1
|
Li J, Zhang D, Hou C. Application of Nano-Titanium Dioxide in Food Antibacterial Packaging Materials. Bioengineering (Basel) 2024; 12:19. [PMID: 39851293 PMCID: PMC11759864 DOI: 10.3390/bioengineering12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food. Nano-titanium dioxide (nano-TiO2) with PDI characteristics has attracted the interest of many researchers with its elevated efficiency, broad-spectrum antibacterial resistance, low cost, safety, and non-toxicity. Nano-TiO2 photodynamic antibacterial properties have been studied extensively and has a great application value in the field of food packaging. The antibacterial properties of nano-TiO2 are linked to its photocatalytic activity and are influenced by factors such as reactive oxygen species production, bacterial types, etc. Polymer-based nano-TiO2 packaging has been prepared using various methods and applied in various foods successfully. In this review, the latest research on photocatalytic and antibacterial mechanisms and factors of nano-TiO2 is discussed, and its applications in food antibacterial packaging are also explored comprehensively. Challenges and future perspectives for nano-TiO2-based food packaging applications have been proposed. This review aims to provide a whole comprehensive understanding of novel antibacterial packaging systems based on nano-TiO2.
Collapse
Affiliation(s)
| | | | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (J.L.); (D.Z.)
| |
Collapse
|
2
|
Adepu S, Siju CR, Kaki S, Bagannagari S, Khandelwal M, Bharti VK. Review on need for designing sustainable and biodegradable face masks: Opportunities for nanofibrous cellulosic filters. Int J Biol Macromol 2024; 283:137627. [PMID: 39547626 DOI: 10.1016/j.ijbiomac.2024.137627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The surge in microbial illnesses, notably seen during the COVID-19 pandemic, has led to the global use of face masks-cloth, surgical, medical, and respirator types-to curb respiratory pathogen spread. Widely used by the public, patients, and healthcare workers, masks play a key role in reducing airborne transmission. However, synthetic, non-biodegradable materials in these masks have sparked environmental concerns due to disposal issues. Moreover, challenges like limited microbial filtration, poor fit, breathing resistance, and low reusability raise further issues, as does the failure to neutralize trapped microbes. Addressing these issues calls for high-performance, biodegradable masks crafted from renewable nanofibrous materials using advanced technology. Antimicrobial nanomaterial coatings can further reduce contamination risks for users and the environment. Nanofibrous materials, with their high surface area, enhance filtration, allow customization, and improve capture efficiency. Research is progressing on sustainable, biodegradable filters, particularly with cellulose materials. This review outlines mask types and limitations, spotlighting nanofibrous filters for their filtration efficiency, breathability, and sustainability. It also delves into nanofiber manufacturing and assesses bacterial cellulose-a promising renewable nanofibrous material suited for air filtration.
Collapse
Affiliation(s)
- Shivakalyani Adepu
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - C R Siju
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Samuel Kaki
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sharanya Bagannagari
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Vikram Kishore Bharti
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Aleksandrova YI, Shurpik DN, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Sokolova EA, Leonteva YO, Mironova AV, Kayumov AR, Petrovskii VS, Potemkin II, Stoikov II. Antibacterial Activity of Various Morphologies of Films Based on Guanidine Derivatives of Pillar[5]arene: Influence of the Nature of One Substitute on Self-assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17163-17181. [PMID: 38530408 DOI: 10.1021/acsami.3c18610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The progress of the pillar[5]arene chemistry allowed us to set out a new concept on application of the supramolecular assemblies to create antimicrobial films with variable surface morphologies and biological activities. Antibacterial films were derived from the substituted pillar[5]arenes containing nine pharmacophoric guanidine fragments and one thioalkyl substituent. Changing the only thioalkyl fragment in the macrocycle structure made it possible to control the biological activity of the resulting antibacterial coating. Pretreatment of the surface with aqueous solution of the amphiphilic pillar[5]arenes reduced the biofilm thickness by 56 ± 10% of Gram-positive Staphylococcus aureus in the case of the pillar[5]arene containing a thiooctyl fragment and by 52 ± 7% for the biofilm of Gram-negative Klebsiella pneumoniae in the case of pillar[5]arene containing a thiooctadecyl fragment. Meanwhile, the cytotoxicity of the synthesized macrocycles was examined at a concentration of 50 μg/mL, which was significantly lower than that of bis-guanidine-based antimicrobial preparations.
