1
|
Zhang M, Zhong Y, Lv R, Miao J, Duan S. Activities of proteases in deep eutectic solvents and removal of protein from chitin by subtilisin A in betaine/glycerol. Carbohydr Polym 2024; 337:122165. [PMID: 38710577 DOI: 10.1016/j.carbpol.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Yanhua Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Ranhui Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China.
| |
Collapse
|
2
|
Liu WJ, Qiao YH, Wang S, Wang YB, Nong QN, Xiao Q, Bai HX, Wu KH, Chen J, Li XQ, Wang YF, Tan J, Cao W. A novel glycoglycerolipid from Holotrichia diomphalia Bates: Structure characteristics and protective effect against DNA damage. Int J Biol Macromol 2024; 271:132594. [PMID: 38821811 DOI: 10.1016/j.ijbiomac.2024.132594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
A lipidated polysaccharide, HDPS-2II, was isolated from the dried larva of Holotrichia diomphalia, which is used in traditional Chinese medicine. The molecular weight of HDPS-2II was 5.9 kDa, which contained a polysaccharide backbone of →4)-β-Manp-(1 → 4,6)-β-Manp-(1 → [6)-α-Glcp-(1]n → 6)-α-Glcp→ with the side chain α-Glcp-(6 → 1)-α-Glcp-(6 → linked to the C-4 of β-1,4,6-Manp and four types of lipid chains including 4-(4-methyl-2-(methylamino)pentanamido)pentanoic acid, 5-(3-(tert-butyl)phenoxy)hexan-2-ol, N-(3-methyl-5-oxopentan-2-yl)palmitamide, and N-(5-amino-3-methyl-5-oxopentan-2-yl)stearamide. The lipid chains were linked to C-1 of terminal α-1,6-Glcp in carbohydrate chain through diacyl-glycerol. HDPS-2II exhibited DNA protective effects and antioxidative activity on H2O2- or adriamycin (ADM)-induced Chinese hamster lung cells. Furthermore, HDPS-2II significantly ameliorated chromosome aberrations and the accumulation of reactive oxygen species (ROS), reduced γ-H2AX signaling and the expressions of NADPH oxidase (NOX)2, NOX4, P22phox, and P47phox in ADM-induced cardiomyocytes. Mechanistically, HDPS-2II suppressed ADM-induced up-regulation of NOX2 and NOX4 in cardiomyocytes, but not in NOX2 or NOX4 knocked-down cardiomyocytes, indicating that HDPS-2II could relieve intracellular DNA damage by regulating NOX2/NOX4 signaling. These findings demonstrate that HDPS-2II is a new potential DNA protective agent.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-He Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Shuyao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-Bo Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qianhan Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Hong-Xin Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ke-Han Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jie Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Fan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin Tan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
4
|
Yang Y, Foong SY, He Y, Liew RK, Ma NL, Yek PNY, Ge S, Naushad M, Lam SS. Upcycling crab shell waste into biochar for treatment of palm oil mill effluent via microwave pyrolysis and activation. ENVIRONMENTAL RESEARCH 2024; 248:118282. [PMID: 38295974 DOI: 10.1016/j.envres.2024.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.
Collapse
Affiliation(s)
- Yan Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Terengganu, Kuala Nerus, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Terengganu, Kuala Nerus, Malaysia
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, Georgetown, 10400, Penang, Malaysia
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, 96000, Sibu, Sarawak, Malaysia.
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Terengganu, Kuala Nerus, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Wang Y, Zhu H, Qiao M, Luo Y. Glycerol/organic acid-based ternary deep eutectic solvents as a green approach to recover chitin with different molecular weight from seafood waste. Int J Biol Macromol 2024; 257:128714. [PMID: 38081487 DOI: 10.1016/j.ijbiomac.2023.128714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
In this study, we designed a green and efficient approach for the fractionation of high-purity chitin with tunable molecular weights from seafood waste. This was achieved by using ternary deep eutectic solvents (TDESs) composed of choline chloride as a hydrogen bond acceptor, glycerol as the polyol-based hydrogen bond donor, together with lactic acid or malic acid. Two binary DESs and four TDESs were evaluated for their ability to recover chitin. The extracted chitin exhibited not only high yield with excellent protein and mineral removal, but also high purity with similar crystallinity patterns as standard chitin. However, the average molecular weights, viscosity behavior and morphology of chitin extracted by DESs were varied and influenced by organic acid to glycerol molar ratios. The molecular weights of chitin extracted by lactic acid-based TDES ranged from 264 kDa to 541 kDa, but malic acid-based TEDS displayed a stronger depolymerization effect, resulting in chitin with a smaller molecular weight of less than 300 kDa. Lactic acid-based TDES revealed that the purity of chitin remained higher than 92 % after three cycles. This sustainable and environmentally friendly extraction system holds great potential to recover chitin from seafood waste, opening a new era for chitin extraction and applications.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
6
|
Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-Based Polymeric Membranes: Development and Environmental Applications. MEMBRANES 2023; 13:625. [PMID: 37504991 PMCID: PMC10383737 DOI: 10.3390/membranes13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Nowadays, membrane technology is an efficient process for separating compounds with minimal structural abrasion; however, the manufacture of membranes still has several drawbacks to being profitable and competitive commercially under an environmentally friendly approach. In this sense, this review focuses on bio-based polymeric membranes as an alternative to solve the environmental concern caused by the use of polymeric materials of fossil origin. The fabrication of bio-based polymeric membranes is explained through a general description of elements such as the selection of bio-based polymers, the preparation methods, the usefulness of additives, the search for green solvents, and the characterization of the membranes. The advantages and disadvantages of bio-based polymeric membranes are discussed, and the application of bio-based membranes to recover organic and inorganic contaminants is also discussed.
