1
|
Straksys A, Gruskiene R, Kavleiskaja T. Evaluation of the stability of the β-carotene and xylan complexes under different environmental and long-term conditions. Food Chem 2025; 476:143434. [PMID: 39977982 DOI: 10.1016/j.foodchem.2025.143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The present study aimed to investigate the stability of a novel complex formed from β-carotene and xylan. The stability of the CX complex was analyzed in various environments, including long-term exposure to darkness at 4 °C and 25 °C across different pH ranges, colour changes, UV irradiation and temperature. The antioxidant activity of the complex was evaluated using DPPH and FRAP methods. The results showed that the complex maintained over 80 % relative stability under long-term conditions. After one month of storage, its relative stability remained above 70 %. The temperature stability demonstrated excellent results up to 60 °C. The colour index of the complex at 4 °C showed a colour change of 77 %, while at 25 °C, it decreased to 44 %. The antioxidant activity of the complex after 120 days of storage was over 60 %. Therefore, the complex has potential as a β-carotene delivery system in water-based functional foods.
Collapse
Affiliation(s)
- Antanas Straksys
- Department of Functional Materials and Electronics, State Research Institute, Center for Physical Sciences and Technology, Vilnius, Lithuania.
| | - Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Tatjana Kavleiskaja
- Department of Polymer Chemistry, Institute of Chemistry, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Neri LCM, Guðmundsson H, Meurrens G, Robert A, Fridjonsson OH, Hreggvidsson GO, Adalsteinsson BT. Identification and characterization of endo-xylanases from families GH10 and GH11 sourced from marine thermal environments. Enzyme Microb Technol 2025; 187:110592. [PMID: 40058278 DOI: 10.1016/j.enzmictec.2025.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 04/10/2025]
Abstract
Seaweed biomass is an underutilized resource that is rich in polysaccharides, including xylan. Seaweed polysaccharides could be used as a feedstock in industrial microbiology and and for production of prebiotic oligosaccharides and rare monosaccharides - processes that would benefit from the availability of robust enzymes that break down the seaweed polysaccharides. The present study aimed to identify genes encoding endo-xylanases in bacterial genomes and metagenomes sourced from marine thermal environments, and to characterize the respective enzymes. Twelve endo-xylanases were studied which displayed 59 % median maximal sequence similarity to characterized GH10 or GH11 enzymes. Overall, most of the enzymes functioned optimally at high temperatures, in the presence of salt, and at circumneutral pH. Eight enzymes functioned optimally at temperatures of 50°C or higher, and in the most extreme cases at 85°C to 95°C. Six enzymes retained activity after three-hour incubation at 60°C or higher. Ten enzymes displayed improved catalytic function in the presence of salt, and several retained high catalytic function at 10 % NaCl concentration. All the enzymes hydrolyzed xylan from diverse sources, including crude biomass. The study contributes to an increased understanding of the structural diversity of xylanases; it expands the availability of thermostable xylanases of marine origin; and contributes to increased valorization of seaweed biomass.
Collapse
Affiliation(s)
| | - Hörður Guðmundsson
- Matís Ohf, Food and Biotech R&D, Vínlandsleið 12, Reykjavík 113, Iceland
| | - Gaëlle Meurrens
- Université de Technologie de Compiègne, Compiègne 60203, France
| | - Amélie Robert
- Université de Technologie de Compiègne, Compiègne 60203, France
| | | | - Gudmundur Oli Hreggvidsson
- Matís Ohf, Food and Biotech R&D, Vínlandsleið 12, Reykjavík 113, Iceland; University of Iceland, Reykjavík, Iceland
| | - Bjorn Thor Adalsteinsson
- Matís Ohf, Food and Biotech R&D, Vínlandsleið 12, Reykjavík 113, Iceland; University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
3
|
Vasquez R, Song JH, Lee JS, Kim S, Kang DK. Heterologous expression and characterization of xylose-tolerant GH 43 family β-xylosidase/α-L-arabinofuranosidase from Limosilactobacillus fermentum and its application in xylan degradation. Front Bioeng Biotechnol 2025; 13:1564764. [PMID: 40129454 PMCID: PMC11931166 DOI: 10.3389/fbioe.2025.1564764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
The degradation of hemicellulose, including xylan, is an important industrial process as it provides cheap and sustainable source of economically valuable monosaccharides. β-xylosidases are key enzymes required for complete degradation of xylan and are used in the production of monosaccharides, such as xylose. In this study, we characterized a novel, xylose-tolerant β-xylosidase isolated from Limosilactobacillus fermentum SK152. Sequence analysis and protein structure prediction revealed that the putative β-xylosidase belongs to the glycoside hydrolase (GH) family 43 subfamily 11 and exhibits high homology with other characterised GH43 β-xylosidases from fungal and bacterial sources. The putative β-xylosidase was named LfXyl43. The catalytic residues of LfXyl43, which are highly conserved among GH 43 β-xylosidases, were predicted. To fully characterise LfXyl43, the gene encoding it was heterologously expressed in Escherichia coli. Biochemical characterisation revealed that the recombinant LfXyl43 (rLfXyl43) was active against artificial and natural substrates containing β-1,4-xylanopyranosyl residues, such as p-nitrophenyl-β-D-xylopyranoside (pNPX) and oNPX. Moreover, it demonstrated weak α-L-arabinofuranosidase activity. The optimal activity of rLfXyl43 was obtained at pH 7.0 at 35°C. rLfXyl43 could degrade xylo-oligosaccharides, such as xylobiose, xylotriose, and xylotetraose, and showed hydrolysing activity towards beechwood xylan. Moreover, rLfXyl43 demonstrated synergy with a commercial xylanase in degrading rye and wheat arabinoxylan. The activity of rLfXyl43 was not affected by the addition of metal ions, chemical reagents, or high concentrations of NaCl. Notably, rLfXyl43 exhibited tolerance to high xylose concentrations, with a K i value of 100.1, comparable to that of other xylose-tolerant GH 43 β-xylosidases. To our knowledge, this is the first β-xylosidase identified from a lactic acid bacterium with high tolerance to salt and xylose. Overall, rLfXyl43 exhibits great potential as a novel β-xylosidase for use in the degradation of lignocellulosic material, especially xylan hemicellulose. Its high activity against xylo-oligosaccharides, mild catalytic conditions, and tolerance to high xylose concentrations makes it a suitable enzyme for industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
4
|
Otero DM, Perret B, Teixeira L, Gautério GV, Treichel H, Kalil SJ. Cryptococcus laurentii: a wild yeast for xylanase production from agricultural by-products. Int Microbiol 2025; 28:437-445. [PMID: 38970730 DOI: 10.1007/s10123-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v-1) NaOH and then added in a concentration of 2% (w.v-1). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL-1 at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL-1). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.
Collapse
Affiliation(s)
- Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, 32 Araújo Pinho, Salvador, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Avenue Barão de Jeremoabo, Salvador, Brazil
| | - Bruno Perret
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| | - Liliane Teixeira
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| | - Gabrielle Vitória Gautério
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Avenue Athos da Silveira Ramos, Rio de Janeiro, 149, 2194, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, Erechim, Brazil.
| | - Susana Juliano Kalil
- School of Chemistry and Food, Federal University of Rio Grande, Avenue Italia Km 8, Rio Grande, Brazil
| |
Collapse
|
5
|
Pan J, Yan X, Jia S, Lv Z, Bian J, Rao J, Peng P, Ren J, Peng F. Design and fabrication of xylan-graft-poly (methyl methacrylate) thermoplastic via SARA ATRP. Int J Biol Macromol 2025; 294:139379. [PMID: 39755299 DOI: 10.1016/j.ijbiomac.2024.139379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Due to the emphasis on the environmental and health issues caused by petroleum-based plastics, renewable lignocellulosic materials emerge as promising substitutes. However, their practical application remains hindered by unsatisfactory properties such as fragility and sensitivity to water. Dealing with the challenge of non-thermal processing of xylan and addressing the issue of performance degradation resulting from the hygroscopicity of materials. In this work, the xylan-graft-poly (methyl methacrylate) (X-g-PMMA) copolymers with adjustable structure and properties were prepared via supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). Subsequently, xylan-g-PMMA plastic can be obtained by hot-press. The graft chain length and density were controlled by regulating the monomer concentration and the bromine content. The star-shaped structure of the polymer leads to a significant increase in both the mechanical strength and oxygen barrier properties of the plastic, with the strength at break and modulus reaching 48.35 ± 4.11 MPa and 23.0 ± 0.93 GPa, respectively, and the oxygen permeability reaching 0.389× 10-7 cm3 m m-2 day Pa. The plastic has good water resistance and light transmittance, making it possible to apply in packaging material. More importantly, this grafting method has been proven to be a potent tool for designing xylan-reinforced composites materials for various applications.