Collapse
Affiliation(s)
- Yulia I Aleksandrova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Dmitriy N Shurpik
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgeniya V Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgeniya A Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Yulia O Leonteva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladislav S Petrovskii
- Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russian Federation
- N. N. Semenov Federal Research Center of Chemical Physics of Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russian Federation
| | - Ivan I Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| |
Collapse
|
4
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
5
|
Binaymotlagh R, Hajareh Haghighi F, Di Domenico EG, Sivori F, Truglio M, Del Giudice A, Fratoddi I, Chronopoulou L, Palocci C. Biosynthesis of Peptide Hydrogel-Titania Nanoparticle Composites with Antibacterial Properties. Gels 2023; 9:940. [PMID: 38131926 PMCID: PMC10742879 DOI: 10.3390/gels9120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The photoantibacterial properties of titania nanoparticles (TiO2NPs) are attracting much interest, but the separation of their suspension limits their application. In this study, the encapsulation of commercial TiO2NPs within self-assembling tripeptide hydrogels to form hgel-TiO2NP composites with significant photoantibacterial properties is reported. The Fmoc-Phe3 hydrogelator was synthesized via an enzymatic method. The resulting composite was characterized with DLS, ζ-potential, SAXS, FESEM-EDS and rheological measurements. Two different concentrations of TiO2NPs were used. The results showed that, by increasing the TiO2NP quantity from 5 to 10 mg, the value of the elastic modulus doubled, while the swelling ratio decreased from 63.6 to 45.5%. The antimicrobial efficacy of hgel-TiO2NPs was tested against a laboratory Staphylococcus aureus (S. aureus) strain and two methicillin-resistant S. aureus (MRSA) clinical isolates. Results highlighted a concentration-dependent superior antibacterial activity of hgel-TiO2NPs over TiO2NPs in the dark and after UV photoactivation. Notably, UV light exposure substantially increased the biocidal action of hgel-TiO2NPs compared to TiO2NPs. Surprisingly, in the absence of UV light, both composites significantly increased S. aureus growth relative to control groups. These findings support the role of hgel-TiO2NPs as promising biocidal agents in clinical and sanitation contexts. However, they also signal concerns about TiO2NP exposure influencing S. aureus virulence.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.S.); (M.T.)
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.S.); (M.T.)
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.B.); (F.H.H.); (A.D.G.); (I.F.); (C.P.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Meng S, Wu H, Xiao D, Lan S, Dong A. Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydr Polym 2023; 316:121082. [PMID: 37321715 DOI: 10.1016/j.carbpol.2023.121082] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Wound infection arising from pathogenic bacteria brought serious trouble to the patient and medical system. Among various wound dressings that are effective in killing pathogenic bacteria, antimicrobial composites based on bacterial cellulose (BC) are becoming the most popular materials due to their success in eliminating pathogenic bacteria, preventing wound infection, and promoting wound healing. However, as an extracellular natural polymer, BC is not inherently antimicrobial, which means that it must be combined with other antimicrobials to be effective against pathogens. BC has many advantages over other polymers, including nano-structure, significant moisture retention, non-adhesion to the wound surface, which has made it superior to other biopolymers. This review introduces the recent advances in BC-based composites for the treatment of wound infection, including the classification and preparation methods of composites, the mechanism of wound treatment, and commercial application. Moreover, their wound therapy applications include hydrogel dressing, surgical sutures, wound healing bandages, and patches are summarized in detail. Finally, the challenges and future prospects of BC-based antibacterial composites for the treatment of infected wounds are discussed.
