q, Weng H, Zhang Y, Yang Q, Xiao A. Extraction of sulfated agar from Gracilaria lemaneiformis using hydrogen peroxide-assisted enzymatic method. Carbohydr Polym 2019; 232:115790. [PMID: 31952598 DOI: 10.1016/j.carbpol.2019.115790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/22/2023]
Abstract
In this study, an eco-friendly extraction method was explored to obtain high sulfate content agar and repair the deficiency of enzymatic extraction by taking full advantage of H2O2. The sulfate content of EHA (H2O2-assisted enzymatic extracted agar) reached 3.56 %, which is significantly higher than that of traditional alkali-extracted agar (AA, 1.8 %). Moreover, EHA exhibited lower viscosity (9.4 cP), which improved 26.6 % and 14 % of filtration and gel dehydration rates than EA (enzymatic extracted agar), respectively. Additionally, the physicochemical properties of the agars were evaluated and compared. Among these agars, EHA showed some favorable properties, such as high yield (16.08 %) and low dissolution temperature (88.9 °C). The surface of algae became smoother after treatment with H2O2 due to effective degradation of cellulose. Besides, mass spectrometry analysis revealed that EHA preserved a great amount of sulfate, while thermogravimetric analysis suggested that the thermal stability of EA and EHA both decreased.
Collapse
Affiliation(s)
- Huijing Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Qiong Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Huifen Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Yonghui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China
| | - Qiuming Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
43
|
Development and Properties of Fish Gelatin/Oxidized Starch Double Network Film Catalyzed by Thermal Treatment and Schiff' Base Reaction. Polymers (Basel) 2019; 11:polym11122065. [PMID: 31835840 PMCID: PMC6960496 DOI: 10.3390/polym11122065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
In order to improve the properties of fish gelatin (FG), oxidized starch (OS) was adopted to form hetero-covalent linkage with it based on thermal treatment and the Schiff’ base reaction. The effects of different ratios of FG/OS (ranging from 10:1 to 2:1) on the properties of films were investigated. OS improved the mechanical and barrier properties of films significantly, while the moisture content decreased as OS concentration increased. The optimum concentration was obtained at the loading amount of 1.5% (w/v) OS. FT-IR spectra revealed the covalent cross-linking between FG and OS induced by Schiff’ base reaction. Moreover, composite films had superior preservation effect on blueberry, according to the results of weight loss, total soluble solids, titratable acidity, and total anthocyanin content. Therefore, this study suggested that FG-OS double network films (FODF) has great potential in the packaging industry.
Collapse
|
44
|
Hoogstad T, Konings G, Buwalda P, Boxtel A, Kiewidt L, Bitter J. The effect of polydispersity on the conversion kinetics of starch oxidation and depolymerisation. CHEMICAL ENGINEERING SCIENCE: X 2019. [DOI: 10.1016/j.cesx.2019.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Fat‐Replacer Properties of Oxidized Cassava Starch Using Hydrogen Peroxide/Sodium Bicarbonate Redox System in Mayonnaise Formulation and Its Stability. STARCH-STARKE 2019. [DOI: 10.1002/star.201900112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Structural, Physicochemical, and Functional Properties of Electrolyzed Cassava Starch. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:9290627. [PMID: 31192252 PMCID: PMC6525864 DOI: 10.1155/2019/9290627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 11/18/2022]
Abstract
Cassava starch was oxidized using the electrolysis system. Sodium chloride was added to this system at various concentrations from 0.5 to 5.0 % (w/v). The whiteness of modified starches proportionally increased based on the NaCl concentration and human eyes could recognize the difference of color. Under treatment, dents occurred on the surface of starch granule. Concentration of carbonyl and carboxyl groups was increased compared to native starch. Based on X-ray diffraction pattern, oxidized starch kept its A-type. Besides, the ratios of alpha-helix/amorphous regions remained indicating oxidation reaction mainly subjected on amorphous region. Intrinsic viscosity was used to indirectly calculate the average molecular weight of sample. Furthermore, results showed that average molecular weight was significantly reduced (from 2.09-fold to 13.22-fold) based on the reacting NaCl concentration. The increase of NaCl content related to the increase of retrogradation of treated starches. At various temperatures (30-95°C), swelling factor and clarity reflected negative and positive correlations to NaCl concentration.
Collapse
|
47
|
Bustillos-Rodríguez JC, Ordóñez-García M, Tirado-Gallegos JM, Zamudio-Flores PB, Ornelas-Paz JDJ, Acosta-Muñiz CH, Gallegos-Morales G, Sepúlveda-Ahumada DR, Salas-Marina MÁ, Berlanga-Reyes DI, Aparicio-Saguilán A, Rios-Velasco C. Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09569-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Possible use of corn starch as tanning agent in leather industry: Controlled (gradual) degradation by H2O2. Int J Biol Macromol 2019; 122:610-618. [DOI: 10.1016/j.ijbiomac.2018.10.217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022]
|
49
|
Lu Y, Zhao X, Fang S. Characterization, Antimicrobial Properties and Coatings Application of Gellan Gum Oxidized with Hydrogen Peroxide. Foods 2019; 8:E31. [PMID: 30658407 PMCID: PMC6352162 DOI: 10.3390/foods8010031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
The effect of hydrogen peroxide (H₂O₂) oxidation on the physicochemical, gelation and antimicrobial properties of gellan gum was studied. The oxidized gellan gum (OGG) was characterized by measuring the carboxyl/carbonyl group contents, Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (¹H-NMR) spectroscopy. The H₂O₂ oxidation resulted in a large increase in the carboxyl groups in gellan gum. The OGG lost gelation ability by oxidation even in the presence of metal ions. The antimicrobial activities of the OGG against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal (Aspergillus niger) were tested. The OGG could inhibit the growth of both bacteria and fungal, and the activity was improved with an increase in the oxidation level. Finally, the application of the OGG as an active coatings material to extend the storage of apples was tested.
Collapse
Affiliation(s)
- Yushuang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| | - Xiaojian Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| |
Collapse
|
50
|
Effect of cross-linking on characteristics of succinylated and oxidized barley starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-00021-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|