Collapse
Affiliation(s)
- Jing Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xueqing Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Siyu Jia
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Pai Peng
- Northwest A&F University, College of Forestry, Yangling 712100, Shaanxi, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2025; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Parsin S, Scherzinger M, Kaltschmitt M. Energy-Related Assessment of a Hemicellulose-First Concept-Debottlenecking of a Hydrothermal Wheat Straw Biorefinery. Molecules 2025; 30:602. [PMID: 39942706 PMCID: PMC11820640 DOI: 10.3390/molecules30030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
A hemicellulose-first approach can offer advantages for biorefineries utilizing wheat straw as it combines lignocellulose fractionation and potentially higher added value from pentose-based hemicellulose. Therefore, a tailored hydrothermal concept for the production of xylooligosaccharides and xylan was investigated. The focus was on assessing the energy requirements and potential improvements based on experimental results. The wheat straw pretreatment and the downstream processing of hemicellulose hydrolysate were modeled at a scale of 30,000 tons of wheat straw dry mass per year. The results confirmed that the hydrothermal concept can be implemented in an energy-efficient manner without the need for additional auxiliaries, due to targeted process design, heat integration and a high solids loading during hydrolysis. The resulting specific energy requirements for pretreatment and hydrolysate processing are 0.28 kWh/kg and 0.13 kWh/kg of wheat straw dry mass, respectively. Compared to thermal hydrolysate processing alone, the combination of a multi-effect evaporator and pressure-driven ultrafiltration can reduce the heating and cooling energy by 29% and 44%, respectively. However, the ultrafiltration requirements (e.g., electrical energy, membrane area and costs) depend heavily on the properties of the hydrolysate and its interactions with the membrane. This work can contribute to the commercially viable ramp-up of wheat straw multi-product biorefineries.
Collapse
Affiliation(s)
- Stanislav Parsin
- Institute of Environmental Technology and Energy Economics (IUE), Hamburg University of Technology (TUHH), Eissendorfer Strasse 40, 21073 Hamburg, Germany
| | | | | |
Collapse
|
8
|
Wang Q, Shao Y, Zhang T, Liu CL, Dong WS. One-Pot Conversion of Xylose to 1,2-Pentanediol Catalyzed by an Organic Acid-Assisted Pt/NC in Aqueous Phase. CHEMSUSCHEM 2025; 18:e202401109. [PMID: 38984507 DOI: 10.1002/cssc.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
The direct synthesis of 1,2-pentanediol (1,2-PeD) from renewable xylose and its derivatives derived from hemicellulose is appealing yet challenging due to its low selectivity for the target product. In this study, one-pot catalytic conversion of xylose to 1,2-PeD was performed by using nitrogen-doped carbon (NC) supported Pt catalysts with the assistance of organic acids. A remarkable yield of 49.3 % for 1,2-PeD was achieved by reacting 0.1869 g xylose in 30 mL water at 200 °C under a hydrogen pressure of 3 MPa for 8 h in the presence of 0.1 g of 2.5Pt/NC600 catalyst and 0.1869 g propanoic acid co-catalyst. The presence of vicinal Pt-acid pair sites on the surface of the 2.5Pt/NC600 catalyst exhibited a synergistic effect in promoting the hydrogenation of furfural (FF) to furfuryl alcohol (FFA) intermediate and subsequent hydrogenation and ring-opening reactions leading to the formation of 1,2-PeD. The addition of organic acids, may serve as both acid catalyst for dehydration of xylose and hydrogen donor for hydrogenation of FF and FFA, thereby promoting the one-pot conversion of xylose to 1,2-PeD. Remarkably, the 2.5Pt/NC600 catalyst demonstrated outstanding catalytic performance and good reusability over five consecutive cycles without significant deactivation.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yongjie Shao
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Tianyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chun-Ling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wen-Sheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
9
|
Puja BK, Mallick S, Dey T, Chanda S, Ghosh S. Xylooligosaccharide recovery from sugarcane bagasse using β-xylosidase-less xylanase, BsXln1, produced by Bacillus stercoris DWS1: Characterization, antioxidant potential and influence on probiotics growth under anaerobic conditions. Int J Biol Macromol 2024; 285:138307. [PMID: 39631576 DOI: 10.1016/j.ijbiomac.2024.138307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Xylooligosaccharides (XOS) are excellent prebiotic which improve health through selective modulation of beneficial gut microbiome. Its production from agroresidues using microbial xylanase is considered as sustainable and economic approach. In this study a xylanase producing bacterium isolated from decaying wood soil was phylogenetically identified and designated as Bacillus stercoris DWS1. Xylanase (BsXln1) purified from the bacterium had pH and temperature optima of 7 and 37-60 °C, respectively, and it retained 85 % activity upon preincubation at 60 °C for 40 min. Indicating its moderate thermostability. Zymogram analysis of partially purified BsXln1 revealed its molecular weight of ~35 kDa. B. stercoris DWS1 produced 200 U mL-1 of BsXln1 in presence of 1.5 % sugarcane bagasse (SCB) as carbon source; which was enhanced to 591 U mL-1 through optimization of cultural conditions. Xylan extracted from SCB was morphologically and structurally characterized, and then depolymerized by BsXln1 to yield XOS (400 mg g-1). Analysis of purified XOS by TLC, followed by ESI-MS showed predominance of xylobiose and xylotriose. XOS exhibited in vitro antioxidant activities against DPPH and ABTS free radicals, however, it had limited prebiotic activity on Lactobacillus plantarum and Lactobacillus fermentum under anaerobic condition. In conclusion, the xylanase, BsXln1, produced by B. stercoris DWS1 can be used in food industries for efficient production of bioactive XOS from agroresidues.
Collapse
Affiliation(s)
- B K Puja
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Satarupa Mallick
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Taniya Dey
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Subhasmita Chanda
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
10
|
Vuong TV, Aghajohari M, Feng X, Woodstock AK, Nambiar DM, Sleiman ZC, Urbanowicz BR, Master ER. Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials. JACS AU 2024; 4:4044-4065. [PMID: 39610758 PMCID: PMC11600177 DOI: 10.1021/jacsau.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.
Collapse
Affiliation(s)
- Thu V. Vuong
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mohammad Aghajohari
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Xuebin Feng
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Amanda K. Woodstock
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Deepti M. Nambiar
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Zeina C. Sleiman
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
11
|
Cui C, Xu J, Wu J, Wang N, Zhang Z, Zhou C. Improving the Catalytic Properties of Xylanase from Alteromones Macleadii H35 Through Sequence Analysis. Appl Biochem Biotechnol 2024; 196:7736-7746. [PMID: 38538873 DOI: 10.1007/s12010-024-04936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 12/14/2024]
Abstract
Endo-1,4-β-xylanase is a key xylanolytic enzyme, and our study aimed to enhance the catalytic properties of Alteromones Macleadii xylanase (Xyn ZT-2) through sequence-guided design approach. Analysis of the amino acid sequence revealed highly conserved residues near the active site, with few differences. Introducing various mutations allowed us to modify the enzyme's catalytic performance. Particularly, the A152G mutation led to a 9.8-fold increase in activity and a 23.2-fold increase in catalytic efficiency. Moreover, A152G exhibited an optimal temperature of 65 °C, 20 °C higher than that of Xyn ZT-2, while the T287S mutant showed a 4.9-fold increase in half-life. These results underscore the role of amino acid evolution in shaping xylanase catalysis. Through targeted sequence analysis and a focused mutation library, we effectively improved catalytic performance, providing a straightforward approach for enhancing enzyme efficiency.