Collapse
Affiliation(s)
- Suriguga Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
7
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
8
|
Santana RMDR, Napoleão DC, Rodriguez-Diaz JM, Gomes RKDM, Silva MG, Garcia RRP, Vinhas GM, Duarte MMMB. Original nanostructured bacterial cellulose/pyrite composite: Photocatalytic application in advanced oxidation processes. CHEMOSPHERE 2023; 319:137953. [PMID: 36709843 DOI: 10.1016/j.chemosphere.2023.137953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The development of an original catalytic composite of bacterial cellulose (BC) and pyrite (FeS2) for environmental application was the objective of this study. Nanoparticles of the FeS2 were synthesized from the hydrothermal method and immobilized on the BC structure using ex situ methodology. In the BC, the FTIR and XRD analyzes showed the absorption band associated with the Fe-S bond and crystalline peaks attributed to the pyrite. Thus, the immobilization of the iron particles on the biopolymer was proven, producing the composite BC/FeS2. The use of the SEM technique also ratifies the composite production by identifying the fibrillar structure morphology of the cellulose covered by FeS2 particles. The total iron concentration was 54.76 ± 1.69 mg L-1, determined by flame atomic absorption analysis. TG analysis and degradation tests showed respectively the thermal stability of the new material and its high catalytic potential. A multi-component solution of textile dyes was used as the matrix to be treated via advanced oxidative processes. The composite acted as the catalyst for the Fenton and photo-Fenton processes, with degradations of 52.87 and 96.82%, respectively. The material proved stability by showing low iron leaching (2.02 ± 0.09 and 2.11 ± 0.11 mg L-1 for the respective processes). Thus, its high potential for reuse is presumed, given the remaining concentration of this metal in the BC. The results showed that the BC/FeS2 composite is suitable to solve the problems associated with using catalysts in suspension form.
Collapse
Affiliation(s)
| | | | - Joan Manuel Rodriguez-Diaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | | | - Marina Gomes Silva
- Chemical Engineering Department, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Ramón Raudel Peña Garcia
- Academic Unit of Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, PE, Brazil.
| | - Glória Maria Vinhas
- Chemical Engineering Department, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | |
Collapse
|
9
|
Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
10
|
Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P. Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. Int J Biol Macromol 2023; 226:1284-1308. [PMID: 36574582 DOI: 10.1016/j.ijbiomac.2022.11.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sourbh Thakur
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh EH9 3JG, Scotland, UK
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
11
|
Integrated Electro-photo-Fenton process and visible light-driven TiO2/rGO/Fe2O3 photocatalyst based on graphite cathode in the presence of iron anode for Metronidazole degradation. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
13
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
14
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
15
|
Kaushik R, Singh PK, Halder A. Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources. NANOMATERIALS 2022; 12:nano12020263. [PMID: 35055280 PMCID: PMC8779975 DOI: 10.3390/nano12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
Polluting the natural water resources is a serious global issue, which is confirmed by the fact that today at least 2 billion people consume water from contaminated sources. The conventional wastewater treatment methods cannot effectively remove the persistent pollutants (e.g., drugs, organic dyes, pesticides) from the aqueous environment. Heterogeneous photocatalysis is a promising and sustainable alternative for water remediation. It is based on the interaction between light irradiation and the semiconductors (e.g., TiO2, ZnO) as photocatalysts, but these compounds, unfortunately, have some disadvantages. Hence, great attention has been paid to the nanotechnology as a possible way of improvement. Nanomaterials have extraordinary properties; however, their conventional synthesis is often difficult and requires a significant amount of dangerous chemicals. This concise topical review gives recent updates and trends in development of sustainable and green pathways in the synthesis of nanomaterials, as well as in their application for water remediation. In our review we put emphasis on the eco-friendly, mostly plant extract-based materials. The importance of this topic, including this study as well, is proved by the growing number of publications since 2018. Due to the current serious environmental issues (e.g., global warming, shortage of pure and quality water), it is necessary for the traditional TiO2 and ZnO semiconductors to be replaced with the harmless, non-toxic, and more powerful nanocomposites as photocatalysts. Not only because of their higher efficiency as compared to the bulk semiconductors, but also because of the presence of biomolecules that can add up to the pollutant removal efficiency, which has been already confirmed in many researches. However, despite the fact that the application of heterogeneous photocatalysis together with green nanotechnology is absolutely the future in water purification, there are some challenges which have to be overcome. The exact effects of the biomolecules obtained from plants in the synthesis of nanoparticles, as well as in the photocatalytic processes, are not exactly known and require further investigation. Furthermore, heterogeneous photocatalysis is a well-known and commonly examined process; however, its practical use outside the laboratory is expensive and difficult. Thus, it has to be simplified and improved in order to be available for everyone. The aim of our review is to suggest and prove that using these bio-inspired compounds it is possible to reduce human footprint in the nature.
