1
|
Meier N, Berten‐Schunk L, Roger Y, Hänsch R, Hoffmann A, Bunjes H, Dempwolf W, Menzel H. Characterization of Thin Polymer Layer Prepared from Liposomes and Polyelectrolytes for TGF-β 3 Release in Tissue Engineering. Macromol Biosci 2025; 25:e2400447. [PMID: 39803844 PMCID: PMC11995839 DOI: 10.1002/mabi.202400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Indexed: 04/15/2025]
Abstract
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors. Sustained release is desired for many in vivo applications. The layer-by-layer technique also allows for the addition of extra layers, which can serve as "barriers" to delay the release. Electrospun Polycaprolactone (PCL) fiber mats are modified with a Chitosan (CS) grafted with PCL sidechains (CS-g-PCL24) and coated with transforming growth factor beta 3 (TGF-β3) loaded Chitosan/tripolyphosphate nanoparticles as a drug delivery system. Additional layers including polystyrene sulfonate, alginate, carboxymethyl cellulose, and liposomes (phosphatidylcholine) are applied. Streaming potential and X-ray photoelectron spectroscopy (XPS) measurements indicated a strong interpenetration of the chitosan and polyanion layers, while liposomes formed separate layers, which are more promising for sustained release. All samples release TGF-β3 at different cumulative levels without altering release kinetics. Variations in layer structure, interpenetration, and stability depending on the chitosan used are observed, which ultimately has minimal impact on the release kinetics. Polyelectrolyte layers strongly interpenetrated the active layers and therefore do not act as effective diffusion barriers, while the liposome layer, though separated, lacked sufficient stability.
Collapse
Affiliation(s)
- Nils Meier
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Leonie Berten‐Schunk
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Yvonne Roger
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Robert Hänsch
- Institute of Plant BiologyTU BraunschweigHumboldtstraße 138106BraunschweigGermany
| | - Andrea Hoffmann
- Department of Orthopedic SurgeryHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
- Graded Implants and Regenerative StrategiesNiedersächsisches Zentrum für BiomedizintechnikImplantatforschung und Entwicklung (NIFE)Stadtfelddamm 3430625HannoverGermany
| | - Heike Bunjes
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigMendelssohnstrasse 138106BraunschweigGermany
| | - Wibke Dempwolf
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Henning Menzel
- Institute for Technical ChemistryMacromolecular ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
2
|
Binsi P, Parvathy U, Jeyakumari A, George Thomas N, Zynudheen A. Marine biopolymers in cosmetics. MARINE BIOPOLYMERS 2025:677-752. [DOI: 10.1016/b978-0-443-15606-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Signorini S, Pescina S, Ricci C, Del Favero E, Vivero-Lopez M, Alvarez-Lorenzo C, Santi P, Padula C, Nicoli S. Innovative formulations for the ocular delivery of coenzyme Q10. Drug Deliv Transl Res 2024:10.1007/s13346-024-01739-y. [PMID: 39645537 DOI: 10.1007/s13346-024-01739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/09/2024]
Abstract
Coenzyme Q10 (CoQ10) is a lipophilic antioxidant agent that plays a crucial role in the mitochondrial electron transport chain. The neuroprotective role of CoQ10, countering mitochondrial dysfunction and oxidative stress, suggests its potential as an adjuvant for ocular neurodegenerative diseases linked to retinal cell loss. However, despite its promising properties, ocular barriers pose challenges for effective delivery. Therefore, the present work aimed to identify new ocular delivery strategies to improve the therapeutic potential of CoQ10 by increasing its ocular bioavailability at the posterior segment and supporting its controlled release. Polymeric micelles of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as carriers for the loading of CoQ10, increasing its solubility and promoting its penetration through ocular tissues. After their characterization by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), loaded micelles were applied to porcine sclera and choroid to confirm their ex vivo retention and permeation capacity. To ensure a controlled release, they were then loaded into a crosslinked polymer film, which was characterized in terms of mechanical properties, swelling degree and release profiles of TPGS and CoQ10. The biocompatibility of this platform was tested by the HET-CAM assay, and ex vivo studies confirmed its ocular potential.