Collapse
Affiliation(s)
- Caixia Cui
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China.
| | - Jia Xu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
- School of Medical Laboratory Medicine, SanQuan Medical College, Xinxiang, 453003, People's Republic of China
| | - Juntao Wu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Ningning Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Zhao Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Chenyan Zhou
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China.
| |
Collapse
|
12
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
13
|
Li Q, Jin X, Coyne B, Xiang Z. Highly Bioadaptive Scaffolds with Tuned Porous Structure Templated by Xylan Nanocrystal High Internal Phase Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22202-22210. [PMID: 39388525 DOI: 10.1021/acs.langmuir.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fabrication of traditional 3D cell culturing scaffolds requires synthetic polymers or additives, posing a risk of poor biocompatibility and low biodegradability. Pickering emulsions stabilized by biobased nanomaterials can be used as templates to produce scaffolds with facile tunable porous structure, excellent cytocompatibility, and biodegradability. In this study, very stable high internal phase Pickering emulsions (HIPPE) with an oil content of 80% were successfully prepared by xylan hydrate nanocrystals (XNC). The HIPPE can exist stably for more than 30 days, exhibiting a high viscosity. By adding cellulose nanofibers (CNF) and removing the oil phase, scaffolds with a tuned porous structure and enhanced cell culturing ability were successfully fabricated. In the HIPPE templated scaffolds with XNC/CNF, XNC plays a major role in stabilizing the emulsions, while CNF improves the mechanical properties of the scaffolds, both of which are vital to the successful fabrication of the scaffolds. Compared with non-HIPPE templated scaffolds, the HIPPE templated scaffold had a higher porosity and a higher median pore size. The HIPPE templated scaffold was able to maintain 80% cell activity and showed an excellent cytocompatibility. The HIPPE templated scaffolds consisting of XNC and CNF demonstrate great potential in 3D cell culturing for medical purpose.
Collapse
Affiliation(s)
- Qianlong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuchen Jin
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Ben Coyne
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Nguyen TTH, Vuong TQ, Han HL, Kim SG. Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov., marine anaerobic laminarin and xylan degraders in the phylum Bacteroidota. Sci Rep 2024; 14:24329. [PMID: 39414901 PMCID: PMC11484911 DOI: 10.1038/s41598-024-74787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The bacterial group of the phylum Bacteroidota greatly contributes to the global carbon cycle in marine ecosystems through its specialized ability to degrade marine polysaccharides. In this study, it is proposed that two novel facultative anaerobic strains, DS1-an-13321T and DS1-an-2312T, which were isolated from a sea squirt, represent a novel genus, Halosquirtibacter, with two novel species in the family Prolixibacteraceae. The 16S rRNA sequence similarities of these two strains were 91.26% and 91.37%, respectively, against Puteibacter caeruleilacunae JC036T, which is the closest recognized neighbor. The complete genomes of strains DS1-an-13321T and DS1-an-2312T each consisted of a single circular chromosome with a size of 4.47 and 5.19 Mb, respectively. The average amino acid identity and the percentage of conserved proteins against the type species of the genera in the family Prolixibacteraceae ranged from 48.33 to 52.35% and 28.34-37.37%, respectively, which are lower than the threshold for genus demarcation. Strains DS1-an-13321T and DS1-an-2312T could grow on galactose, glucose, maltose, lactose, sucrose, laminarin, and starch, and only DS1-an-2312T could grow on xylose and xylan under fermentation conditions. These strains produced acetic acid and propionic acid as the major fermentation products. Genome mining of the genomes of the two strains revealed 27 and 34 polysaccharide utilization loci, which included 155 and 249 carbohydrate-active enzymes (CAZymes), covering 57 and 65 CAZymes families, respectively. The laminarin-degrading enzymes in both strains were cell-associated, and showed exo-hydrolytic activity releasing glucose as a major product. The xylan-degrading enzymes of strain DS1-an-2312T was also cell-associated, and had endo-hydrolytic activities, releasing xylotriose and xylotetraose as major products. The evidence from phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of a novel genus with two novel species in the family Prolixibacteraceae, for which the names Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov. are proposed. The type strain of Halosquirtibacter laminarini is DS1-an-13321T (= KCTC 25031T = DSM 115329T) and the type strain of Halosquirtibacter xylanolyticus is DS1-an-2312T (= KCTC 25032T = DSM 115328T).
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Phacogen Institute of Technology, B4 building, Pham Ngoc Thach street, Kim Lien, Dong Da district, Hanoi, 10700, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Liang B, Yang J, Meng CF, Zhang YR, Wang L, Zhang L, Liu J, Li ZC, Cosnier S, Liu AH, Yang JM. Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia. Nat Commun 2024; 15:8764. [PMID: 39384563 PMCID: PMC11464693 DOI: 10.1038/s41467-024-53129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen-Fei Meng
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ya-Ru Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lu Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jia Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhen-Chao Li
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Serge Cosnier
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- DCM UMR 5250, Université Grenoble-Alpes, F-38000 Grenoble, France; Departement de Chimie ́Moleculaire, UMR CNRS, DCM UMR 5250, F-38000, Grenoble, France.
| | - Ai-Hua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| | - Jian-Ming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Hamzah O, Vandenbrouck T, Heux L, Jean B. Insight into the hydrophobic functionalization of cellulose microfibrils using the Passerini three-component reaction. Carbohydr Polym 2024; 341:122323. [PMID: 38876724 DOI: 10.1016/j.carbpol.2024.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
The aqueous catalyst-free one-pot Passerini 3-component reaction (P-3CR) was employed for the functionalization of dialdehyde cellulose (DAC) derived from the periodate oxidation of microfibrillated cellulose (MFC) with insights provided by 13C and 15N CP-MAS NMR and FTIR analyses. The kinetics of the P-3CR revealed rapid progress within the initial 2 h, reaching a plateau between 6 and 18 h. The reaction achieved a maximum degree of substitution (DS) with only 1 equivalent of carboxylic acid and isocyanide with respect to the number of aldehydes, therefore demonstrating the atom economy character of the P-3CR performed on MFC. Variable DS values (0.08 to 0.37) were achieved by altering the degree of oxidation of DAC (ranging from 0.48 to 1.1) when reacted with heptanoic acid and tert-butyl isocyanide. Additionally, aliphatic chain lengths of carboxylic acids from C4 to C11 were successfully used for the functionalization of DAC with distinct hydrophobic chains. Furthermore, while cosolvents negatively affected the DS when using heptanoic acid, a significant increase was observed in the case of undecanoic acid due to an improved solubility of the reagent. The aqueous medium P-3CR can thus be considered a versatile tool to tailor the functionalization of MFC and provide it with hydrophobicity.
Collapse
Affiliation(s)
- Oussama Hamzah
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | | - Laurent Heux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France.
| |
Collapse
|
17
|
Fröhlich AC, Caon NB, Parize AL. Magnetic hydrogel based on xylan, poly (acrylic acid), and maghemite as adsorbent material for methylene blue adsorption: experimental design, kinetic, and isotherm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53598-53610. [PMID: 37964143 DOI: 10.1007/s11356-023-30845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
A magnetic hydrogel based on xylan (X), poly (acrylic acid), and maghemite (γ-Fe2O3) named HXA-Fe2O3 was synthesized, characterized, and applied as an alternative material to remove methylene blue (MB) from aqueous media by adsorption. Maghemite was synthesized by coprecipitation method and later incorporated in the hydrogel matrix synthesized by free radical polymerization. The characterization studies included FTIR, DSC, XRD, VSM, Zeta Potential, TGA, SEM, TEM, and N2 adsorption isotherms (BET). The physicochemical characterization results confirmed the intended synthesis and showed the compositional, thermal, structural, morphological, textural, and magnetic profile of the materials. The adsorption studies included experimental design, kinetic, and isotherm. A full factorial design was employed considering the factors adsorbent dosage (g L-1), pH, and ionic strength (mmol L-1 of NaCl) for adsorption capacity and removal percentage responses. As ionic strength was not significant, a Doehlert design was employed with adsorbent dosage and pH, indicating the optimal adsorption conditions. The kinetics was well described by the PSO model, while the isotherm obeyed the Sips model. Equilibrium was attained at 60 min, and the maximum experimental adsorption capacity was up to 250.26 mg g-1 at pH 8.5, adsorbent dosage of 0.2 g L-1, and 298 K. These findings show that the magnetic hydrogel produced has great potential to be applied in the adsorption of basic molecules, such as MB.