Collapse
|
17
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
18
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
19
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
20
|
Ch-Th T, Manisekaran R, Santoyo-Salazar J, Schoefs B, Velumani S, Castaneda H, Jantrania A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Lyu Y, Asoh TA, Uyama H. Fabrication of Inorganic Oxide Fiber Using a Cigarette Filter as a Template. ACS OMEGA 2021; 6:15374-15381. [PMID: 34151115 PMCID: PMC8210397 DOI: 10.1021/acsomega.1c01750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 05/25/2023]
Abstract
Inorganic oxides with unique physical and chemical properties have attracted much attention because they can be applied in a wide range of fields. Herein, recycled cigarette filters are deacetylated to cellulose filters (CFs), which are then applied as templates to prepare fiber-like inorganic oxides (titanium dioxide, TiO2, and silicon dioxide, SiO2). Inorganic oxides are prepared using CF as a template by a typical sol-gel reaction of metal alkoxides. Owing to the fibrous structure of the CF template, the prepared inorganic oxides (TiO2 and SiO2) show similar fibrous structures, which was confirmed by scanning electron microscopy and nitrogen adsorption-desorption analysis. Moreover, the prepared inorganic oxides (TiO2 and SiO2) show high surface areas and pore volumes. Furthermore, the TiO2 fiber-like materials are evaluated for their photocatalytic properties by analyzing the methylene blue (MB) and methyl orange (MO) degradation. In this study, we provide a clean method, which can convert cellulose acetate-based waste into useful templates to prepare inorganic oxides with relatively simple steps, and the prepared inorganic oxides can be applied in water treatment.
Collapse
|
22
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
23
|
Khattak S, Qin XT, Wahid F, Huang LH, Xie YY, Jia SR, Zhong C. Permeation of Silver Sulfadiazine Into TEMPO-Oxidized Bacterial Cellulose as an Antibacterial Agent. Front Bioeng Biotechnol 2021; 8:616467. [PMID: 33585416 PMCID: PMC7876255 DOI: 10.3389/fbioe.2020.616467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Surface oxidation of bacterial cellulose (BC) was done with the TEMPO-mediated oxidation mechanism system. After that, TEMPO-oxidized bacterial cellulose (TOBC) was impregnated with silver sulfadiazine (AgSD) to prepare nanocomposite membranes. Fourier transform infrared spectroscopy (FTIR) was carried out to determine the existence of aldehyde groups on BC nanofibers and X-ray diffraction (XRD) demonstrated the degree of crystallinity. FESEM analysis revealed the impregnation of AgSD nanoparticles at TOBC nanocomposites with the average diameter size ranging from 11 nm to 17.5 nm. The sample OBCS3 showed higher antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli by the disc diffusion method. The results showed AgSD content, dependent antibacterial activity against all tested bacteria, and degree of crystallinity increases with TOBC and AgSD. The main advantage of the applications of TEMPO-mediated oxidation to BC nanofibers is that the crystallinity of BC nanofibers is unchanged and increased after the oxidation. Also enhanced the reactivity of BC as it is one of the most promising method for cellulose fabrication and functionalization. We believe that the novel composite membrane could be a potential candidate for biomedical applications like wound dressing, BC scaffold, and tissue engineering.
