1
|
Dai KY, Liu C, Ji HY, Liu AJ. Structural characteristics and anti-tumor activity of alkali-extracted acidic polysaccharide extracted from Panax ginseng. Int J Biol Macromol 2025; 305:141230. [PMID: 39971041 DOI: 10.1016/j.ijbiomac.2025.141230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
In this paper, Panax ginseng residue after boiling water extraction was reused to obtain the acidic polysaccharide PGP-1, and its structural characterization and anti-tumor activity were investigated. Structural experiments showed that PGP-1 consisted of Rha, Ara, Glc, Gal, and GalA in a molar ratio of 0.04:0.31:1.00:0.28:0.54. The backbone of PGP-1 was formed by the 1 → 4 glycosidic linkage of HG and RG-I, with Araf, Glcp, and Galp sidechains attached at position O-3. In vitro experiments showed that PGP-1 induced apoptosis in MGC803 cells through the mitochondrial pathway, with apoptotic features such as nuclear consolidation and generation of apoptotic vesicles. Animal experiments showed that PGP-1 could inhibit the proliferation of tumor cells in H22 tumor-bearing mice by improving the status of immune organs, enhancing the activity of immune cells, and increasing the levels of serum cytokines and apoptosis-related proteins, with the tumor inhibition rate reaching 45.70 % (200 mg/kg). The above experimental results indicated that Panax ginseng polysaccharides had the potential to be functional anti-tumor agents.
Collapse
Affiliation(s)
- Ke-Yao Dai
- College of Food science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Liu
- College of Food science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - An-Jun Liu
- College of Food science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Zhang N, Liu Q, Wang D, Wang X, Pan Z, Han B, He G. Multifaceted roles of Galectins: from carbohydrate binding to targeted cancer therapy. Biomark Res 2025; 13:49. [PMID: 40134029 PMCID: PMC11934519 DOI: 10.1186/s40364-025-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Galectins play pivotal roles in cellular recognition and signaling processes by interacting with glycoconjugates. Extensive research has highlighted the significance of Galectins in the context of cancer, aiding in the identification of biomarkers for early detection, personalized therapy, and predicting treatment responses. This review offers a comprehensive overview of the structural characteristics, ligand-binding properties, and interacting proteins of Galectins. We delve into their biological functions and examine their roles across various cancer types. Galectins, characterized by a conserved carbohydrate recognition domain (CRD), are divided into prototype, tandem-repeat, and chimera types based on their structural configurations. Prototype Galectins contain a single CRD, tandem-repeat Galectins contain two distinct CRDs linked by a peptide, and the chimera-type Galectin-3 features a unique structural arrangement. The capacity of Galectins to engage in multivalent interactions allows them to regulate a variety of signaling pathways, thereby affecting cell fate and function. In cancer, Galectins contribute to tumor cell transformation, angiogenesis, immune evasion, and metastasis, making them critical targets for therapeutic intervention. This review discusses the multifaceted roles of Galectins in cancer progression and explores current advancements in the development of Galectin-targeted therapies. We also address the challenges and future directions for integrating Galectin research into clinical practice to enhance cancer treatment outcomes. In brief, understanding the complex functions of Galectins in cancer biology opens new avenues for therapeutic strategies. Continued research on Galectin interactions and their pathological roles is essential for developing effective carbohydrate-based treatments and improving clinical interventions for cancer patients.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qiao Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Daihan Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoyun Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhaoping Pan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
4
|
Xiang Q, Hao Y, Xia Z, Liao M, Rao X, Lao S, He Q, Ma C, Liao W. Biomedical Applications and Nutritional Value of Specific Food-Derived Polysaccharide-Based Hydrogels. Adv Nutr 2024; 15:100309. [PMID: 39349098 PMCID: PMC11564002 DOI: 10.1016/j.advnut.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Food-derived polysaccharide-based hydrogels (FPBHs), which are composed of polysaccharides derived from food sources exhibit great potential for biomedical applications. The FPBHs possess a wide range of biological activities and can be utilized in the treatment of various clinical diseases. However, the majority of research efforts have predominantly focused on nonspecific polysaccharides derived from various sources (most plants, animals, and microorganisms), whereas the exploration of hydrogels originating from specific polysaccharides with distinct bioactivity extracted from natural food sources remains limited. In this review, a comprehensive search was conducted across 3 major databases (PubMed, Web of Science, and Medline) until October 24, 2024 to include 32 studies that employed FPBHs for biomedical applications. This review provides an overview of hydrogels based on specific food-derived polysaccharides by summarizing their types, sources, molecular weight, monosaccharide composition, and biological activities. The crosslinking strategies employed in the fabrication of FPBHs were demonstrated. The attributes and characteristics of FPBHs were delined, including their physical, chemical, and functional properties. Of particular note, the review highlights in vivo and in vitro studies exploring the biomedical applications of FPBHs and delve into the nutritional value of specific food-derived polysaccharides. The challenges encountered in basic research involving FPBHs were enumerated as well as limitation in their clinical practice. Finally, the potential market outlook for FPBHs in the future was also discussed.
Collapse
Affiliation(s)
- Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical, School of Public Health, Southern Medical University, Guangzhou, China; Hospital Infection Control Office, Guangzhou Elderly Hospital, Guangzhou, China
| | - Zijun Xia
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meiqi Liao
- Disease Research, First clinical medical College, Southern Medical University, Guangzhou, China; Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat sen University, Guangzhou, China
| | - Xinkai Rao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Congshun Ma
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China.