Collapse
Affiliation(s)
- Andressa Cristiana Fröhlich
- POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department, Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-88040-900, Florianópolis, Brazil
| | - Natália Bruzamarello Caon
- POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department, Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-88040-900, Florianópolis, Brazil
| | - Alexandre Luis Parize
- POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department, Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-88040-900, Florianópolis, Brazil.
| |
Collapse
|
18
|
Zhou S, Zhou X, Hua X, Yong Q, Liu D, Xu Y. Advances and prospection in preparations, bio-actives and applications of functional xylo-oligosaccharide. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 60:103297. [DOI: 10.1016/j.bcab.2024.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Silva JM, Vilela C, Girão AV, Branco PC, Martins J, Freire MG, Silvestre AJD, Freire CSR. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging. Carbohydr Polym 2024; 337:122112. [PMID: 38710545 DOI: 10.1016/j.carbpol.2024.122112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024]
Abstract
The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.
Collapse
Affiliation(s)
- José M Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Violeta Girão
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro C Branco
- RAIZ - Instituto de Investigação da Floresta e Papel, 3800-783 Eixo, Aveiro, Portugal
| | - João Martins
- Biotek S.A., 6030-223 Vila Velha de Ródão, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Liu X, Xie J, Jacquet N, Blecker C. Valorization of Grain and Oil By-Products with Special Focus on Hemicellulose Modification. Polymers (Basel) 2024; 16:1750. [PMID: 38932097 PMCID: PMC11207775 DOI: 10.3390/polym16121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Hemicellulose is one of the most important natural polysaccharides in nature. Hemicellulose from different sources varies in chemical composition and structure, which in turn affects the modification effects and industrial applications. Grain and oil by-products (GOBPs) are important raw materials for hemicellulose. This article reviews the modification methods of hemicellulose in GOBPs. The effects of chemical and physical modification methods on the properties of GOBP hemicellulose biomaterials are evaluated. The potential applications of modified GOBP hemicellulose are discussed, including its use in film production, hydrogel formation, three-dimensional (3D) printing materials, and adsorbents for environmental remediation. The limitations and future recommendations are also proposed to provide theoretical foundations and technical support for the efficient utilization of these by-products.
Collapse
Affiliation(s)
| | | | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2B, B-5030 Gembloux, Belgium; (X.L.); (J.X.)
| |
Collapse
|
21
|
Chen Y, Dai J, Shen X, Shan J, Cao Y, Chen T, Ying H, Zhu C, Li M. Xylan cinnamoylation for reinforcing poly (butylene adipate-co-terephthalate): Molecule design and interaction optimization. Carbohydr Polym 2024; 326:121592. [PMID: 38142090 DOI: 10.1016/j.carbpol.2023.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/25/2023]
Abstract
PBAT composites with biomass fillers have gained considerable attention as alternatives to non-biodegradable plastics. This work employed xylan derivatives as fillers for PBAT composites. Xylan was modified by introducing cinnamoyl side groups which limit the hydrogen bonding and construct π-π stacking interactions with PBAT chains. The resultant xylan cinnamates (XCi) show degree of substitution (DS) of 0.55-1.89, glass-transition temperatures (Tg) of 146.5-175.0 °C and increased hydrophobicity, which can be simply controlled by varying the molar ratio of reactants. NMR results demonstrate that the C3-OH of xylopyranosyl unit is more accessible to cinnamoylation. XCi fillers (30-50 wt%) were incorporated into PBAT through melt compounding. The filler with a DS of 0.97 exhibited the optimal reinforcing effect, showing superior tensile strength (19.4 MPa) and elongation at break (330.9 %) at a high filling content (40 wt%), which is even beyond the neat PBAT. SEM and molecular dynamics simulation suggest improved compatibility and strengthened molecular interaction between XCi and PBAT, which explains the suppressed melting/crystallization behavior, the substantial increase in Tg (-34.5 → -1.8 °C) and the superior mechanical properties of the composites. This research provides valuable insights into the preparation of high-performance composites by designing the molecular architecture of xylan and optimizing the associated interactions.
Collapse
Affiliation(s)
- Yanjun Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing 211816, China
| | - Jie Dai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junqiang Shan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yulian Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tianpeng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing 211816, China.
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; National Engineering Research Center for Biotechnology, Nanjing 211816, China.
| |
Collapse
|
22
|
Parsin S, Kaltschmitt M. Processing of hemicellulose in wheat straw by steaming and ultrafiltration - A novel approach. BIORESOURCE TECHNOLOGY 2024; 393:130071. [PMID: 38000637 DOI: 10.1016/j.biortech.2023.130071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Water-soluble xylans useable for many potential applications can be produced based on the hydrolysis of wheat straw within a fixed bed using saturated steam to provide a xylan-rich hydrolysate low in particles and lignin enabling an effective ultrafiltration and xylan separation. Under defined conditions (180 °C, 10 bar, 35 min), a degree of solubilization of 29.6 % for straw and of 63 % for hemicellulose is achieved. The dry mass of the resulting hydrolysate consists of at least 58 % xylose and arabinose. The xylose is mainly (87 %) present in non-monomeric form and appears to have a broad molecular weight distribution. Ultrafiltration with commercial membranes (4 to 50 kDa) is being investigated for the separation of the target fraction; here significant differences in the filtration behavior and rejections from 9 to 81 % for carbohydrates and from 13 to 48 % for phenolic compounds (lignin), respectively, are found.
Collapse
Affiliation(s)
- Stanislav Parsin
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany.
| | - Martin Kaltschmitt
- Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany
| |
Collapse
|
23
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
24
|
Jiang D, Wang M, Zhao X, Lu X, Zong H, Zhuge B. Glycerol Production from Undetoxified Lignocellulose Hydrolysate by a Multiresistant Engineered Candida glycerinogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1630-1639. [PMID: 38194497 DOI: 10.1021/acs.jafc.3c05818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Glycerol is an important platform compound with multidisciplinary applications, and glycerol production using low-cost sugar cane bagasse hydrolysate is promising. Candida glycerinogenes, an industrial yeast strain known for its high glycerol production capability, has been found to thrive in bagasse hydrolysate obtained through a simple treatment without detoxification. The engineered C. glycerinogenes exhibited significant resistance to furfural, acetic acid, and 3,4-dimethylbenzaldehyde within undetoxified hydrolysates. To further enhance glycerol production, genetic modifications were made to Candida glycerinogenes to enhance the utilization of xylose. Fermentation of undetoxified bagasse hydrolysate by CgS45 resulted in a glycerol titer of 40.3 g/L and a yield of 40.4%. This process required only 1 kg of bagasse to produce 93.5 g of glycerol. This is the first report of glycerol production using lignocellulose, which presents a new way for environmentally friendly industrial production of glycerol.