Collapse
Affiliation(s)
- Shahia Khattak
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Xiao-Tong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Long-Hui Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Yan-Yan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
24
|
Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr Polym 2020; 249:116858. [DOI: 10.1016/j.carbpol.2020.116858] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
|
25
|
Li Y, Pan Y, Zhang B, Liu R. Adsorption and photocatalytic activity of Cu-doped cellulose nanofibers/nano-titanium dioxide for different types of dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1665-1675. [PMID: 33107860 DOI: 10.2166/wst.2020.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cu-doped cellulose nanofibers/nano-titanium dioxide (Cu-TOCN/TiO2) photocatalysts were prepared by the hydrolysis-precipitation method using TiCl4 as the source of titanium and cellulose nanofibers suspension as a reaction medium. The prepared photocatalysts were used to decolorize organic dyes (reactive brilliant red K-2BP and cationic red X-GRL) efficiently under the synergistic effect of simultaneous adsorption and photocatalysis. The combination of TOCN inhibited the growth of TiO2 crystals, reduced agglomeration and increased the specific surface area. When compared with TiO2, TOCN/TiO2 improved the decolorization efficiency of the two dyes by 14.82% and 22.87%, respectively, under UV-light irradiation. The absorption edge exhibited red-shift from 380 to 410 nm after Cu doping. An excellent photocatalytic activity was recorded by 0.5 mol % Cu-TOCN/TiO2 and the decolorization efficiency of the two dyes was further improved by 34.76% and 10.44% respectively, compared with no Cu doping. After 2 hours of irradiation, the decolorization efficiency reached 96.57% and 99.73% respectively, while under dark conditions, it was 47.64% and 91.56% for the two dyes. The degradation mechanism of the dyes was verified as the destruction of the azo chromophore and benzene ring. This work provides a potential method for the development of a novel adsorptive photocatalyst with excellent recyclability.
Collapse
Affiliation(s)
- Yumei Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China E-mail: ; † These two authors contributed to this work equally
| | - Ying Pan
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China E-mail: ; † These two authors contributed to this work equally
| | - Bin Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China E-mail:
| | - Rongzhan Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China E-mail: ; Center of Shandong province for eco-textile collaborative innovation, Qingdao 266071, China
| |
Collapse
|
26
|
Vaishampayan A, Ahmed R, Wagner O, de Jong A, Haag R, Kok J, Grohmann E. Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111578. [PMID: 33321624 DOI: 10.1016/j.msec.2020.111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause nosocomial infections that can have deleterious effects on human health. Thus, it is imperative to find solutions to treat these detrimental infections as well as to control their spread. We tested the effect of two different antimicrobial materials, functionalised graphene oxide (GOX), and AGXX® coated on cellulose fibres, on the growth and transcriptome of the clinical MRSA strain S. aureus 04-02981. In addition, we investigated the effect of a third material as a combination of GOX and AGXX® fibres on S. aureus 04-02981. Standard plate count assay revealed that the combination of fibres, GOX-AGXX® inhibited the growth of S. aureus 04-02981 by 99.98%. To assess the effect of these antimicrobials on the transcriptome of our strain, cultures of S. aureus 04-02981 were incubated with GOX, AGXX®, or GOX-AGXX® fibres for different time periods and then subjected to RNA-sequencing. Uncoated cellulose fibres were used as a negative control. The antimicrobial fibres had a huge impact on the transcriptome of S. aureus 04-02981 affecting the expression of 2650 genes. Primarily genes related to biofilm formation and virulence (such as agr, sarA, and those of the two-component system SaeRS), and genes crucial for survival in biofilms (like arginine metabolism arc genes) were repressed. In contrast, the expression of siderophore biosynthesis genes (sbn) was induced, a probable response to stress imposed by the antimicrobials and the conditions of iron-deficiency. Genes associated with potassium transport, intracellular survival and pathogenesis (kdp) were also differentially expressed. Our data suggest that the combination of GOX and AGXX® acts as an efficient antimicrobial against S. aureus 04-02981. Thus, these materials are potential candidates for applications in antimicrobial surface coatings.
Collapse
Affiliation(s)
- Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | - Rameez Ahmed
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Olaf Wagner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany.
| |
Collapse
|
27
|
Oprea M, Panaitescu DM. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4045. [PMID: 32899710 PMCID: PMC7570792 DOI: 10.3390/molecules25184045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
28
|
Patterson K, Howlett K, Patterson K, Wang B, Jiang L. Photodegradation of ibuprofen and four other pharmaceutical pollutants on natural pigments sensitized TiO 2 nanoparticles. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1152-1161. [PMID: 32064712 DOI: 10.1002/wer.1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in water system have drawn increasing concerns in recent years. TiO2 -based photodegradation has shown great potential as a low-cost and sustainable technology in water treatment, however, can only use the UV light range of solar radiation which makes the system less efficient. Dyes have been studied to improve the TiO2 system light-harvesting range, but studies on environmental friendly natural dyes are rare. In this study, a screening method using UV-Vis spectra analysis was carried out on a group of 22 different tropical natural plants for the potential applications on dye-sensitized TiO2 in PPCP treatment. As a result, Begonia "Martin's Mystery" significantly increased TiO2 photodegradation efficiency toward ibuprofen treatments which is first time reported in literature as our best knowledge. Moreover, the promising discovery of Begonia application in ibuprofen treatment has been successfully applied to warfarin and famotidine treatment. Similar results were expanded to many other Begonia species which indicate that Begonia extracts could be excellent sensitizers for TiO2 -based photodegradation of PPCPs. Our discovery suggested that the screening process may potentially open a brand-new way for future TiO2 photodegradation studies before the complex and time-consuming detailed mechanism studies. PRACTITIONER POINTS.: Natural dyes were screened as sensitizers for TiO2 photodegradation of ibuprofen. Ibuprofen photodegradation efficiency was increased twice using Begonia "Martin's Mystery." The Begonia applications were extended to warfarin, trimethoprim, and famotidine. Promising results were also observed using five other Begonia species.