Collapse
Affiliation(s)
- Sara Signorini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
| | - Caterina Ricci
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20054, Segrate, MI, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20054, Segrate, MI, Italy
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, I+D Farma (GI-1645), 15782, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, I+D Farma (GI-1645), 15782, Santiago de Compostela, Spain
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy.
| |
Collapse
|
4
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024; 66:237-249. [PMID: 38218581 PMCID: PMC11674785 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
| | | | | | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
5
|
Hu C, Hou B, Yang F, Huang X, Chen Y, Liu C, Xiao X, Zou L, Deng J, Xie S. Enhancing diabetic wound healing through anti-bacterial and promoting angiogenesis using dual-functional slow-release microspheres-loaded dermal scaffolds. Colloids Surf B Biointerfaces 2024; 242:114095. [PMID: 39018912 DOI: 10.1016/j.colsurfb.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacterial infections and the degeneration of the capillary network comprise the primary factors that contribute to the delayed healing of diabetic wounds. However, treatment modalities that cater to effective diabetic wounds healing in clinical settings are severely lacking. Herein, a dual-functional microsphere carrier was designed, which encapsulates polyhexamethylene biguanide (PHMB) or recombinant human vascular endothelial growth factor (rhVEGF) together. The in vitro release experiments demonstrated that the use of the microspheres ensured the sustained release of the drugs (PHMB or rhVEGF) over a period of 12 days. Additionally, the integration of these controlled-release microspheres into a dermal scaffold (DS-PLGA@PHMB/rhVEGF) imbued both antibacterial and angiogenic functions to the resulting material. Accordingly, the DS-PLGA@PHMB/rhVEGF scaffold exhibited potent antibacterial properties, effectively suppressing bacterial growth and providing a conducive environment for wound healing, thereby addressing the drawbacks associated with the susceptibility of rhVEGF to deactivation in inflammatory conditions. Additionally, the histological analysis revealed that the use of the DS-PLGA@PHMB/rhVEGF scaffold accelerated the process of wound healing by inhibiting inflammatory reactions, stimulating the production of collagen formation, and enhancing angiogenesis. This provides a novel solution for enhancing the antibacterial and vascularization capabilities of artificial dermal scaffolds, providing a beacon of hope for improving diabetic wound healing.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Medical School, University of Chinese Academy of Sciences, Beijing 100010, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Beijing 100010, China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Fen Yang
- Department of Infectious Diseases, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Lihua Zou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| | - Jun Deng
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing 400038, China.
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| |
Collapse
|
6
|
Ponte ED, de Almeida Ignatowicz A, Volpato GR, Taffarel JV, Takahashi PA, Luiz RM, Silva FEB, Fraga GN, Dragunski DC, Zarpelon-Schutz AC, Alves HJ, Bernardi-Wenzel J. Production and Characterization of Electrospun Chitosan, Nanochitosan and Hyaluronic Acid Membranes for Skin Wound Healing. J Biomed Mater Res B Appl Biomater 2024; 112:e35485. [PMID: 39324392 DOI: 10.1002/jbm.b.35485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The development of new wound dressings made from biomaterials, which offer a better cost-benefit ratio and accelerate the healing process, is increasing nowadays. Various biopolymers can be electrospun to form functional membranes for wound healing. Therefore, in this study, chitosan and nanochitosan membranes with or without hyaluronic acid were prepared using the electrospinning technique, characterized and evaluated in the healing of skin wounds in rats. Chitosan and nanochitosan solutions, with or without hyaluronic acid, were prepared at concentrations of 1%-4% using PEO (polyethylene oxide) and subjected to the electrospinning process to obtain membranes characterized by scanning electron microscopy (SEM), mechanical tests, and antimicrobial activity. The healing effect of the membranes was evaluated by monitoring the area of the lesions, contraction of the wounds, histologic analysis, and induction of pro-inflammatory cytokine (IL-1 α and TNF-α) production in rats. The nanochitosan and nanochitosan membranes with hyaluronic acid achieved greater fiber diameter and uniformity, resistance, elasticity, and thermal stability, in addition to good adhesion to the wound bed and permeation capacity. Despite not presenting antimicrobial activity in vitro, they contributed to the production of pro-inflammatory interleukins in the animals tested, provided physical protection, reduced the wound area more markedly until the seventh day of the evaluation, with an acceleration of the healing process and especially when functionalized with hyaluronic acid. These results indicate that the membranes may be promising for accelerating the healing process of chronic wounds in humans.