Collapse
Affiliation(s)
- Dongqi Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengying Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaohong Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Zhang M, Li Q, Qi H, Xiang Z. Significantly improve film formability of acetylated xylans by structure optimization and solvent screening. Int J Biol Macromol 2024; 256:128523. [PMID: 38040163 DOI: 10.1016/j.ijbiomac.2023.128523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Acetylated xylans have great potential in fabricating functional film and coating materials, which need a good solubility/dispersibility and film formability in an easily evaporable solvent. However, the changes of film formability with degree of substitution by acetyls (DSAc) in different solvent systems for xylans have not been extensively studied, which limit the application of acetylated xylans in film materials. In this study, acetylated xylans with DSAc of 0-2 were prepared and the effects of acetyl groups on solubility/dispersibility, crystallinity and film formability of xylans in water and chloroform solvent systems were investigated. Due to the change of polarity, xylans with DSAc of 0-0.62 are only soluble in water solvents, while xylans with DSAc of 1.13-2 are only soluble in chloroform/ethanol (70/30 v/v) organic solvents. We have found that the film formability of acetylated xylans is highly related to their solubility and crystallization. Film formable xylans all had good solubility in the cast solvents. However, although with good solubility, xylans with DSAc of 0-0.3 and DSAc of 1.76-2 cannot form intact films, which is due to the forming of xylan hydrate crystals and xylan diacetate crystals. With the increase of DSAc, the mechanical property of xylan film increases initially at low DSAc and decreases at high DSAc. This study provides theoretical basis for applying xylans and their derivatives in advanced functional film and coating materials with great biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Mingquan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qianlong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Zhao F, Yu CM, Sun HN, Zhao LS, Ding HT, Cao HY, Chen Y, Qin QL, Zhang YZ, Li PY, Chen XL. A novel class of xylanases specifically degrade marine red algal β1,3/1,4-mixed-linkage xylan. J Biol Chem 2023; 299:105116. [PMID: 37524130 PMCID: PMC10470212 DOI: 10.1016/j.jbc.2023.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Xylans are polysaccharides composed of xylose and include β1,4-xylan, β1,3-xylan, and β1,3/1,4-mixed-linkage xylan (MLX). MLX is widely present in marine red algae and constitutes a significant organic carbon in the ocean. Xylanases are hydrolase enzymes that play an important role in xylan degradation. While a variety of β1,4-xylanases and β1,3-xylanases involved in the degradation of β1,4-xylan and β1,3-xylan have been reported, no specific enzyme has yet been identified that degrades MLX. Herein, we report the characterization of a new MLX-specific xylanase from the marine bacterium Polaribacter sp. Q13 which utilizes MLX for growth. The bacterium secretes xylanases to degrade MLX, among which is Xyn26A, an MLX-specific xylanase that shows low sequence similarities (<27%) to β1,3-xylanases in the glycoside hydrolase family 26 (GH26). We show that Xyn26A attacks MLX precisely at β1,4-linkages, following a β1,3-linkage toward the reducing end. We confirm that Xyn26A and its homologs have the same specificity and mode of action on MLX, and thus represent a new xylanase group which we term as MLXases. We further solved the structure of a representative MLXase, AlXyn26A. Structural and biochemical analyses revealed that the specificity of MLXases depends critically on a precisely positioned β1,3-linkage at the -2/-1 subsite. Compared to the GH26 β1,3-xylanases, we found MLXases have evolved a tunnel-shaped cavity that is fine-tuned to specifically recognize and hydrolyze MLX. Overall, this study offers a foremost insight into MLXases, shedding light on the biochemical mechanism of bacterial degradation of MLX.
Collapse
Affiliation(s)
- Fang Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chun-Mei Yu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hai-Ning Sun
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hai-Tao Ding
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
| | - Hai-Yan Cao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Qi-Long Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping-Yi Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Li Y, Peng HQ, Yang LQ. Structural determinants underlying high-temperature adaptation of thermophilic xylanase from hot-spring microorganisms. Front Microbiol 2023; 14:1210420. [PMID: 37485531 PMCID: PMC10360402 DOI: 10.3389/fmicb.2023.1210420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Thermophilic xylanases from hot-spring microorganisms play potential biological and industrial applications for renewable and sustainable social development. However, high-temperature adaptation mechanisms of these thermophilic xylanases remain elusive at the molecular and evolutionary levels. Here, two recently reported xylanases, named XynDRTY1 and XynM1, from hot springs were subjected to molecular dynamics (MD) simulations at a series of temperature gradients and comparatively analyzed in comparison with the evolutionary background of the xylanase family. Comparative analysis of MD trajectories revealed that the XynM1 exhibits smaller structural dynamics and greater thermal stability than the XynDRTY1, although both share a similar fold architecture with structural differences in the βα_loops. Local regions whose conformational flexibility and regular secondary structure exhibited differences as temperature increases were closely related to the high-temperature adaptation of xylanase, implying that stabilization of these regions is a feasible strategy to improve the thermal stability of xylanases. Furthermore, coevolutionary information from the xylanase family further specified the structural basis of xylanases. Thanks to these results about the sequence, structure, and dynamics of thermophilic xylanases from hot springs, a series of high-temperature-related structural determinants were resolved to promote understanding of the molecular mechanism of xylanase high-temperature adaptation and to provide direct assistance in the improvement of xylanase thermal stability.
Collapse
Affiliation(s)
- Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, China
- College of Agriculture and Biological Science, Dali University, Dali, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China
| | - Hong-Qian Peng
- College of Mathematics and Computer Science, Dali University, Dali, China
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, China
| |
Collapse
|
28
|
Barssoum R, Al Kassis G, Nassereddine R, Saad J, El Ghoul M, Abboud J, Fayad N, Dupoiron S, Cescut J, Aceves-Lara CA, Fillaudeau L, Awad MK. Biochemical limitations of Bacillus thuringiensis based biopesticides production in a wheat bran culture medium. Res Microbiol 2023; 174:104043. [PMID: 36764472 DOI: 10.1016/j.resmic.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Bacillus thuringiensis, a gram-positive sporulating bacteria found in the environment, produces, during its sporulation phase, crystals responsible for its insecticidal activity, constituted of an assembly of pore-forming δ-endotoxins. This has led to its use as a biopesticide, an eco-friendly alternative to harmful chemical pesticides. To minimize production cost, one endemic Bacillus thuringiensis sv. kurstaki (Btk) strain Lip, isolated from Lebanese soil, was cultivated in a wheat bran (WB) based medium (IPM-4-Citrus project EC n° 734921). With the aim of studying the biochemical limitations of Btk biopesticide production in a wheat bran based medium, the WB was sieved into different granulometries, heat treated, inoculated with Btk Lip at flask scale, then filtered and separated into an insoluble and a permeate fractions. Several biochemical analyses, ie. bio performances, starch, elemental composition, total nitrogen and ashes, were then conducted on both fractions before and after culture. On a morphological level, two populations were distinguished, the fine starch granules and the coarse lignocellulosic particles. The biochemical analyses showed that both the raw and sieved WB have a similar proteins content (0.115 g/gdm WB), water content (0.116 g/gdm WB) and elemental composition (carbon: 45%, oxygen: 37%, nitrogen: 3%, hydrogen: 6%, ashes: 5%). The starch content was 17%, 14% and 34% and the fermentable fraction was estimated to 32.1%, 36.1% and 51.1% respectively for classes 2, 3 and 4. Both the elemental composition and Kjeldahl analyses showed that the nitrogen is the limiting nutrient of the culture.
Collapse
Affiliation(s)
- Rita Barssoum
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Gabrielle Al Kassis
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Rayan Nassereddine
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Jihane Saad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Meriem El Ghoul
- Pharmacological Laboratory Médis, Route de Tunis Km 7-BP 206, Nabeul 8000, Tunisia.
| | - Joanna Abboud
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Nancy Fayad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon.
| | - Stéphanie Dupoiron
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Julien Cescut
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - César Arturo Aceves-Lara
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Luc Fillaudeau
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Mireille Kallassy Awad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| |
Collapse
|
29
|
Kuznetsov BN, Chudina AI, Kazachenko AS, Fetisova OY, Borovkova VS, Vorobyev SA, Karacharov AA, Gnidan EV, Mazurova EV, Skripnikov AM, Taran OP. Fractionation of Aspen Wood to Produce Microcrystalline, Microfibrillated and Nanofibrillated Celluloses, Xylan and Ethanollignin. Polymers (Basel) 2023; 15:2671. [PMID: 37376317 DOI: 10.3390/polym15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A new method for extractive-catalytic fractionation of aspen wood to produce microcrystalline (MCC), microfibrillated (MFC), nanofibrilllated (NFC) celluloses, xylan, and ethanollignin is suggested in order to utilize all of the main components of wood biomass. Xylan is obtained with a yield of 10.2 wt.% via aqueous alkali extraction at room temperature. Ethanollignin was obtained with a yield of 11.2 wt.% via extraction with 60% ethanol from the xylan-free wood at 190 °C. The lignocellulose residue formed after the extraction of xylan and ethanollignin was subjected to catalytic peroxide delignification in the acetic acid-water medium at 100 °C in order to obtain microcrystalline cellulose. MCC is hydrolyzed with 56% sulfuric acid and treated with ultrasound to produce microfibrillated cellulose and nanofibrillated cellulose. The yields of MFC and NFC were 14.4 and 19.0 wt.%, respectively. The average hydrodynamic diameter of NFC particles was 36.6 nm, the crystallinity index was 0.86, and the average zeta-potential was 41.5 mV. The composition and structure of xylan, ethanollignin, cellulose product, MCC, MFC, and NFC obtained from aspen wood were characterized using elemental and chemical analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, Gas chromatography (GC), Gel permeation-chromatography (GPC), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Dynamic light scattering (DLS), Thermal gravimetric analysis (TGA).