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Chen Y, Su D, Zheng J, He J, Du B, Duan R, Liu L, Li X. Intra-articular injection of modified citrus pectin and hyaluronate gel induces synergistic effects in treating osteoarthritis. Int J Biol Macromol 2024; 276:133840. [PMID: 39004250 DOI: 10.1016/j.ijbiomac.2024.133840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
We previously found that modified citrus pectin (MCP), an inhibitor of pro-inflammatory factor Galectin-3 (Gal-3), has significant anti-inflammatory and chondroprotective effects. In this study, a hyaluronate (HA) gel-based sustained release system of MCP (MCP-HA) was developed as an anti-inflammatory agent for chronic inflammation for osteoarthritis (OA) treatment. The MCP-HA gel was injected into the knee joint cavities of OA rabbit models induced by anterior cruciate ligament transection (ACLT) or modified Hulth method once a week for five weeks. We found that MCP-HA could improve the symptoms and signs of OA, protect articular cartilage from degeneration, suppress synovial inflammation, and therefore alleviate OA progression. Proteomic analysis of the synovial fluid obtained from the knee joints of OA rabbits revealed that MCP-HA synergistically regulated the levels of multiple inflammatory mediators and proteins involved in metabolic pathways. Taken together, our results demonstrate that the MCP-HA shows a synergistic effect of HA and MCP by modulating both inflammation and metabolic processes, thereby alleviating OA progression. The MCP-HA sustained release system has promising potential for long-term use in OA treatment.
Collapse
Affiliation(s)
- Yazhen Chen
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Danning Su
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Jianuo Zheng
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Jiayue He
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Bo Du
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Ruiping Duan
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China
| | - Lingrong Liu
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China.
| | - Xuemin Li
- The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, 300192, PR, China.
| |
Collapse
|
6
|
Pedrosa LDF, Fabi JP. Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Crit Rev Food Sci Nutr 2024; 64:6177-6197. [PMID: 36606552 DOI: 10.1080/10408398.2022.2164245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, β-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Lv Y, Jiang G, Jiang Y, Peng C, Li W. TLR2-ERK signaling pathway regulates expression of galectin-3 in a murine model of OVA-induced allergic airway inflammation. Toxicol Lett 2024; 397:55-66. [PMID: 38754639 DOI: 10.1016/j.toxlet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Toll-like receptor 2 (TLR2) and galectin-3 (Gal-3) are involved in the pathological process of asthma, but the underlying mechanism is not fully understood. We hypothesized that TLR2 pathway may regulate expression of Gal-3 in allergic airway inflammation. Wild-type (WT) and TLR2-/- mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-21 to establish a model of allergic airway inflammation, and were treated with a specific ERK inhibitor U0126. Histological changes in the lungs were analyzed by hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining; cytokines and anti-OVA immunoglobulin E (IgE) were tested by ELISA; and related protein expression in lung tissues was measured by western blot. We found that the expression levels of TLR2 and Gal-3 markedly increased concomitantly with airway inflammation after OVA induction, while TLR2 deficiency significantly alleviated airway inflammation and reduced Gal-3 expression. Moreover, the expression levels of phosphorylated mitogen-activated protein kinases (p-MAPKs) were significantly elevated in OVA-challenged WT mice, while TLR2 deficiency only significantly decreased phosphorylated extracellular signal-regulated kinase (p-ERK) levels. Furthermore, we found that U0126 treatment significantly alleviated allergic airway inflammation and decreased Gal-3 levels in OVA-challenged WT mice, but had no further effect in OVA-challenged TLR2-/- mice. These above results suggested that TLR2 is an upstream signal molecule of ERK. We further demonstrated that TLR2 regulates Gal-3 expression through the ERK pathway in LTA-stimulated macrophages in vitro. Our findings showed that the TLR2-ERK signaling pathway regulates Gal-3 expression in a murine model of allergic airway inflammation.
Collapse
Affiliation(s)
- Yunxiang Lv
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| | - Guiyun Jiang
- Department of Clinical laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Yanru Jiang
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Caiqiu Peng
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Wei Li
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| |
Collapse
|
8
|
An L, Chang G, Zhang L, Wang P, Gao W, Li X. Pectin: Health-promoting properties as a natural galectin-3 inhibitor. Glycoconj J 2024; 41:93-118. [PMID: 38630380 DOI: 10.1007/s10719-024-10152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, 300402, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Pengwang Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| |
Collapse
|
9
|
Zheng Y, Si Y, Xu X, Gu H, He Z, Zhao Z, Feng Z, Su J, Mayo KH, Zhou Y, Tai G. Ginseng-derived type I rhamnogalacturonan polysaccharide binds to galectin-8 and antagonizes its function. J Ginseng Res 2024; 48:202-210. [PMID: 38465210 PMCID: PMC10920006 DOI: 10.1016/j.jgr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/12/2024] Open
Abstract
Background Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its β-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion P. ginseng RG-I pectin β-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.