Collapse
Affiliation(s)
- Edimar Dal Ponte
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
| | | | | | | | | | | | - Felipe Eduardo Bueno Silva
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Gabriel Nardi Fraga
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Douglas Cardoso Dragunski
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Ana Carla Zarpelon-Schutz
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| | - Helton José Alves
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Juliana Bernardi-Wenzel
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| |
Collapse
|
7
|
Song Y, Hu Q, Liu S, Wang Y, Zhang H, Chen J, Yao G. Electrospinning/3D printing drug-loaded antibacterial polycaprolactone nanofiber/sodium alginate-gelatin hydrogel bilayer scaffold for skin wound repair. Int J Biol Macromol 2024; 275:129705. [PMID: 38272418 DOI: 10.1016/j.ijbiomac.2024.129705] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Skin injuries and defects, as a common clinical issue, still cannot be perfectly repaired at present, particularly large-scale and infected skin defects. Therefore, in this work, a drug-loaded bilayer skin scaffold was developed for repairing full-thickness skin defects. Briefly, amoxicillin (AMX) was loaded on polycaprolactone (PCL) nanofiber via electrospinning to form the antibacterial nanofiber membrane (PCL-AMX) as the outer layer of scaffold to mimic epidermis. To maintain wound wettability and promote wound healing, external human epidermal growth factor (rhEGF) was loaded in sodium alginate-gelatin to form the hydrogel structure (SG-rhEGF) via 3D printing as inner layer of scaffold to mimic dermis. AMX and rhEGF were successfully loaded into the scaffold. The scaffold exhibited excellent physicochemical properties, with elongation at break and tensile modulus were 102.09 ± 6.74% and 206.83 ± 32.10 kPa, respectively; the outer layer was hydrophobic (WCA was 112.09 ± 4.67°), while the inner layer was hydrophilic (WCA was 48.87 ± 5.52°). Meanwhile, the scaffold showed excellent drug release and antibacterial characteristics. In vitro and in vivo studies indicated that the fabricated scaffold could enhance cell adhesion and proliferation, and promote skin wound healing, with favorable biocompatibility and great potential for skin regeneration and clinical application.
Collapse
Affiliation(s)
- Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yahao Wang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Jianghan Chen
- Department of Dermatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Guotai Yao
- Department of Dermatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
8
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
9
|
Blomstrand E, Posch E, Stepulane A, Rajasekharan AK, Andersson M. Antibacterial and Hemolytic Activity of Antimicrobial Hydrogels Utilizing Immobilized Antimicrobial Peptides. Int J Mol Sci 2024; 25:4200. [PMID: 38673786 PMCID: PMC11050424 DOI: 10.3390/ijms25084200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are viewed as potential compounds for the treatment of bacterial infections. Nevertheless, the successful translation of AMPs into clinical applications has been impeded primarily due to their low stability in biological environments and potential toxicological concerns at higher concentrations. The covalent attachment of AMPs to a material's surface has been sought to improve their stability. However, it is still an open question what is required to best perform such an attachment and the role of the support. In this work, six different AMPs were covalently attached to a long-ranged ordered amphiphilic hydrogel, with their antibacterial efficacy evaluated and compared to their performance when free in solution. Among the tested AMPs were four different versions of synthetic end-tagged AMPs where the sequence was altered to change the cationic residue as well as to vary the degree of hydrophobicity. Two previously well-studied AMPs, Piscidin 1 and Omiganan, were also included as comparisons. The antibacterial efficacy against Staphylococcus aureus remained largely consistent between free AMPs and those attached to surfaces. However, the activity pattern against Pseudomonas aeruginosa on hydrogel surfaces displayed a marked contrast to that observed in the solution. Additionally, all the AMPs showed varying degrees of hemolytic activity when in solution. This activity was entirely diminished, and all the AMPs were non-hemolytic when attached to the hydrogels.
Collapse
Affiliation(s)
- Edvin Blomstrand
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Elin Posch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Annija Stepulane
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| | - Anand K. Rajasekharan
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| |
Collapse
|
10
|
Lu R, Zhou X, Peng K, Liu C, Yuan T, Li P, Zhang S. High-Density Dynamic Bonds Cross-Linked Hydrogel with Tissue Adhesion, Highly Efficient Self-Healing Behavior, and NIR Photothermal Antibacterial Ability as Dressing for Wound Repair. Biomacromolecules 2024; 25:2486-2496. [PMID: 38427705 DOI: 10.1021/acs.biomac.3c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Multifunctional hydrogels with tissue adhesion, self-healing behavior, and antibacterial properties have potential in wound healing applications. However, their inefficient self-healing behavior and antibacterial agents can cause long-term cytotoxicity and drug resistance, considerably limiting their clinical use. Herein, we reported a PDA@LA hydrogel constructed by introducing polydopamine nanoparticles (PDA-NPs) into a high-density dynamic bonds cross-linked lipoic acid (LA) hydrogel that was formed by the polymerization of LA. Because of its rich carboxyl groups, the LA hydrogel could adhere firmly to various tissues. Owing to the high-density dynamic bonds, the cut LA hydrogel exhibited highly inefficient self-healing behavior and recovered to its uncut state after self-healing for 10 min. After the introduction of the PDA-NPs, the hydrogel was able to heat up to more than 40 °C to kill approximately 100% of the Escherichia coli and Staphylococcus aureus under near-infrared (NIR) laser, thus resisting wound infections. Because no toxic antibacterial agent was used, the PDA@LA hydrogel caused mild long-term cytotoxicity or drug resistance. Consequently, the adhesive, highly efficient self-healing, and NIR photothermal antibacterial PDA@LA hydrogel exhibits considerable potential for clinical use.