Collapse
Affiliation(s)
- Boris N Kuznetsov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Anna I Chudina
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Aleksandr S Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Olga Yu Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Valentina S Borovkova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Sergei A Vorobyev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Anton A Karacharov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Elena V Gnidan
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Elena V Mazurova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Andrey M Skripnikov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Oxana P Taran
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
30
|
Wang R, Zhang Y, Liu L, Yang J, Yuan H. Discovery of a bifunctional xylanolytic enzyme with arabinoxylan arabinofuranohydrolase-d3 and endo-xylanase activities and its application in the hydrolysis of cereal arabinoxylans. Microb Biotechnol 2023. [PMID: 37096984 DOI: 10.1111/1751-7915.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Xylanolytic enzymes, with both endo-xylanase and arabinoxylan arabinofuranohydrolase (AXH) activities, are attractive for the economically feasible conversion of recalcitrant arabinoxylan. However, their characterization and utilization of these enzymes in biotechnological applications have been limited. Here, we characterize a novel bifunctional enzyme, rAbf43A, cloned from a bacterial consortium that exhibits AXH and endo-xylanase activities. Hydrolytic pattern analyses revealed that the AXH activity belongs to AXHd3 because it attacked only the C(O)-3-linked arabinofuranosyl residues of double-substituted xylopyranosyl units of arabinoxylan and arabinoxylan-derived oligosaccharides, which are usually resistant to hydrolysis. The enzyme rAbf43A also liberated a series of xylo-oligosaccharides (XOSs) from beechwood xylan, xylohexaose and xylopentaose, indicating that rAbf43A exhibited endo-xylanase activity. Homology modelling based on AlphaFold2 and site-directed mutagenesis identified three non-catalytic residues (H161, A270 and L505) located in the substrate-binding pocket essential for its dual-functionality, while the mutation of A117 located in the -1 subsite to the proline residue only affected its endo-xylanase activity. Additionally, rAbf43A showed significant synergistic action with the bifunctional xylanase/feruloyl esterase rXyn10A/Fae1A from the same bacterial consortium on insoluble wheat arabinoxylan and de-starched wheat bran degradation. When rXyn10A/Fae1A was added to the rAbf43A pre-hydrolyzed reactions, the amount of released reducing sugars, xylose and ferulic acid increased by 9.43% and 25.16%, 189.37% and 93.54%, 31.39% and 32.30%, respectively, in comparison with the sum of hydrolysis products released by each enzyme alone. The unique characteristics of rAbf43A position it as a promising candidate not only for designing high-performance enzyme cocktails but also for investigating the structure-function relationship of GH43 multifunctional enzymes.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Ratthiwal J, Lazaro N, Pineda A, Esposito R, ALOthman ZA, Reubroycharoen P, Luque R. Furfural conversion over calcined Ti and Fe metal-organic frameworks under continuous flow conditions. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
|
32
|
Song Y, Lee YG, Ahn YS, Nguyen DT, Bae HJ. Utilization of bamboo as biorefinery feedstock: Co-production of xylo-oligosaccharide with succinic acid and lactic acid. BIORESOURCE TECHNOLOGY 2023; 372:128694. [PMID: 36731613 DOI: 10.1016/j.biortech.2023.128694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Herein, we investigated the possibility of co-producing xylo-oligosaccharides (XOSs) from bamboo, as value-added products, along with succinic and lactic acids, as platform chemicals. Xylan was extracted from bamboo using the alkali method under mild conditions. From xylan, XOSs were produced by partial enzymatic hydrolysis at a conversion rate of 83.9%, and all reaction conditions resulted in similar degrees of polymerization. Hydrogen peroxide-acetic acid (HPAC) pretreatment effectively removed lignin from NaOH-treated bamboo, and the enzymatic hydrolytic yield of NaOH and HPAC-treated bamboo was 84.3% of the theoretical yield. The production of succinic and lactic acids from the hydrolysate resulted in conversion rates of approximately 63.2% and 91.3% of the theoretical yield using Corynebacterium glutamicum Δldh and Actinobacillus succinogenes, respectively, under facultative anaerobic conditions. This study demonstrates that bamboo has a high potential to produce value-added products using a biorefinery process and is an alternative resource for compounds typically derived from petroleum.
Collapse
Affiliation(s)
- Younho Song
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yoon Gyo Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Young Sang Ahn
- Department of Forest Resources, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
33
|
da Cruz Filho IJ, de Souza TP, dos Anjos Santos CÁ, de Morais Araújo MA, de Oliveira Moraes Miranda JF, de Oliveira Queirós ME, Filho DJNC, da Conceição Alves de Lima A, Marques DSC, do Carmo Alves de Lima M. Xylans extracted from branches and leaves of Protium puncticulatum: antioxidant, cytotoxic, immunomodulatory, anticoagulant, antitumor, prebiotic activities and their structural characterization. 3 Biotech 2023; 13:93. [PMID: 36845077 PMCID: PMC9944590 DOI: 10.1007/s13205-023-03506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
This work aimed to isolate and characterize xylans from branches and leaves of Protium puncticulatum, in addition to evaluating its in vitro biological and prebiotic potential. The results showed that the chemical structure of the obtained polysaccharides is similar being classified as homoxylans. The xylans presented an amorphous structure, in addition to being thermally stable and presenting a molecular weight close to 36 g/mol. With regard to biological activities, it was observed that xylans were able to promote low antioxidant activity (< 50%) in the different assays evaluated. The xylans also showed no toxicity against normal cells, in addition to being able to stimulate cells of the immune system and showing promise as anticoagulant agents. In addition to presenting promising antitumor activity in vitro. In assays of emulsifying activity, xylans were able to emulsify lipids in percentages below 50%. Regarding in vitro prebiotic activity, xylans were able to stimulate and promote the growth of different probiotics. Therefore, this study, in addition to being a pioneer, contributes to the application of these polysaccharides in the biomedical and food areas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03506-1.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | - Thammyris Pires de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | | | | | | | | | | | | | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, 50.670-420, Recife,, Pernambuco Brazil
| |
Collapse
|
34
|
Lv Z, Rao J, Lü B, Chen G, Hao X, Guan Y, Bian J, Peng F. Microencapsulated phase change material via Pickering emulsion based on xylan nanocrystal for thermoregulating application. Carbohydr Polym 2023; 302:120407. [PMID: 36604078 DOI: 10.1016/j.carbpol.2022.120407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Phase change materials (PCM) are promising for thermal regulation and energy storage, but suffer from the deformation and leakage of capsules. Herein, inspired by cellulose nanocrystal (CNC), xylan nanocrystal (XNC) with a dimension of 25-60 nm was successfully prepared through oxalic acid hydrolysis of high-crystalline xylan as raw materials via a top-down approach. With the introduction of hydrophobic groups, compared to XNC, succinylated XNC showed more remarkable emulsifying property over 7 days of storage at room temperature. Microencapsulated PCM composite consisting of sodium alginate (SA) as "matrix" and succinylated xylan nanocrystal (XNC) stabilized paraffin-based Pickering capsule (PCM beads) as "core" was facilely fabricated. PCM composite with the latent heat of 105.59 J·g-1 showed excellent thermoregulating performance. Our work suggests a new pathway toward sustainability of hemicelluloses in the application of food emulsion and thermal energy management.
Collapse
Affiliation(s)
- Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Ying Guan
- Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Di J, Li Q, Ma C, He YC. An efficient and sustainable furfurylamine production from biomass-derived furfural by a robust mutant ω-transaminase biocatalyst. BIORESOURCE TECHNOLOGY 2023; 369:128425. [PMID: 36470494 DOI: 10.1016/j.biortech.2022.128425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Furfurylamine is a key furan-based compound for manufacturing perfumes, fibers, additives, medicines and agrochemicals. It can be obtained by amination of furfural by ω-transaminase (AtAT) from Aspergillus terreus. In this work, site-directed mutant of amino acid residues [Threonine (T) at AT130 was mutated to Methionine (M) and Glutamic acid (E) at AT133 was mutated to Phenylalanine (F)] was used to change in the flexible region of AtAT. The transamination activity and thermostability were significantly improved. In ChCl:MA (30 wt%), furfural (500 mM) was efficiently transformed into furfurylamine (92% yield) with TMEF after 12 h. 101.3 mM of biomass-derived furfural and 129.7 mM of D-xylose-derived furfural were wholly converted into furfurylamine within 5 h, achieving the productivity of 0.465 g furfurylamine/(g xylan in corncob) and 0.302 g furfurylamine/(g D-xylose). This established chemoenzymatic conversion strategy by bridging chemocatalysis and biocatalysis could be utilized in the valorisation of renewable biomass to valuable furans.