Collapse
Affiliation(s)
- Yi Zheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hongming Gu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhen He
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zihan Zhao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhangkai Feng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
10
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Garrido G, Garrido-Suárez BB, Mieres-Arancibia M, Valdes-Gonzalez M, Ardiles-Rivera A. Modified pectin with anticancer activity in breast cancer: A systematic review. Int J Biol Macromol 2024; 254:127692. [PMID: 37898255 DOI: 10.1016/j.ijbiomac.2023.127692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. The current pharmacological treatments for breast cancer have numerous adverse effects and are not always effective. Recently, the anticancer activity of modified pectins (MPs) against various types of cancers, including breast cancer, has been investigated. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model, including scientific articles from the last 22 years that measured the anticancer activity of MPs on breast cancer. The articles were searched in four databases with the terms: "modified pectin" and "breast cancer". Nine articles were included, five in vitro and four mixed (in vitro and in vivo). Different models and methods by which anticancer activity was measured were analyzed. All the studies reported positive results in both cell lines and in vivo murine models of breast cancer. The extracted data suggest a positive effect and provide mechanistic evidence of MPs in the treatment of breast cancer. However, as limited number of studies were included, further in vivo studies are required to obtain more conclusive preclinical evidence.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile.
| | | | - Mario Mieres-Arancibia
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Marisela Valdes-Gonzalez
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Alejandro Ardiles-Rivera
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile
| |
Collapse
|
12
|
Deng Y, Jin H, Ning J, Cui D, Zhang M, Yang H. Elevated galectin-3 levels detected in women with hyperglycemia during early and mid-pregnancy antagonizes high glucose - induced trophoblast cells apoptosis via galectin-3/foxc1 pathway. Mol Med 2023; 29:115. [PMID: 37626284 PMCID: PMC10463409 DOI: 10.1186/s10020-023-00707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study was to evaluate plasma galectin-3 levels from early pregnancy to delivery and explore the effects of galectin-3 on the function of trophoblast cells under high glucose exposure. METHODS The plasma galectin-3 levels were quantified by enzyme-linked immunosorbent assay (ELISA) in the China National Birth Cohort (CNBC) at Peking University First Hospital, and the underlying signaling pathway was identified by protein-protein interaction (PPI) analysis, gene set enrichment analysis (GSEA), quantitative PCR (qPCR), western blotting, small interfering RNA (siRNA) transfections, and flow cytometry. RESULTS Significantly higher galectin-3 levels were found in patients with gestational diabetes mellitus (GDM group; n = 77) during the first and second trimesters than that in healthy pregnant women (HP group; n = 113) (P < 0.05). No significant differences in plasma galectin-3 levels were detected between GDM and HP groups in maternal third-trimester blood and cord blood. PPI analysis suggested potential interactions between galectin-3 and foxc1. The findings of GSEA showed that galectin-3 was involved in the cytochrome P450-related and complement-related pathways, and foxc1 was associated with type I diabetes mellitus. Additionally, high glucose (25 mM) significantly increased the expression levels of galectin-3 and foxc1 and induced apoptosis in HTR-8/SVneo cells. Further in vitro experiments showed that galectin-3/foxc1 pathway could protect HTR-8/SVneo cells against high glucose - induced apoptosis. CONCLUSION Future studies were required to validate whether plasma galectin-3 might become a potential biomarker for hyperglycemia during pregnancy. Elevated galectin-3 levels might be a vital protective mechanism among those exposed to hyperglycemia during pregnancy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Jie Ning
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Dong Cui
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China.
| |
Collapse
|
13
|
Feng Z, Lin Z, Tang H, Geng J, Hu Y, Mayo KH, Tai G, Zhou Y. The model polysaccharide potato galactan is actually a mixture of different polysaccharides. Carbohydr Polym 2023; 313:120889. [PMID: 37182975 DOI: 10.1016/j.carbpol.2023.120889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free β-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long β-1,4-galactan side chains of up to 80 Gal residues and short β-1,4-galactan side chains of 0 to 3 Gal residues that display a "trees in lawn" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.
Collapse
|
14
|
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023; 12:foods12050925. [PMID: 36900446 PMCID: PMC10000917 DOI: 10.3390/foods12050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.
Collapse
|
15
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
16
|
Ezhilarasan D. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver. J Cell Physiol 2023; 238:673-686. [PMID: 36745560 DOI: 10.1002/jcp.30956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Galectin-3 (Gal-3) previously referred to as S-type lectins, is a soluble protein that specifically binds to β-galactoside carbohydrates with high specificity. Gal-3 plays a pivotal role in a variety of pathophysiological processes such as cell proliferation, inflammation, differentiation, angiogenesis, transformation and apoptosis, pre-mRNA splicing, metabolic syndromes, fibrosis, and host defense. The role of Gal-3 has also been implicated in liver diseases. Gal-3 is activated upon a hepatotoxic insult to the liver and its level has been shown to be upregulated in fatty liver diseases, inflammation, nonalcoholic steatohepatitis, fibrosis, cholangitis, cirrhosis, and hepatocellular carcinoma (HCC). Gal-3 directly interacts with the NOD-like receptor family, pyrin domain containing 3, and activates the inflammasome in macrophages of the liver. In the chronically injured liver, Gal-3 secreted by injured hepatocytes and immune cells, activates hepatic stellate cells (HSCs) in a paracrine fashion to acquire a myofibroblast like collagen-producing phenotype. Activated HSCs in the fibrotic liver secrete Gal-3 which acts via autocrine signaling to exacerbate extracellular matrix synthesis and fibrogenesis. In the stromal microenvironment, Gal-3 activates cancer cell proliferation, migration, invasiveness, and metastasis. Clinically, increased serum levels and Gal-3 expression were observed in the liver tissue of nonalcoholic steatohepatitis, fibrotic/cirrhotic, and HCC patients. The pathological role of Gal-3 has been experimentally and clinically reported in the progression of chronic liver disease. Therefore, this review discusses the pathological role of Gal-3 in the progression of chronic liver diseases.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
17
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
18
|
Tao R, Lu K, Zong G, Xia Y, Han H, Zhao Y, Wei Z, Lu Y. Ginseng polysaccharides: Potential antitumor agents. J Ginseng Res 2023; 47:9-22. [PMID: 36644386 PMCID: PMC9834022 DOI: 10.1016/j.jgr.2022.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.