Collapse
Affiliation(s)
- Mónica Morales-Jiménez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Oaxaca), Instituto Politécnico Nacional, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| | - Manuel Palencia
- GI-CAT, Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 25360, Colombia
| | - Manuel F Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070371, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, P.O. Box 4051, Concepción 4191996, Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| |
Collapse
|
7
|
Hou F, Gong Z, Jia F, Cui W, Song S, Zhang J, Wang Y, Wang W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem 2023; 409:135336. [PMID: 36586263 DOI: 10.1016/j.foodchem.2022.135336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiqing Gong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengjuan Jia
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Cui
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Song
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jian Zhang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
8
|
Saravanan A, Kumar PS, Yuvaraj D, Jeevanantham S, Aishwaria P, Gnanasri PB, Gopinath M, Rangasamy G. A review on extraction of polysaccharides from crustacean wastes and their environmental applications. ENVIRONMENTAL RESEARCH 2023; 221:115306. [PMID: 36682444 DOI: 10.1016/j.envres.2023.115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - D Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Aishwaria
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - P B Gnanasri
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - M Gopinath
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
9
|
Yin D, Ji R, Yu S, Li L, Liu S, Jiang L, Liu Y. Metal-acid interface encapsulated in hybrid mesoporous silica for selective hydrogenation of phenol to cyclohexanone. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
11
|
Feng M, He B, Chen X, Xu J, Lu X, Jia C, Sun J. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Zhang J, Xu WR, Zhang YC. Facile production of chitin from shrimp shells using a deep eutectic solvent and acetic acid. RSC Adv 2022; 12:22631-22638. [PMID: 36105977 PMCID: PMC9372822 DOI: 10.1039/d2ra03417d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022] Open
Abstract
High purity chitin was extracted from shrimp shells by a green, sustainable, and efficient one-pot approach using a deep eutectic solvent consisting of choline chloride and glycerol (ChCl–Gl) combined with a small amount of acetic acid. Under the conditions of an acetic acid concentration of 7.5 wt% and reaction temperature of 120 °C, the purity of isolated chitin was up to 96.1%, which was superior to that of 87.7% obtained by conventional chemical method. In addition, the viscosity-average molecular weight and crystallinity of the extracted chitin were revealed to be larger than for the latter. Moreover, the deep eutectic solvent could be recycled at least three times without losing the quality of the extracted chitin. This facile approach combining recyclable DES with a small amount of acetic acid was expected to be used for the green and sustainable production of chitin from shrimp shells. High purity chitin was extracted from shrimp shells by a green, sustainable, and efficient one-pot approach using a deep eutectic solvent consisting of choline chloride and glycerol (ChCl–Gl) combined with a small amount of acetic acid.![]()
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
- Hainan Health Management College, Haikou, 570228, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
13
|
Jafari H, Delporte C, Bernaerts KV, De Leener G, Luhmer M, Nie L, Shavandi A. Development of marine oligosaccharides for potential wound healing biomaterials engineering. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Establishment of successive co-fermentation by Bacillus subtilis and Acetobacter pasteurianus for extracting chitin from shrimp shells. Carbohydr Polym 2021; 258:117720. [PMID: 33593582 DOI: 10.1016/j.carbpol.2021.117720] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
To simplify the process of chitin bio-extraction from shrimp shells powder (SSP), successive co-fermentation using Bacillus subtilis and Acetobacter pasteurianus was explored in this work. Among three protease-producer (B. licheniformis, B. subtilis, and B. cereus), only B. subtilis exhibited high compatibility with A. pasteurianus in co-culture. Successive co-fermentation was constructed as follows: deproteinization was performed for 3 d by culturing B. subtilis in the medium containing 50 g·L-1 SSP, 50 g·L-1 glucose, and 1 g·L-1 yeast extracts; After feeding 5 g·L-1 KH2PO4 and 6 % (v/v) ethanol, A. pasteurianus was cultured for another 2 d without replacing and re-sterilizing medium. Through 5 d of fermentation, the final deproteinization, demineralization efficiency, and chitin yield reached 94.5 %, 92.0 %, and 18.0 %, respectively. This purified chitin had lower molecular weight (12.8 kDa) and higher deacetylation degree (19.6 %) compared with commercial chitin (18.5 kDa, 6.7 %), and showed excellent structural characterization of FESEM and FT-IR analysis.