Collapse
Affiliation(s)
- Kristen Patterson
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Kevin Howlett
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Kelsey Patterson
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC, USA
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| |
Collapse
|
29
|
Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr Polym 2020; 229:115456. [DOI: 10.1016/j.carbpol.2019.115456] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
|
30
|
Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 2020; 40:397-414. [PMID: 31937141 DOI: 10.1080/07388551.2020.1713721] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a "rising star" for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.
Collapse
Affiliation(s)
- Francisco German Blanco Parte
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Chan Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
31
|
Titanium dioxide decorated natural cellulosic Juncus effusus fiber for highly efficient photodegradation towards dyes. Carbohydr Polym 2020; 232:115830. [PMID: 31952578 DOI: 10.1016/j.carbpol.2020.115830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
The removal of dyes via photocatalytic degradation has been identified as an eco-friendly method for producing clean and purified water. Natural cellulosic fibers are significant renewable resource and important in a wide range of applications. Herein, we report a natural cellulosic Juncus effusus (JE) fiber with 3D network structure as a framework to provide controllable space for the growth of TiO2 particles. The TiO2-JE showed remarkable activity in the removal of C.I. Reactive Red 120 (RR120), C.I. Direct Yellow 12 (DY12), and methylene blue (MB) with a photodegradation efficiency of 99.9 % under simulated sunlight irradiation. Additionally, an orientate fabric was fabricated using the prepared TiO2-JE fibers for the photocatalytic degradation of dye-contaminated water in the sun, further confirming its practical application. The TiO2 decorated natural cellulosic JE fiber can be a promising material for photocatalysis and sustainable chemistry.
Collapse
|
32
|
Baek S, Joo SH, Su C, Toborek M. Toxicity of ZnO/TiO 2 -conjugated carbon-based nanohybrids on the coastal marine alga Thalassiosira pseudonana. ENVIRONMENTAL TOXICOLOGY 2020; 35:87-96. [PMID: 31515868 PMCID: PMC7144345 DOI: 10.1002/tox.22845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 05/15/2023]
Abstract
Increasing consumption of metal-oxide nanoparticles (NPs) and carbon-based nanomaterials has caused significant concern about their potential hazards in aquatic environments. The release of NPs into aquatic environments could result in adsorption of NPs on microorganisms. While metal-oxide NP-conjugated carbon-based nanohybrids (NHs) may exhibit enhanced toxicity toward microorganisms due to their large surface area and the generation of reactive oxygen species (ROS), there is a lack of information regarding the ecotoxicological effects of NHs on marine diatom algae, which are an indicator of marine pollution. Moreover, there is scant information on toxicity mechanisms of NHs on aquatic organisms. In this study, four NHs (ie, ZnO-conjugated graphene oxide [GO], ZnO-conjugated carbon nanotubes [CNTs], TiO2 -conjugated GO, and TiO2 -conjugated CNT) that were synthesized by a hydrothermal method were investigated for their toxicity effects on a Thalassiosira pseudonana marine diatom. The in vitro cellular viability and ROS formation employed at the concentration ranges of 50 and 100 mg/L of NHs over 72 hours revealed that ZnO-GO had the most negative effect on T. pseudonana. The primary mechanism identified was the generation of ROS and GO-induced dispersion that caused electrostatic repulsion, preventing aggregation, and an increase in surface areas of NHs. In contrast to GO-induced dispersion, large aggregates were observed in ZnO/TiO2 -conjugated CNT-based NHs. The scanning electron microscopy images suggest that NHs covered algae cells and interacted with them (shading effects); this reduced light availability for photosynthesis. Detailed in vitro toxicity effects and mechanisms that cause high adverse acute toxicity on T. pseudonana were unveiled; this implied concerns about potential hazards of these mechanisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Soyoung Baek
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida
| | - Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
33
|
Baek S, Joo SH, Su C, Toborek M. Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:214-223. [PMID: 31247368 PMCID: PMC7085116 DOI: 10.1016/j.jenvman.2019.06.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/30/2019] [Accepted: 06/15/2019] [Indexed: 05/25/2023]
Abstract
Some nanomaterials including Fe0, Ag0, and ZnO are well known for their antibacterial effects. However, very few studies have examined antibacterial effects of nanohybrids. Given that metal oxides, mainly ZnO and TiO2, are known to increase mobility, surface area, and photocatalysis when combined with carbon-based nanomaterials, ZnO- and TiO2-conjugated carbon nanotube and graphene oxide nanohybrids were investigated for their antibacterial effects on Escherichia coli (DH5α, a multidrug-resistant coliform bacterium). Graphene-oxide (GO)-based nanohybrids (ZnO-GO and TiO2-GO) induced increased dispersion compared to carbon-nanotube (CNT)-based nanohybrids (ZnO-CNT and TiO2-CNT). Among the four types of nanohybrids, ZnO-conjugated nanohybrids exhibited a higher antibacterial property, resulting in the antibacterial effect (measured with growth inhibition of cells) in the order ZnO-GO > ZnO-CNT > TiO2-GO > TiO2-CNT. Among four possible antibacterial mechanisms (generation of reactive oxygen species (ROS), physicochemical characteristics, the steric effect, and release of metal ions), a primary mechanism-ROS generation-was identified; whereas, physicochemical characteristics and the steric effect were part of contributing mechanisms. The increasing dispersion of TiO2/ZnO on GO may have contributed to the antibacterial effects due to increasing surface areas. Similarly, significant damages to E. coli cell membranes were found by the GO sheet with its sharp edges. Our results suggest that applying GO-based ZnO or TiO2 could be an effective antibacterial method, especially for the treatment of multidrug-resistant bacteria in the water.
Collapse
Affiliation(s)
- Soyoung Baek
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL, 33146-0630, USA
| | - Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL, 33146-0630, USA.
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, 1011 NW 15th Street, Miami, FL, 33136, USA
| |
Collapse
|
34
|
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1663210] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mahmoodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nafiseh Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
35
|
Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J Ind Microbiol Biotechnol 2019; 46:1491-1503. [PMID: 31512094 DOI: 10.1007/s10295-019-02225-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Komagataeibacter hansenii HDM1-3 (K. hansenii HDM1-3) has been widely applied for producing bacterial cellulose (BC). The yield of BC has been frequently limited by the acidification during sugar metabolism, due to the generation of organic acids such as acetic acid. In this study, the acid resistance mechanism of K. hansenii HDM1-3 has been investigated from the aspect of metabolic adaptability of cell membrane fatty acids. Firstly, we observed that the survival rate of K. hansenii HDM1-3 was decreased with lowered pH values (adjusted with acetic acids), accompanied by increased leakage rate. Secondly, the cell membrane adaptability in response to acid stress was evaluated, including the variations of cell membrane fluidity and fatty acid composition. The proportion of unsaturated fatty acids was increased (especially, C18-1w9c and C19-Cyc), unsaturation degree and chain length of fatty acids were also increased. Thirdly, the potential molecular regulation mechanism was further elucidated. Under acid stress, the fatty acid synthesis pathway was involved in the structure and composition variations of fatty acids, which was proved by the activation of both fatty acid dehydrogenase (des) and cyclopropane fatty acid synthase (cfa) genes, as well as the addition of exogenous fatty acids. The fatty acid synthesis of K. hansenii HDM1-3 may be mediated by the activation of two-component sensor signaling pathways in response to the acid stress. The acid resistance mechanism of K. hansenii HDM1-3 adds to our knowledge of the acid stress adaptation, which may facilitate the development of new strategies for improving the industrial performance of this species under acid stress.