Collapse
Affiliation(s)
- Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Ginseng Pectin WGPA Alleviates Exercise-Induced Fatigue by Enhancing Gluconeogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7973380. [PMID: 36569345 PMCID: PMC9788872 DOI: 10.1155/2022/7973380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
With the development of medicine and sport science, growing attention has been paid to the recovery of exercise-induced fatigue. Ginseng pectin has been shown to be important for a variety of biological functions. Although many studies suggest that ginseng pectin plays an important role in the alleviation of exercise-induced fatigue, the underlying mechanism still remains unclear. In this study, C57BL/6J mice were subjected to a wheel apparatus for exhaustive exercise and fed with ginseng pectin WGPA (acidic fraction of water-soluble ginseng polysaccharides) afterwards. Subsequently, a series of physiological and biochemical indexes, such as blood lactic acid, blood glucose, muscle glycogen, insulin, and glucagon, is evaluated. Meanwhile, enzymatic activity and mRNA level of key enzymes involved in hepatic gluconeogenesis are analyzed. Our results demonstrate that the treatment of ginseng pectin WGPA can result in enhanced gluconeogenesis and decreased insulin and in turn facilitate the recovery of exercise-induced fatigue. In response to WGPA treatment, both phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase) activity were upregulated, indicating that these two enzymes play a critical role in WGPA-induced upregulation in gluconeogenesis. Moreover, mRNA level of G6Pase, but not PEPCK, was increased upon WGPA treatment, suggesting that G6Pase expression is regulated by WGPA. Importantly, the presence of WGPA downregulated insulin both in vivo and in vitro, suggesting the upregulation in gluconeogenesis may be due to alterations in insulin. Together, we provide evidence that ginseng pectin WGPA is able to alleviate exercise-induced fatigue by reducing insulin and enhancing gluconeogenesis.
Collapse
|
20
|
Zhang Y, Liang L, Wang Y, Cui Y, Hao C, Xin H. Anti-cancer effects of Shenqishiyiwei granules in gastric cancer are mediated via modulation of the immune system. J Funct Foods 2022; 98:105280. [DOI: 10.1016/j.jff.2022.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
21
|
Emran TB, Islam F, Mitra S, Paul S, Nath N, Khan Z, Das R, Chandran D, Sharma R, Lima CMG, Awadh AAA, Almazni IA, Alhasaniah AH, Guiné RPF. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022; 27:7405. [PMID: 36364232 PMCID: PMC9657392 DOI: 10.3390/molecules27217405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | | | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
22
|
Cheng J, Song J, Wang Y, Wei H, He L, Liu Y, Ding H, Huang Q, Hu C, Huang X, Jiang Y, Wu Y. Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells. Food Res Int 2022; 156:111336. [PMID: 35651086 DOI: 10.1016/j.foodres.2022.111336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022]
Abstract
A novel water-soluble mannogalactan (SSPS1) with an average molecular weight of 2.04 × 104 Da was obtained from the fruiting bodies of the Sanghuangporus sanghuang. It revealed that SSPS1 was composed of d-galactose, d-mannose, l-fucose, 3-O-methylgalactose and d-glucose in a ratio of 6.2:3.9:3.1:2.1:1.0. The structural elucidation of SSPS1 consisted of 1, 6-linked α-D-Galp, 1, 6-linked α-D-Manp and 1, 6-linked 3-O-methyl-α-D-Galp backbone with branching at O-2 of 1, 6-α-D-mannosyl residues by α-L-Fucp and α-D-Glcp units. The conformational parameters suggested that a flexible chain conformation of SSPS1 in solution based on light scattering and atomic force microscopy imaging. Intriguingly, it presented potent anticancer activity on HepG2 cell with Rq and Ra values increased dramatically up to 73.93 nm and 53.92 nm compared with the control. The analysis of flow cytometry indicated SSPS1 could induce the apoptosis of HepG2 cells and arrest them via S phase. Western blot assay further uncovered that apoptosis process was triggered by SSPS1 via a mitochondria-mediated signaling pathway, which was evidenced by an increased ratio of Bax/Bcl-2, the release of cytochrome c and the strong activation of caspase-3 and 9. Taken together, these results suggested that SSPS1 might be applied in functional food as an anticancer agent.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Jiling Song
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongmei Ding
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Zhejiang A & F University, Hangzhou 311300, China
| | - Youliang Wu
- Characteristic Plantation Technology Extension Center of Jiangshan, Zhejiang 324199, China.