Collapse
Affiliation(s)
- Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaodong Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Ke Peng
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Chen Liu
- Department of Orthopedics, Chengdu Second People's Hospital, NO. 10, Qingyun South Street, Chengdu 610011, China
| | - Tun Yuan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
11
|
Bianchi E, Ruggeri M, Del Favero E, Pisano R, Artusio F, Ricci C, Vigani B, Ferraretto A, Boselli C, Icaro Cornaglia A, Rossi S, Sandri G. Chondroitin sulfate and caseinophosphopeptides doped polyurethane-based highly porous 3D scaffolds for tendon-to-bone regeneration. Int J Pharm 2024; 652:123822. [PMID: 38242257 DOI: 10.1016/j.ijpharm.2024.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Tendon disorders are common injuries, which can be greatly debilitating as they are often accompanied by great pain and inflammation. Moreover, several problems are also related to the laceration of the tendon-to-bone interface (TBI), a specific region subjected to great mechanical stresses. The techniques used nowadays for the treatment of tendon and TBI injuries often involve surgery. However, one critical aspect of this procedure involves the elevated risk of fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with tunable elastic and mechanical properties, that could guarantee an effective support during the new tissue formation. Based on these premises, the aim of this work was the design and the development of highly porous 3D scaffolds based on thermoplastic polyurethane, and doped with chondroitin sulfate and caseinophosphopeptides, able to mimic the structural, biomechanical, and biochemical functions of the TBI. The obtained scaffolds were characterized by a homogeneous microporous structure, and by a porosity optimal for cell nutrition and migration. They were also characterized by remarkable mechanical properties, reaching values comparable to the ones of the native tendons. The scaffolds promoted the tenocyte adhesion and proliferation when caseinophosphopetides and chondroitin sulfate are present in the 3D structure. In particular, caseinophosphopeptides' optimal concentration for cell proliferation resulted 2.4 mg/mL. Finally, the systems evaluation in vivo demonstrated the scaffolds' safety, since they did not cause any inflammatory effect nor foreign body response, representing interesting platforms for the regeneration of injured TBI.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology (DISAT), Polytechnic of Torino, Torino, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology (DISAT), Polytechnic of Torino, Torino, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, Milan, Italy; Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Yang P, Lu Y, Gou W, Qin Y, Tan J, Luo G, Zhang Q. Glycosaminoglycans' Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305918. [PMID: 38072674 PMCID: PMC10916610 DOI: 10.1002/advs.202305918] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Indexed: 03/07/2024]
Abstract
Glycosaminoglycans (GAGs) are important for the occurrence of signaling molecules and maintenance of microenvironment within the extracellular matrix (ECM) in living tissues. GAGs and GAG-based biomaterial approaches have been widely explored to promote in situ tissue regeneration and repair by regulating the wound microenvironment, accelerating re-epithelialization, and controlling ECM remodeling. However, most approaches remain unacceptable for clinical applications. To improve insights into material design and clinical translational applications, this review highlights the innate roles and bioactive mechanisms of native GAGs during in situ wound healing and presents common GAG-based biomaterials and the adaptability of application scenarios in facilitating wound healing. Furthermore, challenges before the widespread commercialization of GAG-based biomaterials are shared, to ensure that future designed and constructed GAG-based artificial biomaterials are more likely to recapitulate the unique and tissue-specific profile of native GAG expression in human tissues. This review provides a more explicit and clear selection guide for researchers designing biomimetic materials, which will resemble or exceed their natural counterparts in certain functions, thereby suiting for specific environments or therapeutic goals.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yifei Lu
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Weiming Gou
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yiming Qin
- Department of Dermatology and Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041China
| | - Jianglin Tan
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Qing Zhang
- Institute of Burn ResearchState Key Laboratory of TraumaBurn and Combined InjurySouthwest HospitalThird Military Medical UniversityChongqing400038China
| |
Collapse
|
13
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
14
|
Miele D, Ruggeri M, Vigani B, Viseras C, Natali F, Del Favero E, Rossi S, Sandri G. Nanoclay-Doped Electrospun Nanofibers for Tissue Engineering: Investigation on the Structural Modifications in Physiological Environment. Int J Nanomedicine 2023; 18:7695-7710. [PMID: 38111847 PMCID: PMC10726802 DOI: 10.2147/ijn.s431862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023] Open
Abstract