Collapse
|
15
|
Yu Y, Liu X, Miao J, Leng K. Chitin from Antarctic krill shell: Eco-preparation, detection, and characterization. Int J Biol Macromol 2020; 164:4125-4137. [PMID: 32890560 DOI: 10.1016/j.ijbiomac.2020.08.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Antarctic krill is a nutrient-rich crustacean that is one of the main species in the Antarctic ecosystem. Antarctic krill shell (AKS) can be used as raw materials to prepare chitin. In this study, lactic acid and dispase were used to prepare Antarctic krill chitin (AKC-1). Amino-monosaccharide contents of chitin samples were detected by pre-column PMP-HPLC method. Analytical instruments were conducted to determine characteristics of chitin samples. Results showed that the amino-monosaccharide content of AKS was 4.62 g/100 g (measured in D-glucosamine). The yield of AKC-1 was 5.49 g/100 g, and the amino-monosaccharide content was 80.90 g/100 g. AKC-1 showed smooth flakes, a porous surface, and α-chitin structural characteristics. The maximum degradation temperature (DTGmax) was 318.3 °C. The yield of deacetylated chitin (AKC-2) was 4.74 g/100 g, with deacetylation degree of 80.8%, viscosity average molecular weight of approximately 145.7 kDa, and amino-monosaccharide content of 97.06 g/100 g. The surface morphology of AKC-2 was similar to that of AKC-1, and the DTGmax was 311.5 °C. A mild, eco-friendly chitin preparation method and an amino-monosaccharide content detection method of raw material before chitin preparation are described in this study, which can provide technical support for comprehensive utilization of Antarctic krill resources.
Collapse
Affiliation(s)
- Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No.106 Nanjing Road, Qingdao, Shandong Province 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao, Shandong Province 266200, PR China.
| |
Collapse
|
16
|
Alabiso W, Schlögl S. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Polymers (Basel) 2020; 12:E1660. [PMID: 32722554 PMCID: PMC7465221 DOI: 10.3390/polym12081660] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Thermosets are known to be very reliable polymeric materials for high-performance and light-weight applications, due to their retained dimensional stability, chemical inertia and rigidity over a broad range of temperatures. However, once fully cured, they cannot be easily reshaped or reprocessed, thus leaving still unsolved the issues of recycling and the lack of technological flexibility. Vitrimers, introduced by Leibler et al. in 2011, are a valiant step in the direction of bridging the chasm between thermoplastics and thermosets. Owing to their dynamic covalent networks, they can retain mechanical stability and solvent resistance, but can also flow on demand upon heating. More generally, the family of Covalent Adaptable Networks (CANs) is gleaming with astounding potential, thanks to the huge variety of chemistries that may enable bond exchange. Arising from this signature feature, intriguing properties such as self-healing, recyclability and weldability may expand the horizons for thermosets in terms of improved life-span, sustainability and overall enhanced functionality and versatility. In this review, we present a comprehensive overview of the most promising studies featuring CANs and vitrimers specifically, with particular regard for their industrial applications. Investigations into composites and sustainable vitrimers from epoxy-based and elastomeric networks are covered in detail.
Collapse
|
17
|
Machałowski T, Czajka M, Petrenko I, Meissner H, Schimpf C, Rafaja D, Ziętek J, Dzięgiel B, Adaszek Ł, Voronkina A, Kovalchuk V, Jaroszewicz J, Fursov A, Rahimi-Nasrabadi M, Stawski D, Bechmann N, Jesionowski T, Ehrlich H. Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Properties. Mar Drugs 2020; 18:E304. [PMID: 32531909 PMCID: PMC7345230 DOI: 10.3390/md18060304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Chitin, as one of nature's most abundant structural polysaccharides, possesses worldwide, high industrial potential and a functionality that is topically pertinent. Nowadays, the metallization of naturally predesigned, 3D chitinous scaffolds originating from marine sponges is drawing focused attention. These invertebrates represent a unique, renewable source of specialized chitin due to their ability to grow under marine farming conditions. In this study, the development of composite material in the form of 3D chitin-based skeletal scaffolds covered with silver nanoparticles (AgNPs) and Ag-bromide is described for the first time. Additionally, the antibacterial properties of the obtained materials and their possible applications as a water filtration system are also investigated.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Maria Czajka
- Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, Zeromskiego 16, 90924 Lodz, Poland; (M.C.); (D.S.)