| |
Collapse
|
23
|
Pak U, Yu Y, Ning X, Ho C, Ji L, Mayo KH, Zhou Y, Sun L. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort. Int J Biol Macromol 2022; 206:642-652. [PMID: 35247423 DOI: 10.1016/j.ijbiomac.2022.02.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Water-soluble polysaccharides were isolated from the leaves and roots of Isatis indigotica Fort., and their structural features were studied and compared. One neutral polysaccharide fraction (WFIP-N) and three pectin fractions (WFIP-A-A, WFIP-A-B and WFIP-A-C) were obtained from the leaves, and one neutral polysaccharide fraction (WRIP-N) and two pectin fractions (WRIP-A-A and WRIP-A-B) were obtained from the roots. WFIP-A-B (Mw = 34.6 kDa) and WRIP-A-B (Mw = 29.9 kDa) were the major pectic polysaccharides. Monosaccharide composition, FT-IR, enzymatic hydrolysis, NMR and methylation analysis indicated that both WFIP-A-B and WRIP-A-B are composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 1.5:1.0:0.4 and 0.3:1.0:1.7, respectively. WFIP-A-B and WRIP-A-B were found to be rich in RG-I and HG domains, respectively, and mainly contained type II arabinogalactan (AG-II) and α-L-1,5-arabinan side chains, but those in WRIP-A-B were more numerous and longer. Our results provide structural features and differences between these polysaccharides which will help to elucidate their functional differences.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Yang Yu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin Ning
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Li Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
24
|
Yue F, Xu J, Zhang S, Hu X, Wang X, Lü X. Structural features and anticancer mechanisms of pectic polysaccharides: A review. Int J Biol Macromol 2022; 209:825-839. [PMID: 35447258 DOI: 10.1016/j.ijbiomac.2022.04.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
The anticancer activity of pectic polysaccharides (PPs) was proved by numerous studies, and which also indicated that the bioactivity of PPs was closely related to its complicated structures. Based on the summary and analysis about structure characteristics and corresponding enzymatic process of the reported PPs, the anticancer mechanism and related structural features were systematically clarified. It was found that not only the direct effects on the cancer cells by proliferation inhibition or apoptosis, but also the regulation of immune system, gut microbiota and gut metabolism as indirect effects, jointly played important roles in the anticancer of PPs. Nevertheless, during the study of PPs as promising anticancer components, the exact structure-function relationship, digestion process in vivo, and comprehensive action mechanism are still not well understanding. With the unveiling of the proposed issues, it is believed that PPs are promising to be exploited as effective cancer therapy/adjunctive therapy drugs or functional foods.
Collapse
Affiliation(s)
- Fangfang Yue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Jiaxin Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Sitan Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xinyu Hu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
26
|
Iqbal H, Wright CL, Jones S, da Silva GR, McKillen J, Gilmore BF, Kavanagh O, Green BD. Extracts of Sida cordifolia contain polysaccharides possessing immunomodulatory activity and rosmarinic acid compounds with antibacterial activity. BMC Complement Med Ther 2022; 22:27. [PMID: 35086541 PMCID: PMC8793188 DOI: 10.1186/s12906-022-03502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The overuse of antibiotics has led to increased antimicrobial resistance, but plant-derived biological response modifiers represent a potential alternative to these drugs. This investigation examined the immunomodulatory and antibacterial activities of Sida cordifolia (used in ethnomedicinal systems to treat infectious disease). METHODS Successive extractions were performed from the roots of these plants in hexane, chloroform, methanol and water. Immunomodulatory activity was determined in a series of experiments measuring the responses of splenocytes, macrophages and an in vivo model of innate immunity (Galleria mellonella). Antibacterial activity was assessed by determining minimum inhibitory/bactericidal concentrations (MIC/MBCs) for various Gram-positive and Gram-negative bacterial strains. RESULTS Immunomodulatory activity was confined to the aqueous extract, and further fractionation and biochemical analysis yielded a highly potent polysaccharide-enriched fraction (SCAF5). SCAF5 is a complex mixture of different polysaccharides with multiple immunomodulatory effects including immune cell proliferation, antibody secretion, phagocytosis, nitric oxide production, and increased expression of pro-inflammatory cytokines. Furthermore, Galleria mellonella pre-treated with SCAF5 produced more haemocytes and were more resistant (P < 0.001) to infection with methicillin-resistant Staphylococcus aureus (MRSA) with a 98% reduction in bacterial load in pre-treated larvae compared to the negative control. The antibacterial activity of Sida cordifolia was confined to the methanolic fraction. Extensive fractionation identified two compounds, rosmarinic acid and its 4-O-β-d-glucoside derivative, which had potent activity against Gram-positive antibiotic-resistant bacteria, including MRSA. CONCLUSIONS Sida cordifolia counters bacterial infections through a dual mechanism, and immunomodulatory polysaccharides from this plant should be isolated and characterised to realise their potential as anti-infective agents. Such properties could be developed as an antibiotic alternative (1) in the clinic and (2) alternative growth promoter for the agri-food industry.