Collapse
|
36
|
The size-controllable preparation of chitosan/silver nanoparticle composite microsphere and its antimicrobial performance. Carbohydr Polym 2019; 220:22-29. [DOI: 10.1016/j.carbpol.2019.05.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
|
37
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
38
|
Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing. Colloids Surf B Biointerfaces 2019; 180:237-244. [PMID: 31055150 DOI: 10.1016/j.colsurfb.2019.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
Abstract
A novel antibacterial hydrogel was prepared through the addition of IT to a chitin (CT) and polyvinyl alcohol (PVA) hydrogel, creating a promising material for wound dressings. The addition of nano particles IT endowed the anti-bacterial activity of hydrogel as well as had a positive impact on the mechanical properties of the hydrogels. The structure of the prepared hydrogel dressing was characterized by FTIR, XPS, XRD, SEM and TEM. The composite hydrogel exhibited excellent anti-bacterial activity under the visible light. Cytotoxicity tests (L929 fibroblast cells) showed all samples achieving up to 80% cell viability. Furthermore, compared with conventional dressings, wound healing test revealed that CT/PVA/IT hydrogel could accelerated wound healing in vivo, wound closure rates reached 95.5% after 10 days. This study suggests that the novel hydrogel has considerable potential for applications in wound dressings.
Collapse
|
39
|
Torres FG, Ccorahua R, Arroyo J, Troncoso OP. Enhanced conductivity of bacterial cellulose films reinforced with NH4I-doped graphene oxide. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Robert Ccorahua
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Junior Arroyo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Omar P. Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Perú
| |
Collapse
|
40
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
41
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X. Nanocellulose-Based Antibacterial Materials. Adv Healthc Mater 2018; 7:e1800334. [PMID: 29923342 DOI: 10.1002/adhm.201800334] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Indexed: 11/12/2022]
Abstract
In recent years, nanocellulose-based antimicrobial materials have attracted a great deal of attention due to their unique and potentially useful features. In this review, several representative types of nanocellulose and modification methods for antimicrobial applications are mainly focused on. Recent literature related with the preparation and applications of nanocellulose-based antimicrobial materials is reviewed. The fabrication of nanocellulose-based antimicrobial materials for wound dressings, drug carriers, and packaging materials is the focus of the research. The most important additives employed in the preparation of nanocellulose-based antimicrobial materials are presented, such as antibiotics, metal, and metal oxide nanoparticles, as well as chitosan. These nanocellulose-based antimicrobial materials can benefit many applications including wound dressings, drug carriers, and packaging materials. Finally, the challenges of industrial production and potentials for development of nanocellulose-based antimicrobial materials are discussed.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Kaiwen Mou
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; University of Chinese Academy of Sciences; Qingdao 266101 China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Keying Long
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
43
|
Shak KPY, Pang YL, Mah SK. Nanocellulose: Recent advances and its prospects in environmental remediation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2479-2498. [PMID: 30345212 PMCID: PMC6176822 DOI: 10.3762/bjnano.9.232] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/27/2018] [Indexed: 05/20/2023]
Abstract
Among many other sustainable functional nanomaterials, nanocellulose is drawing increasing interest for use in environmental remediation technologies due to its numerous unique properties and functionalities. Nanocellulose is usually derived from the disintegration of naturally occurring polymers or produced by the action of bacteria. In this review, some invigorating perspectives on the challenges, future direction, and updates on the most relevant uses of nanocellulose in environmental remediation are discussed. The reported applications and properties of nanocellulose as an adsorbent, photocatalyst, flocculant, and membrane are reviewed in particular. However, additional effort will be required to implement and commercialize nanocellulose as a viable nanomaterial for remediation technologies. In this regard, the main challenges and limitations in working with nanocellulose-based materials are identified in an effort to improve the development and efficient use of nanocellulose in environmental remediation.
Collapse
Affiliation(s)
- Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Shee Keat Mah
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
44
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
45
|
Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosens Bioelectron 2018; 106:212-218. [DOI: 10.1016/j.bios.2018.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
|
46
|
Duan P, Shen J, Zou G, Xia X, Jin B. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1708-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|