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Jerzy Ziętek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Beata Dzięgiel
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 13, 20612 Lublin, Poland; (J.Z.); (B.D.); (Ł.A.)
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov str. 56, 21018 Vinnitsa, Ukraine;
| | - Valentin Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Pirogov str. 56, 21018 Vinnitsa, Ukraine;
| | - Jakub Jaroszewicz
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02507 Warsaw, Poland;
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran;
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
| | - Dawid Stawski
- Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, Zeromskiego 16, 90924 Lodz, Poland; (M.C.); (D.S.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 München-Neuherberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (I.P.); (A.F.)
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61614 Poznan, Poland
| |
Collapse
|
18
|
Wang J, Zang H, Jiao S, Wang K, Shang Z, Li H, Lou J. Efficient conversion of N-acetyl- D-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136293. [PMID: 31926412 DOI: 10.1016/j.scitotenv.2019.136293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Chitin is the most widely distributed oceanic biomass resources. Its monomer unit, N-acetyl-D-glucosamine (NAG), contains precious atomic nitrogen and represents a potential feedstock for the manufacture of regenerative organic nitrogen chemicals. Herein, the conversion of NAG to the platform chemical, 3-acetamido-5-acetylfuran (3A5AF), catalyzed by amino acid ionic liquids, was investigated. The reaction, catalyzed by a very small amount of glycine chloride ionic liquid without any additives, could yield 43.22% 3A5AF in 10 min. By adding CaCl2, a higher yield up to 52.61% was obtained. This work demonstrated the conversion of chitin biomass to 3A5AF in higher yield without using a boron-based catalyst for the first time. Moreover, the ionic liquid catalyst exhibited excellent recyclability, and afforded 43.22-36.59% yield over during eight cycles. This research provides new and green procedures to convert shellfish fishery waste into value-added platform chemicals.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| | - Hongjun Zang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China.
| | - Shuolei Jiao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| | - Kang Wang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| | - Zhen Shang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| | - Huanxin Li
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| | - Jing Lou
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry and Chemical Engineering, Tiangong University, Binshuixi Road, Tianjin 300387, China
| |
Collapse
|
19
|
Zhou D, Shen D, Lu W, Song T, Wang M, Feng H, Shentu J, Long Y. Production of 5-Hydroxymethylfurfural from Chitin Biomass: A Review. Molecules 2020; 25:molecules25030541. [PMID: 32012651 PMCID: PMC7036796 DOI: 10.3390/molecules25030541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/12/2023] Open
Abstract
Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and N-acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.
Collapse
Affiliation(s)
- Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Tao Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
- Correspondence:
| |
Collapse
|
20
|
Hou F, Ma X, Fan L, Wang D, Ding T, Ye X, Liu D. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydr Polym 2019; 231:115669. [PMID: 31888808 DOI: 10.1016/j.carbpol.2019.115669] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
This study evaluated the degradation kinetics and structural characteristics of chitin suspension (CS) with a combination of ultrasound and chitinase. Compared with the enzymolysis, the degradation degree of sonoenzymolysis was enhanced to the maximum by 27.93 % at an intensity of 25 W/mL for 20 min. According to degradation kinetics, ultrasound intensified molecular collision rate between chitinase and substrate, thereby increasing the degradation degree. What's more, combined with chitinase, ultrasound intensified the rate of the breakage of glycosidic bond and viscosity-average molecular weight (Mv) decrease, but no obvious change in acetylation degree (DA). Additionally, the intra- or inter-hydrogen bindings were weakened by ultrasound during sonoenzymolysis, leading to a slight decrease in crystalline index and a more ordered structure, which increased the accessibility of the substrate to enzyme. In conclusion, combination of chitinase and ultrasound could enhance the hydrolysis of CS while without changing its primary structure.
Collapse
Affiliation(s)
- Furong Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| |
Collapse
|
21
|
Hong S, Yang Q, Yuan Y, Chen L, Song Y, Lian H. Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell. Carbohydr Polym 2019; 205:236-243. [DOI: 10.1016/j.carbpol.2018.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
|
22
|
Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydr Polym 2018; 201:211-217. [DOI: 10.1016/j.carbpol.2018.08.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/18/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
|