Collapse
Affiliation(s)
- Haroon Iqbal
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Claire L Wright
- School of Science, Health & Technology, York St John University, York, YO31 7EX, UK
| | - Sue Jones
- School of Science, Health & Technology, York St John University, York, YO31 7EX, UK
| | - Goncalo Rosas da Silva
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - John McKillen
- Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast, BT4 3SD, UK
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Owen Kavanagh
- School of Science, Health & Technology, York St John University, York, YO31 7EX, UK
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AG, UK.
| |
Collapse
|
27
|
Ajarrag S, St-Pierre Y. Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers (Basel) 2021; 13:cancers13215533. [PMID: 34771696 PMCID: PMC8582867 DOI: 10.3390/cancers13215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Glioblastomas are among the most common and aggressive brain tumors. The high rate of recurrence and mortality associated with this cancer underscores the need for the development of new therapeutical targets. Galectins are among the new targets that have attracted the attention of many scientists working in the field of cancer. They form a group of small proteins found in many tissues where they accomplish various physiological roles, including regulation of immune response and resistance to cell death. In many types of cancer, however, production of abnormally high levels of galectins by cancer cells can be detrimental to patients. Elevated levels of galectins can, for example, suppress the ability of the host’s immune system to kill cancer cells. They can also provide cancer cells with resistance to drugs-induced cell death. Here, we review the recent progress that has contributed to a better understanding of the mechanisms of actions of galectins in glioblastoma. We also discuss recent development of anti-galectin drugs and the challenges associated with their use in clinical settings, with particular attention to their role in reducing the efficacy of immunotherapy, a promising treatment that exploits the capacity of the immune system to recognize and kill cancer cells. Abstract Traditional wisdom suggests that galectins play pivotal roles at different steps in cancer progression. Galectins are particularly well known for their ability to increase the invasiveness of cancer cells and their resistance to drug-induced cell death. They also contribute to the development of local and systemic immunosuppression, allowing cancer cells to escape the host’s immunological defense. This is particularly true in glioma, the most common primary intracranial tumor. Abnormally high production of extracellular galectins in glioma contributes to the establishment of a strong immunosuppressive environment that favors immune escape and tumor progression. Considering the recent development and success of immunotherapy in halting cancer progression, it is logical to foresee that galectin-specific drugs may help to improve the success rate of immunotherapy for glioma. This provides a new perspective to target galectins, whose intracellular roles in cancer progression have already been investigated thoroughly. In this review, we discuss the mechanisms of action of galectins at different steps of glioma progression and the potential of galectin-specific drugs for the treatment of glioma.
Collapse
|
28
|
Jin D, Zhang Y, Zhang Y, Duan L, Zhou R, Duan Y, Sun Y, Lian F, Tong X. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Front Pharmacol 2021; 12:734151. [PMID: 34512359 PMCID: PMC8426624 DOI: 10.3389/fphar.2021.734151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C.A.Mey. has been widely consumed as food/diet supplements from natural sources, and its therapeutic properties have also aroused widespread concern. Therapeutic properties of Panax ginseng C.A.Mey. such as anti-inflammatory, ameliorating chronic inflammation, enhancing the immunity, resisting the oxidation again, and regulating the glucose and lipid metabolism have been widely reported. Recent years, lots of interesting studies have reported the potential use of Panax ginseng C.A.Mey. in the management of DKD. DKD has become the leading cause of end-stage renal disease worldwide, which increases the risk of premature death and poses a serious financial burden. Although DKD is somehow controllable with different drugs such as Angiotensin-Converting Enzyme Inhibitors (ACEI), Angiotensin Receptor Blockers (ARB) and lowering-glucose agents, modern dietary changes associated with DKD have facilitated research to assess the preventive and therapeutic merits of diet supplements from natural sources as medicine including Panax ginseng C.A.Mey. Findings from many scientific evidences have suggested that Panax ginseng C.A.Mey. can relieve the pathological status in cellular and animal models of DKD. Moreover, a few studies showed that alleviation of clinical phenotype such as reducing albuminuria, serum creatinine and renal anemia in DKD patients after application or consumption of Panax ginseng C.A.Mey.. Therefore, this review aims to discuss the effectiveness of Panax ginseng C.A.Mey. as medicine for targeting pathological phenotypes in DKD from a pharmacological perspective. This review will provide new insights into the potential understanding use of Panax ginseng C.A.Mey. in the management of DKD in clinical settings.
Collapse
Affiliation(s)
- De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqin Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingyin Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Galectins in Cancer and the Microenvironment: Functional Roles, Therapeutic Developments, and Perspectives. Biomedicines 2021; 9:biomedicines9091159. [PMID: 34572346 PMCID: PMC8465754 DOI: 10.3390/biomedicines9091159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in cell growth and metabolism are affected by the surrounding environmental factors to adapt to the cell’s most appropriate growth model. However, abnormal cell metabolism is correlated with the occurrence of many diseases and is accompanied by changes in galectin (Gal) performance. Gals were found to be some of the master regulators of cell–cell interactions that reconstruct the microenvironment, and disordered expression of Gals is associated with multiple human metabolic-related diseases including cancer development. Cancer cells can interact with surrounding cells through Gals to create more suitable conditions that promote cancer cell aggressiveness. In this review, we organize the current understanding of Gals in a systematic way to dissect Gals’ effect on human disease, including how Gals’ dysregulated expression affects the tumor microenvironment’s metabolism and elucidating the mechanisms involved in Gal-mediated diseases. This information may shed light on a more precise understanding of how Gals regulate cell biology and facilitate the development of more effective therapeutic strategies for cancer treatment by targeting the Gal family.