Background Clay minerals are nanomaterials that have recently been recognized as enabling excipients that can promote cell adhesion, proliferation, and differentiation. When nanoclays are loaded in a 3D polymeric nanostructure, the cell-substrate interaction is enhanced, and other bioactive properties are optimized. Purpose In this study, hectorite (HEC)- and montmorillonite (MMT)-doped polymeric scaffolds were explored for the treatment of deep and chronic skin lesions. Methods Scaffolds were manufactured by means of electrospinning and then crosslinked by heating. Physicochemical analyses were correlated with in vitro biopharmaceutical characterization to predict the in vivo fate of the clay-doped scaffolds. Results and Discussion The addition of MMT or HEC to the polymeric scaffold framework modifies the surface arrangement and, consequently, the potential of the scaffolds to interact with biological proteins. The presence of nanoclays alters the nanofiber morphology and size, and MMT doping increases wettability and protein adhesion. This has an impact on fibroblast behavior in a shorter time since scaffold stiffness facilitates cell adhesion and cell proliferation. Conclusion MMT proved to perform better than HEC, and this could be related to its higher hydrophilicity and protein adhesion.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain
| | | | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate Milano, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
15
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
16
|
Du J, Fan L, Razal JM, Chen S, Zhang H, Yang H, Li H, Li J. Strontium-doped mesoporous bioglass nanoparticles for enhanced wound healing with rapid vascularization. J Mater Chem B 2023; 11:7364-7377. [PMID: 37431606 DOI: 10.1039/d3tb01256e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tissue engineered skin and its substitutes have a promising future in wound healing. However, enabling fast formation of blood vessels during the wound healing process is still a huge challenge to the currently available wound substitutes. In this work, active mesoporous bioglass nanoparticles with a high specific surface area and doped with strontium (Sr) were fabricated for rapid microvascularization and wound healing. The as-prepared bioglass nanoparticles with Sr ions significantly promoted the proliferation of fibroblasts and microvascularization of human umbilical vein endothelial cells in vitro. Silk fibroin sponges encapsulating the nanoparticles accelerated wound healing by promoting the formation of blood vessels and epithelium in vivo. This work provides a strategy for the design and development of active biomaterials for enhancing wound healing by rapid vascularization and epithelial reconstruction.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
17
|
Bianchi E, Ruggeri M, Vigani B, Del Favero E, Ricci C, Boselli C, Icaro Cornaglia A, Viseras C, Rossi S, Sandri G. Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220144 DOI: 10.1021/acsami.3c06144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, Pavia 27100 , Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
18
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
19
|
Han X, Zhao M, Xu R, Zou Y, Wang Y, Liang J, Jiang Q, Sun Y, Fan Y, Zhang X. Electrospun Hyaluronan Nanofiber Membrane Immobilizing Aromatic Doxorubicin as Therapeutic and Regenerative Biomaterial. Int J Mol Sci 2023; 24:ijms24087023. [PMID: 37108186 PMCID: PMC10138354 DOI: 10.3390/ijms24087023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.
Collapse
Affiliation(s)
- Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Miele D, Nomicisio C, Musitelli G, Boselli C, Icaro Cornaglia A, Sànchez-Espejo R, Vigani B, Viseras C, Rossi S, Sandri G. Design and development of polydioxanone scaffolds for skin tissue engineering manufactured via green process. Int J Pharm 2023; 634:122669. [PMID: 36736969 DOI: 10.1016/j.ijpharm.2023.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Fiber spinning technologies attracted a great interest since the beginning of the last century. Among these, electrospinning is a widely diffuse technique; however, it presents some drawbacks such as low fiber yield, high energy demand and the use of organic solvents. On the contrary, centrifugal spinning is a more sustainable method and allows to obtain fiber using centrifugal force and melted materials. The aim of the present work was the design and the development of polydioxanone (PDO) microfibers intended for tissue engineering, using centrifugal spinning. PDO, a bioresorbable polymer currently used for sutures, was selected as low melting polyester and DES (deep eutectic solvents), either choline chloride/citric acid (ChCl/CA) or betaine/citric acid (Bet/CA) 1:1 M ratio, were used to improve PDO spinnability. Physical mixtures of DES and PDO were prepared using different weight ratios. These were then poured into the spinneret and melted at 140 °C for 5 min. After the complete melting, the blends were spun for 1 min at 700 rpm. The fibers were characterized for physico chemical properties (morphology; dimensions; chemical structure; thermal behavior; mechanical properties). Moreover, the preclinical investigation was performed in vitro (biocompatibility, adhesion and proliferation of fibroblasts) and in vivo (murine burn/excisional model to assess safety and efficacy). The multidisciplinary approach allowed to obtain an extensive characterization to develop PDO based microfibers as medical device for implant to treat full thickness skin wounds.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Musitelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada 18071, Spain
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Feng H, Wang Z, Sajab MS, Abdul PM, Ding G. A novel chitinous nanoparticles prepared and characterized with black soldier fly (Hermetia illucens L.) using steam flash explosion treatment. Int J Biol Macromol 2023; 230:123210. [PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Haiyue Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China.