Collapse
Affiliation(s)
- Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
36
|
Ji S, Gavande PV, Choudhury B, Goyal A. Computational design and structure dynamics analysis of bifunctional chimera of endoxylanase from Clostridium thermocellum and xylosidase from Bacteroides ovatus. 3 Biotech 2023; 13:59. [PMID: 36714550 PMCID: PMC9877272 DOI: 10.1007/s13205-023-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Development of chimeric enzymes by protein engineering can more efficiently contribute toward biomass conversion for bioenergy generation. Therefore, prior to experimental validation, a computational approach by modeling and molecular dynamic simulation can assess the structural and functional behavior of chimeric enzymes. In this study, a bifunctional chimera, CtXyn11A-BoGH43A comprising an efficient endoxylanase (CtXyn11A) from Clostridium thermocellum and xylosidase (BoGH43A) from Bacteroides ovatus was computationally designed and its binding and stability analysis with xylooligosaccharides were performed. The modeled chimera showed β-jellyroll fold for CtXyn11A and 5-bladed β-propeller fold for BoGH43A module. Stereo-chemical properties analyzed by Ramachandran plot showed 98.8% residues in allowed region, validating the modeled chimera. The catalytic residues identified by multiple sequence alignment were Glu94 and Glu184 for CtXyn11A and Asp229 and Glu384 for BoGH43A modules. CtXyn11A followed retaining-type, whereas BoGH43A enforced inverting-type of reaction mechanism during xylan hydrolysis as revealed by superposition and GH11 and GH43 familial analyses. Molecular docking studies showed binding energy, (ΔG) - 4.54 and - 4.18 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylobiose, while - 3.94 and - 3.82 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylotriose. MD simulation of CtXyn11A-BoGH43A complexed with xylobiose and xylotriose till 100 ns displayed stability by RMSD, compactness by R g and conformational stability by SASA analyses. The lowered values of RMSF in active-site residues, Glu94, Glu184, Asp229, Asp335 and Glu384 confirmed the efficient binding of chimera with xylobiose and xylotriose. These results were in agreement with the earlier experimental studies on CtXyn11A releasing xylooligosaccharides from xylan and BoGH43A releasing d-xylose from xylooligosaccharides and xylobiose. The chimera showed stronger affinity in terms of total short-range interaction energy; - 190 and - 121 kJ/mol for with xylobiose and xylotriose, respectively. The bifunctional chimera, CtXyn11A-BoGH43A showed stability and integrity with xylobiose and xylotriose. The designed chimera can be constructed and applied for efficient biomass conversion.
Collapse
Affiliation(s)
- Shyam Ji
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Parmeshwar Vitthal Gavande
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
37
|
Bielecki M, Zubkova V. Analysis of Interactions Occurring during the Pyrolysis of Lignocellulosic Biomass. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020506. [PMID: 36677564 PMCID: PMC9862196 DOI: 10.3390/molecules28020506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
This paper presents a review of the recent advances in research on the interactions between the components of lignocellulosic biomass. The literature reports on the effects of interaction between lignocellulosic biomass components, such as cellulose-lignin, lignin-hemicellulose, and hemicellulose-cellulose, were discussed. The results obtained by other researchers were analyzed from the viewpoint of the interactions between the pyrolysis products formed along with the impact effects of the organic and inorganic components present or added to the biomass with regard to the yield and composition of the pyrolysis products. Disagreements about some statements were noted along with the lack of an unequivocal opinion about the directivity of interactions occurring during biomass pyrolysis. Based on the data in the scientific literature, it was suggested that the course of the pyrolysis process of biomass blends can be appropriately directed by changes in the ratio of basic biomass components or by additions of inorganic or organic substances.
Collapse
|
38
|
Capetti CCDM, Pellegrini VOA, Espirito Santo MC, Cortez AA, Falvo M, Curvelo AADS, Campos E, Filgueiras JG, Guimaraes FEG, de Azevedo ER, Polikarpov I. Enzymatic production of xylooligosaccharides from corn cobs: Assessment of two different pretreatment strategies. Carbohydr Polym 2023; 299:120174. [PMID: 36876789 DOI: 10.1016/j.carbpol.2022.120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
Abstract
Corn cobs (CCs) are abundant xylan-rich agricultural wastes. Here, we compared CCs XOS yields obtained via two different pretreatment routs, alkali and hydrothermal, using a set of recombinant endo- and exo-acting enzymes from GH10 and GH11 families, which have different restrictions for xylan substitutions. Furthermore, impacts of the pretreatments on chemical composition and physical structure of the CCs samples were evaluated. We demonstrated that alkali pretreatment route rendered 59 mg of XOS per gram of initial biomass, while an overall XOS yield of 115 mg/g was achieved via hydrothermal pretreatment using a combination of GH10 and GH11 enzymes. These results hold a promise of ecologically sustainable enzymatic valorization of CCs via "green" and sustainable XOS production.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Melissa Cristina Espirito Santo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Anelyse Abreu Cortez
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Maurício Falvo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Antonio Aprigio da Silva Curvelo
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Eleonora Campos
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jefferson Gonçalves Filgueiras
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, 24020-007, Niterói, RJ, Brazil; Instituto de Física, Universidade Federal do Rio de Janeiro, CP68528, 21941-972, Rio de Janeiro, RJ, Brazil
| | | | - Eduardo Ribeiro de Azevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
39
|
Gericke M, Skodda LH, Heinze T. Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches — From modular synthesis to gel-formation. Carbohydr Polym 2023; 300:120251. [DOI: 10.1016/j.carbpol.2022.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
40
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Outeiriño D, Costa-Trigo I, Pinheiro de Souza Oliveira R, Pérez Guerra N, Salgado JM, Domínguez JM. Biorefinery of Brewery Spent Grain by Solid-State Fermentation and Ionic Liquids. Foods 2022; 11:foods11223711. [PMID: 36429302 PMCID: PMC9689686 DOI: 10.3390/foods11223711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Novel environmentally friendly pretreatments have been developed in recent years to improve biomass fractionation. Solid-state fermentation (SSF) and treatment with ionic liquids show low environmental impact and can be used in biorefinery of biomass. In this work, these processes were assessed with brewery spent grain (BSG). First, BSG was used as a substrate to produce cellulases and xylanases by SSF with the fungi Aspergillus brasiliensis CECT 2700 and Trichoderma reesei CECT 2414. Then, BSG was pretreated with the ionic liquid [N1112OH][Gly] and hydrolyzed with the crude enzymatic extracts. Results showed that SSF of BSG with A. brasiliensis achieved the highest enzyme production; meanwhile, the pretreatment with ionic liquids allowed glucan and xylan fractions to increase and reduce the lignin content. In addition, a mixture of the extracts from both fungi in a ratio of 2.5:0.5 Aspergillus/Trichoderma (v/v) efficiently hydrolyzed the BSG previously treated with the ionic liquid [N1112OH][Gly], reaching saccharification percentages of 80.68%, 54.29%, and 19.58% for glucan, xylan, and arabinan, respectively. In conclusion, the results demonstrated that the BSG biorefinery process developed in this work is an effective way to obtain fermentable sugar-containing solutions, which can be used to produce value-added products.