Collapse
|
30
|
Wu B, Song Q, Li W, Xie Y, Luo S, Tian Q, Zhao R, Liu T, Wang Z, Han F. Characterization and functional study of a chimera galectin from yellow drum Nibea albiflora. Int J Biol Macromol 2021; 187:361-372. [PMID: 34314796 DOI: 10.1016/j.ijbiomac.2021.07.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022]
Abstract
Galectins are protein that participates in a variety of immune responses in the process of pathogenic infections. In the present study, a chimera galectin gene was screened from the transcriptome database of Nibea albiflora, which was named as YdGal-3. The results of qRT-PCR showed that the mRNA transcripts of YdGal-3 were ubiquitously distributed in all the detected tissues. After infection with Vibrio harveyi, the expression of YdGal-3 in liver, spleen, and head kidney increased significantly. Immunohistochemistry showed that YdGal-3 protein was widely expressed in the head kidney. The purified YdGal-3 protein by prokaryotic expression agglutinated red blood cells. Sugar inhibition assay showed that the agglutinating activity of YdGal-3 protein was inhibited by different sugars including lactose, D-galactose, and lipopolysaccharide. In addition, we mutated YdGal-3 His 294 into proline (P), alanine (A), glycine (G), and aspartic acid (D), it was further proved that the residue plays a key role in agglutination. YdGal-3 agglutinated some gram-negative bacteria including Pseudomonas plecoglossicida, Vibrio parahemolyticus, V. harveyi, and Aeromonas hydrophila, and exhibited antibacterial activity. These results suggested that YdGal-3 protein played an important role in the innate immunity of N. albiflora.
Collapse
Affiliation(s)
- Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Qing Song
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yangjie Xie
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shuai Luo
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Qianqian Tian
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ruixiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tong Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
31
|
Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation. Proc Natl Acad Sci U S A 2021; 118:2021074118. [PMID: 33952698 DOI: 10.1073/pnas.2021074118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Galectin-3 (Gal-3) has a long, aperiodic, and dynamic proline-rich N-terminal tail (NT). The functional role of the NT with its numerous prolines has remained enigmatic since its discovery. To provide some resolution to this puzzle, we individually mutated all 14 NT prolines over the first 68 residues and assessed their effects on various Gal-3-mediated functions. Our findings show that mutation of any single proline (especially P37A, P55A, P60A, P64A/H, and P67A) dramatically and differentially inhibits Gal-3-mediated cellular activities (i.e., cell migration, activation, endocytosis, and hemagglutination). For mechanistic insight, we investigated the role of prolines in mediating Gal-3 oligomerization, a fundamental process required for these cell activities. We showed that Gal-3 oligomerization triggered by binding to glycoproteins is a dynamic process analogous to liquid-liquid phase separation (LLPS). The composition of these heterooligomers is dependent on the concentration of Gal-3 as well as on the concentration and type of glycoprotein. LLPS-like Gal-3 oligomerization/condensation was also observed on the plasma membrane and disrupted endomembranes. Molecular- and cell-based assays indicate that glycan binding-triggered Gal-3 LLPS (or LLPS-like) is driven mainly by dynamic intermolecular interactions between the Gal-3 NT and the carbohydrate recognition domain (CRD) F-face, although NT-NT interactions appear to contribute to a lesser extent. Mutation of each proline within the NT differentially controls NT-CRD interactions, consequently affecting glycan binding, LLPS, and cellular activities. Our results unveil the role of proline polymorphisms (e.g., at P64) associated with many diseases and suggest that the function of glycosylated cell surface receptors is dynamically regulated by Gal-3.
Collapse
|
32
|
Zhang S, Qiao Z, Zhao Z, Guo J, Lu K, Mayo KH, Zhou Y. Comparative study on the structures of intra- and extra-cellular polysaccharides from Penicillium oxalicum and their inhibitory effects on galectins. Int J Biol Macromol 2021; 181:793-800. [PMID: 33857510 DOI: 10.1016/j.ijbiomac.2021.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Here, we compare the content and composition of polysaccharides derived from the mycelium (40.4 kDa intracellular polysaccharide, IPS) and culture (27.2 kDa extracellular polysaccharide, EPS) of Penicillium oxalicum. Their chemical structures investigated by IR, NMR, enzymolysis and methylation analysis indicate that both IPS and EPS are galactomannans composed of α-1,2- mannopyranose (Manp) and α-1,6-Manp in a backbone ratio of ~3:1, respectively, both decorated with β-l,5-galactofuranose (Galf) side chains. A few β-l,6-Galf residues were also detected in the IPS fraction. EPS and IPS have different molecular weights (Mw) and degrees of branching. IPS obtained by alkaline extraction of P. oxalicum have been reported to be galactofuranans, a composition different from our IPS. Up to now, there have been no reports on the fine structure of EPS. Our results of galectin-mediated hemagglutination demonstrate that IPS exhibits greater inhibitory effects on five galectins compared with EPS. In addition, we find that Galf, a five-membered ring form of galactose, can also inhibit galectins. IPS may provide a new source of galectin inhibitors. These results increase our understanding of structure-activity relationships of polysaccharides as galectin inhibitors.