| |
Collapse
|
22
|
Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res 2023; 27:1. [PMID: 36597149 PMCID: PMC9808966 DOI: 10.1186/s40824-022-00338-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yue Hu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| | - Lanjie Lei
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
23
|
Bianchi E, Faccendini A, Del Favero E, Ricci C, Caliogna L, Vigani B, Pavesi FC, Perotti C, Domingues RMA, Gomes ME, Rossi S, Sandri G. Topographical and Compositional Gradient Tubular Scaffold for Bone to Tendon Interface Regeneration. Pharmaceutics 2022; 14:pharmaceutics14102153. [PMID: 36297586 PMCID: PMC9607365 DOI: 10.3390/pharmaceutics14102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The enthesis is an extremely specific region, localized at the tendon–bone interface (TBI) and made of a hybrid connection of fibrocartilage with minerals. The direct type of enthesis tissue is commonly subjected to full laceration, due to the stiffness gradient between the soft tissues and hard bone, and this often reoccurs after surgical reconstruction. For this purpose, the present work aimed to design and develop a tubular scaffold based on pullulan (PU) and chitosan (CH) and intended to enhance enthesis repair. The scaffold was designed with a topographical gradient of nanofibers, from random to aligned, and hydroxyapatite (HAP) nanoparticles along the tubular length. In particular, one part of the tubular scaffold was characterized by a structure similar to bone hard tissue, with a random mineralized fiber arrangement; while the other part was characterized by aligned fibers, without HAP doping. The tubular shape of the scaffold was also designed to be extemporarily loaded with chondroitin sulfate (CS), a glycosaminoglycan effective in wound healing, before the surgery. Micro CT analysis revealed that the scaffold was characterized by a continuous gradient, without interruptions from one end to the other. The gradient of the fiber arrangement was observed using SEM analysis, and it was still possible to observe the gradient when the scaffold had been hydrated for 6 days. In vitro studies demonstrated that human adipose stem cells (hASC) were able to grow and differentiate onto the scaffold, expressing the typical ECM production for tendon in the aligned zone, or bone tissue in the random mineralized part. CS resulted in a synergistic effect, favoring cell adhesion/proliferation on the scaffold surface. These results suggest that this tubular scaffold loaded with CS could be a powerful tool to support enthesis repair upon surgery.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, 20090 Segrate, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, 20090 Segrate, Italy
| | - Laura Caliogna
- Orthopedy, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Cesare Perotti
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy
| | - Rui M. A. Domingues
- 3B’s Research Group, i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, 4805-017 Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, 4805-017 Guimarães, Portugal
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
24
|
Peng Y, Lu M, Zhou Z, Wang C, Liu E, Zhang Y, Liu T, Zuo J. Natural biopolymer scaffold for meniscus tissue engineering. Front Bioeng Biotechnol 2022; 10:1003484. [PMID: 36246362 PMCID: PMC9561892 DOI: 10.3389/fbioe.2022.1003484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Meniscal injuries caused by trauma, degeneration, osteoarthritis, or other diseases always result in severe joint pain and motor dysfunction. Due to the unique anatomy of the human meniscus, the damaged meniscus lacks the ability to repair itself. Moreover, current clinical treatments for meniscal injuries, including meniscal suturing or resection, have significant limitations and drawbacks. With developments in tissue engineering, biopolymer scaffolds have shown promise in meniscal injury repair. They act as templates for tissue repair and regeneration, interacting with surrounding cells and providing structural support for newly formed meniscal tissue. Biomaterials offer tremendous advantages in terms of biocompatibility, bioactivity, and modifiable mechanical and degradation kinetics. In this study, the preparation and composition of meniscal biopolymer scaffolds, as well as their properties, are summarized. The current status of research and future research prospects for meniscal biopolymer scaffolds are reviewed in terms of collagen, silk, hyaluronic acid, chitosan, and extracellular matrix (ECM) materials. Overall, such a comprehensive summary provides constructive suggestions for the development of meniscal biopolymer scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Yachen Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Tong Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| |
Collapse
|
25
|
Silvestre WP, Duarte J, Tessaro IC, Baldasso C. Non-Supported and PET-Supported Chitosan Membranes for Pervaporation: Production, Characterization, and Performance. MEMBRANES 2022; 12:930. [PMID: 36295689 PMCID: PMC9607258 DOI: 10.3390/membranes12100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to develop non-supported and PET-supported chitosan membranes that were cross-linked with glutaraldehyde, then evaluate their physical-chemical, morphological, and mechanical properties, and evaluate their performance in the separation of ethanol/water and limonene/linalool synthetic mixtures by hydrophilic and target-organophilic pervaporation, respectively. The presence of a PET layer did not affect most of the physical-chemical parameters of the membranes, but the mechanical properties were enhanced, especially the Young modulus (76 MPa to 398 MPa), tensile strength (16 MPa to 27 MPa), and elongation at break (7% to 26%), rendering the supported membrane more resistant. Regarding the pervaporation tests, no permeate was obtained in target-organophilic pervaporation tests, regardless of membrane type. The support layer influenced the hydrophilic pervaporation parameters of the supported membrane, especially in reducing transmembrane flux (0.397 kg∙m-2∙h-1 to 0.121 kg∙m-2∙h-1) and increasing membrane selectivity (611 to 1974). However, the pervaporation separation index has not differed between membranes (228 for the non-supported and 218 for the PET-supported membrane), indicating that, overall, both membranes had a similar performance. Thus, the applicability of each membrane is linked to specific applications that require a more resistant membrane, greater transmembrane fluxes, and higher selectivity.