Collapse
Affiliation(s)
- David Outeiriño
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, Campus Ourense, University of Vigo, 32004 Ourense, Spain
| | - Iván Costa-Trigo
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, Campus Ourense, University of Vigo, 32004 Ourense, Spain
| | - Ricardo Pinheiro de Souza Oliveira
- Biochemical and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, Sao Paulo University, Av. Prof Lineu Prestes, 580, Bl 16, Sao Paulo 05508-900, Brazil
| | - Nelson Pérez Guerra
- Department of Analytical and Food Chemistry, Faculty of Sciences, Campus Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain
| | - José Manuel Salgado
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, Campus Ourense, University of Vigo, 32004 Ourense, Spain
| | - José Manuel Domínguez
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, Campus Ourense, University of Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +34-988-38-74-29
| |
Collapse
|
42
|
Song W, Liu H, Zhang J, Sun Y, Peng L. Understanding Hβ Zeolite in 1,4-Dioxane Efficiently Converts Hemicellulose-Related Sugars to Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weipeng Song
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Huai Liu
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Junhua Zhang
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| | - Yong Sun
- Xiamen key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiamen361102, China
| | - Lincai Peng
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, China
| |
Collapse
|
43
|
Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM, Coelho E, Coimbra MA. Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers' spent grain. BIORESOUR BIOPROCESS 2022; 9:105. [PMID: 38647754 PMCID: PMC10992567 DOI: 10.1186/s40643-022-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Xylose is an abundant bioresource for obtaining diverse chemicals and added-value products. The production of xylose from green alternatives like enzymatic hydrolysis is an important step in a biorefinery context. This research evaluated the synergism among four classes of hydrolytic purified enzymes-endo-1,4-β-xylanase, α-L-arabinofuranosidase, β-xylosidase, and α-D-glucuronidase-over hydrolysis of glucuronoarabinoxylan (GAX) obtained from brewers' spent grain (BSG) after alkaline extraction and ethanol precipitation. First, monosaccharides, uronic acids and glycosidic-linkages of alkaline extracted GAX fraction from BSG were characterized, after that different strategies based on the addition of one or two families of enzymes-endo-1,4-β-xylanase (GH10 and GH11) and α-L-arabinofuranosidase (GH43 and GH51)-cooperating with one β-xylosidase (GH43) and one α-D-glucuronidase (GH67) into enzymatic hydrolysis were assessed to obtain the best yield of xylose. The xylose release was monitored over time in the first 90 min and after a prolonged reaction up to 48 h of reaction. The highest yield of xylose was 63.6% (48 h, 40 ℃, pH 5.5), using a mixture of all enzymes devoid of α-L-arabinofuranosidase (GH43) family. These results highlight the importance of GH51 arabinofuranosidase debranching enzyme to allow a higher cleavage of the xylan backbone of GAX from BSG and their synergy with 2 endo-1,4-β-xylanase (GH10 and GH11), one β-xylosidase (GH43) and the inclusion of one α-D-glucuronidase (GH67) in the reaction system. Therefore, this study provides an environmentally friendly process to produce xylose from BSG through utilization of enzymes as catalysts.
Collapse
Affiliation(s)
- Lilia C Rojas-Pérez
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Ean, 110221, Bogotá D.C., Colombia.
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
| | - Paulo C Narváez-Rincón
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - M Angélica M Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Elisabete Coelho
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Manuel A Coimbra
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
44
|
Sáenz de Miera B, Cañadas R, Santiago R, Díaz I, González-Miquel M, González EJ. A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
46
|
Chemoenzymatic catalytic synthesis of furfurylamine from hemicellulose in biomasses. Int J Biol Macromol 2022; 222:1201-1210. [PMID: 36174871 DOI: 10.1016/j.ijbiomac.2022.09.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Recently, efficient synthesis of furan-based chemicals from biomacromolecule via chemoenzymatic approaches have been widely recognized. In this work, an efficient conversion of biomacromolecule (e.g., xylan in biomass) to furfurylamine (FLA) was developed in a tandem reaction by bridging with chemocatalysis and biocatalysis. Various biomasses (e.g., corncob, bagasse, bamboo shoot shell, corn stalk, rice straw stalk, reed, water bamboo and sunflower stalk) could produce different titer of furfural due to the diverse xylan content in biomass. After being catalyzed by shrimp shell-supported solid acid catalyst (Sn-DAT-SS) in deep eutectic solvent choline chloride:ethylene glycol (ChCl:EG) - water (10:90, v/v) at 170 °C after 30 min, corncob gave the highest furfural yield of 52.4 %. The potential catalytic mechanism for Sn-DAT-SS-catalyzing the conversion of biomass into furfural in ChCl:EG - water was proposed. It was found that by-products (formic acid, levulinic acid, 5-hydroxymethylfurfural) and soluble sugars (glucose, xylose, arabinose, cellobiose) produced during the conversion of biomass to furfural had certain inhibition effects on the biotransamination of furfural to FLA. Biomass-derived furfural (36.7-92.3 mM) could be fully aminated to FLA by E. coli CCZU-XLS160 cells harboring ω-transaminase after 24-72 h. The established chemoenzymatic strategy for converting biomacromolecules into valuable furan-based products was successfully developed in an eco-friendly system.
Collapse
|
47
|
Talens-Perales D, Nicolau-Sanus M, Polaina J, Daròs JA. Expression of an extremophilic xylanase in Nicotiana benthamiana and its use for the production of prebiotic xylooligosaccharides. Sci Rep 2022; 12:15743. [PMID: 36131073 PMCID: PMC9492658 DOI: 10.1038/s41598-022-19774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth. The properties of the protein produced by the plant, in terms of resistance to temperature, pH, and enzymatic activity, are equivalent to those observed when Escherichia coli is used as a host. Purification of the plant-produced recombinant xylanase is facilitated by exporting the protein to the apoplastic space. The production of this xylanase by N. benthamiana, which avoids the hindrances derived from the use of E. coli, namely, intracellular production requiring subsequent purification, represents an important step for potential applications in the food industry in which more sustainable and green products are continuously demanded. As an example, the use of the enzyme producing prebiotic xylooligosdaccharides from xylan is here reported.
Collapse
Affiliation(s)
- David Talens-Perales
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - María Nicolau-Sanus
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Julio Polaina
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain.
| |
Collapse
|
48
|
Yan F, Tian S, Du K, Xue X, Gao P, Chen Z. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: A comprehensive review. Front Nutr 2022; 9:977548. [PMID: 36176637 PMCID: PMC9513447 DOI: 10.3389/fnut.2022.977548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic activities, which originate from lignocellulosic biomass and have attracted extensive attention from scholars in recent years. This paper summarizes the strategies used in the production of XOS, and introduces the raw materials, preparation methods, and purification technology of XOS. In addition, the biological characteristics and applications of XOS are also presented. The most commonly recommended XOS production strategy is the two-stage method of alkaline pre-treatment and enzymatic hydrolysis; and further purification by membrane filtration to achieve the high yield of XOS is required for prebiotic function. At the same time, new strategies and technologies such as the hydrothermal and steam explosion have been used as pre-treatment methods combined with enzymatic hydrolysis to prepare XOS. XOS have many critical physiological activities, especially in regulating blood glucose, reducing blood lipid, and improving the structure of host intestinal flora.
Collapse
Affiliation(s)
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | | | | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
49
|
Xylan-starch-based bioplastic formulation and xylan influence on the physicochemical and biodegradability properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Muskan, Gangadharan A, Goel P, Patel M, Verma AK. Recent applications of nanoparticles in organic transformations. Org Biomol Chem 2022; 20:6979-6993. [PMID: 35972027 DOI: 10.1039/d2ob01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variation in the size of metal nanoparticles leads to a difference in their properties. As the size of metal nanoparticles decreases, the surface area increases which leads to an increase in the reactivity of metal nanoparticles. Metals like Au, Ag, Pd, and Pt have interesting properties when used in nanometric dimensions. They function efficiently in significant industrial processes as electrocatalysts and photocatalysts in various organic reactions. Recently, the green biosynthesis of nanoparticles has attracted the attention of researchers. With environmental pollution rising over the past few decades, metal nanoparticle catalysts could be the key to subdue the toxic effects. Being versatile, they can be used to degrade pollutants, develop solar cells, convert toxic nitroaromatic compounds, significantly reduce CO2 emissions per unit of energy, and many more. Owing to their unique properties, nanoparticles have wide applications in biomedicine, for example, gold cages are promising agents for cancer diagnosis and therapy. Transition metal-oxide nanoparticles have been considered one of the best supercapacitor electrodes with high electrochemical performance. In this review, we have summarised fundamental concepts of metal nanoparticles over the last decade's main emphasis from 2010 to 2021. It focuses on the exceptional use of these nanocatalysts in various organic reactions. Additionally, we have also discussed the utility of these reactions and their crucial role in solving the problems of today. Through this article, we hope to provide the necessary framework needed to further advance the applications of metal nanoparticles as catalysts.
Collapse
Affiliation(s)
- Muskan
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Arya Gangadharan
- Ramjas College, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Pratiksha Goel
- Ramjas College, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Monika Patel
- Department of Chemistry, University of Delhi, Delhi-110007, India. .,Ramjas College, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi-110007, India. .,Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|