Collapse
Affiliation(s)
- Siying Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhonghui Qiao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zihan Zhao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jiao Guo
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Kaiwen Lu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
33
|
Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Song J. Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Front Immunol 2021; 12:652687. [PMID: 33868291 PMCID: PMC8044852 DOI: 10.3389/fimmu.2021.652687] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
T cells undergo metabolic reprogramming and multiple biological processes to satisfy their energetic and biosynthetic demands throughout their lifespan. Several of these metabolic pathways result in the generation of reactive oxygen species (ROS). The imbalance between ROS generation and scavenging could result in severe damage to the cells and potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an essential role in T cell immunity. Here, we introduce the important connectivity between T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also discuss the generation and sources of ROS production within T cell immunity as well as highlight recent research concerning the effects of ROS on T cell activities.
Collapse
Affiliation(s)
- Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Lucavs
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Darby Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
34
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|
35
|
Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. Food Res Int 2021; 140:109859. [PMID: 33648177 DOI: 10.1016/j.foodres.2020.109859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
A neutral polysaccharide fraction (WGFPN) was isolated from Panax ginseng flowers. Monosaccharide composition and HPSEC-MALLS-RI (high-performance size exclusion chromatography coupled with multi-angle laser light scattering detector and refractive index detector) analyses showed WGFPN was a heterogalactan with a molecular weight of 11.0 kDa. Methylation, 1D/2D NMR (nuclear magnetic resonance) spectra and enzymatic hydrolysis methods were used to characterize the structure of WGFPN. It possessed a less branched (1 → 4)-β-D-galactan and a significantly branched (1 → 6)-β-D-galactan. The side chains of (1 → 6)-β-D-galactan were branched with α-L-1,5-Araf and t-α-L-Araf residues at O-3. Trace amount of 1,4-linked Glcp, terminal Galp, terminal Glcp and terminal Manp residues might attached to the 1,6-linked galactan through O-3 or 1,4-linked galactan through O-6 as side chains. WGFPN could activate RAW264.7 macrophages through increasing macrophage phagocytosis, releasing NO and secreting TNF-α, IL-6, IFN-γ and IL-1β in vitro. Moreover, WGFPN could enhance the immunity of cyclophosphamide (CTX)-induced immunosuppressed mice in vivo. Hence, WGFPN might be a potential natural immunomodulatory agent.
Collapse
|
36
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
37
|
Zheng Z, Pan X, Xu J, Wu Z, Zhang Y, Wang K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol 2020; 163:1403-1420. [DOI: 10.1016/j.ijbiomac.2020.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
|
38
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Liu W, Xiao K, Ren L, Sui Y, Chen J, Zhang T, Li XQ, Cao W. Leukemia cells apoptosis by a newly discovered heterogeneous polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 2020; 241:116279. [DOI: 10.1016/j.carbpol.2020.116279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023]
|
40
|
Wu D, Zheng J, Hu W, Zheng X, He Q, Linhardt RJ, Ye X, Chen S. Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor. Carbohydr Polym 2020; 245:116526. [PMID: 32718630 DOI: 10.1016/j.carbpol.2020.116526] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022]
Abstract
Rhamnogalacturonan I (RG-I) pectin are regarded as strong galectin-3 (Gal-3) antagonist because of galactan sidechains. The present study focused on discussing the effects of more structural regions in pectin on the anti-Gal-3 activity. The water-soluble pectin (WSP) recovered from citrus canning processing water was categorized as RG-I pectin. The controlled enzymatic hydrolysis was employed to sequentially remove the α-1,5-arabinan, homogalaturonan and β-1,4-galactan in WSP. The Gal-3-binding affinity KD (kd/ka) of WSP and debranched pectins were calculated to be 0.32 μM, 0.48 μM, 0.56 μM and 1.93 μM. Moreover, based on the more sensitive cell line (MCF-7) model, the IC30 value of WSP was lower than these of modified pectins, indicating decreased anti-Gal-3 activity. Our results suggested that the total amount of neutral sugar sidechains, the length of arabinan and cooperation between HG and RG-I played important roles in the anti-Gal-3 activity of WSP, not the Gal/Ara ratio or RG-I/HG ratio. These results provided a new insight into structure-activity relationship of citrus segment membrane RG-I as a galectin-3 antagonist and a new functional food.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
41
|
Khotimchenko M. Pectin polymers for colon-targeted antitumor drug delivery. Int J Biol Macromol 2020; 158:S0141-8130(20)33147-0. [PMID: 32387365 DOI: 10.1016/j.ijbiomac.2020.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
The use of chemotherapeutic drugs in the treatment of malignant tumors is always associated with the severe side effects negatively affecting all organs and systems in human body. One of the approaches for reduction of the toxic influence and enhancement of the antitumor drug administration efficiency is supposed to be the use of the biopolymer delivery systems. Pectins are considered the most promising components for colon targeted drug dosage forms as they are stable in the changing gastrointestinal media and easily degraded by pectinases produced by colonic microflora. A various range of the pectin-containing delivery systems were developed contributing higher concentration of the active drug molecules in particular site inside intestine and their lower blood level resulting in lowered risk of the severe side effects. This review discusses the various forms of the pectin-based materials such as hydrogels, tablets and pellets, films, microspheres, microsponges, nanoparticles, etc. as drug delivery device and attempted to report the vast literature available on pectin biopolymers in drug delivery applications.
Collapse
Affiliation(s)
- M Khotimchenko
- Department of Pharmacology and Pharmacy, School of Biomedicine, Far Eastern Federal University, Ayax-10, Russki island, Vladivostok 690920, Russia.
| |
Collapse
|
42
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|