Collapse
Affiliation(s)
- Wendel Paulo Silvestre
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Jocelei Duarte
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Isabel Cristina Tessaro
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Camila Baldasso
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
26
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
27
|
Li C, Zhang Q, Lan D, Cai M, Liu Z, Dai F, Cheng L. ε-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties. Int J Biol Macromol 2022; 220:1049-1059. [PMID: 36027988 DOI: 10.1016/j.ijbiomac.2022.08.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Many complex diseases, such as bacterial infections, frequently accompany cutaneous wound healing, adding to the difficulty of clinical wound management. Consequently, in addition to displaying strong biocompatibility and actively promoting wound healing, an optimal wound dressing should also possess antimicrobial qualities to address issues with bacterial infection. This paper developed natural silk fiber (SF) membranes (also known as a flat silk cocoon (FSC)) with antimicrobial properties as a dressing for skin wounds. By changing the spinning tools and environment of silkworm larvae, a novel natural SF membrane with a cocoon structure and controllable size was prepared. The functional SF membranes were obtained via a hot press process and grafted with ε-Poly-l-lysine (EPL). The results showed that the SF membrane dressing was adjustable in size with a similar structure to the extracellular matrix (ECM), displaying inherent mechanical properties, excellent antimicrobial qualities, and biocompatibility. In vivo experiments using a full-thickness skin defect model indicated that EPL-modified SF membranes significantly promoted the rate of wound healing, exhibiting thicker granulation tissue and higher collagen disposition than commercial dressings (Tegaderm™ film). Therefore, the excellent mechanical qualities and cytocompatibility of the antimicrobial EPL-modified SF membranes substantially promote their potential application as a chronic wound dressing.
Collapse
Affiliation(s)
- Caicai Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Mengyao Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Xiong YH, Zhang L, Xiu Z, Yu B, Duan S, Xu FJ. Derma-like antibacterial polysaccharide gel dressings for wound care. Acta Biomater 2022; 148:119-132. [DOI: 10.1016/j.actbio.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
|
29
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
30
|
Wang C, Chen J, Yue X, Xia X, Zhou Z, Wang G, Zhang X, Hu P, Huang Y, Pan X, Wu C. Improving Water-Absorption and Mechanical Strength: Lyotropic Liquid Crystalline-Based Spray Dressings as a Candidate Wound Management System. AAPS PharmSciTech 2022; 23:68. [PMID: 35106685 DOI: 10.1208/s12249-021-02205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
A spray dressing based on lyotropic liquid crystalline (LLC) with adjustable crystalline lattices was investigated in this study. It possesses water-triggering phase transition property and ease of spraying on wound, as well as stable drug encapsulation and controllable drug release. When it comes to wound with exudate, adequate water absorption and sustainable mechanical strength after water absorption was important for a good dressing, while most of the normal LLC dressings were still unable to meet such standards. Herein, a type of hyaluronic acid (HA)-incorporated LLC-based spray dressing (HLCSD) was developed to overcome the above limitations. After comparing HAs with different molecular weights (MWs) and concentrations, 3% HA with MW of 800~1000 kD was chosen as an ideal amount of excipients to add into the HLCSD. The water absorption of HLCSD precursor increased by 150% with the appearance of enlarged water channels. The complex modulus of HLCSD gel also increased from 1 to 100 kPa, which suggested lasting wound coverage and good patient compliance when used clinically. The spraying and phase transition properties of HLCSD was studied and showed acceptable changes. Moreover, good safety comparable with the commercial product Purilon® was also demonstrated in an in vivo acute skin irritation test. Thus, the improved HLCSD was a promising dressing for exudation wound treatment.
Collapse
|
31
|
Ruggeri M, Bianchi E, Rossi S, Boselli C, Icaro Cornaglia A, Malavasi L, Carzino R, Suarato G, Sánchez-Espejo R, Athanassiou A, Viseras C, Ferrari F, Sandri G. Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. BIOMATERIALS ADVANCES 2022; 133:112593. [PMID: 35527142 DOI: 10.1016/j.msec.2021.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross-linking by heating did not significantly change the nanofibers' dimensions and did not alter the system stability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability (indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytes-derived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Riccardo Carzino
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | | | - Cesar Viseras
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
32
|
Gao X, Li T, Li X, Cao X, Cui Z. Preparation of a newly synthesized biopolymer binder and its application to reduce the erosion of tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113857. [PMID: 34626946 DOI: 10.1016/j.jenvman.2021.113857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
A new type of binder was developed by grafting casein and β-glucan to investigate its effect on tailings erosion and plant growth. 6% casein and 2% β-glucan were recommended as the best ratio of the new biopolymer binder, which had the best effect on the soil utilization of iron tailings. The infrared analysis of the new binder demonstrated that casein and β-glucan reacted adequately as raw materials. The results of physichemical properties and loss prevention of iron tailings showed that the binder-treated soils demonstrated lower erodibility compared with untreated iron tailings. The particle size of the tailings was increased after the addition of the binder. In treated soil, the content of soil organic matter increased significantly, which provided sufficient nutrients for the plants growing. Compared with natural tailings without binder, plant height, fresh weight, chlorophyll content, and enzyme activity (POD and SOD) were also significantly increased. This study overcame the current defects of biopolymer in soil improvement and provided an environmentally friendly method to prevent the loss of iron tailings and promote its soil utilization efficiency.
Collapse
Affiliation(s)
- Xiangyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
33
|
Faccendini A, Bianchi E, Ruggeri M, Vigani B, Perotti C, Pavesi FC, Caliogna L, Natali F, Del Favero E, Cantu’ L, Ferrari F, Rossi S, Sandri G. Smart Device for Biologically Enhanced Functional Regeneration of Osteo-Tendon Interface. Pharmaceutics 2021; 13:pharmaceutics13121996. [PMID: 34959280 PMCID: PMC8707843 DOI: 10.3390/pharmaceutics13121996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The spontaneous healing of a tendon laceration results in the formation of scar tissue, which has lower functionality than the original tissue. Moreover, chronic non-healing tendon injuries frequently require surgical treatment. Several types of scaffolds have been developed using the tissue engineering approach, to complement surgical procedures and to enhance the healing process at the injured site. In this work, an electrospun hybrid tubular scaffold was designed to mimic tissue fibrous arrangement and extracellular matrix (ECM) composition, and to be extemporaneously loaded into the inner cavity with human platelet lysate (PL), with the aim of leading to complete post-surgery functional regeneration of the tissue for functional regeneration of the osteo-tendon interface. For this purpose, pullulan (P)/chitosan (CH) based polymer solutions were enriched with hydroxyapatite nanoparticles (HP) and electrospun. The nanofibers were collected vertically along the length of the scaffold to mimic the fascicle direction of the tendon tissue. The scaffold obtained showed tendon-like mechanical performance, depending on HP content and tube size. The PL proteins were able to cross the scaffold wall, and in vitro studies have demonstrated that tenocytes and osteoblasts are able to adhere to and proliferate onto the scaffold in the presence of PL; moreover, they were also able to produce either collagen or sialoproteins, respectively-important components of ECM. These results suggest that HP and PL have a synergic effect, endorsing PL-loaded HP-doped aligned tubular scaffolds as an effective strategy to support new tissue formation in tendon-to-bone interface regeneration.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Cesare Perotti
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Laura Caliogna
- Orthopedy, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.C.P.); (L.C.)
| | - Francesca Natali
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 09, 38042 Grenoble, France;
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, 20090 Segrate, Italy; (E.D.F.); (L.C.)
| | - Laura Cantu’
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, 20090 Segrate, Italy; (E.D.F.); (L.C.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (E.B.); (M.R.); (B.V.); (F.F.); (S.R.)
- Correspondence: ; Tel.: +39-038-298-7728
| |
Collapse
|
34
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ajdnik U, Luxbacher T, Vesel A, Štern A, Žegura B, Trček J, Fras Zemljič L. Polysaccharide-Based Bilayer Coatings for Biofilm-Inhibiting Surfaces of Medical Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4720. [PMID: 34443242 PMCID: PMC8398363 DOI: 10.3390/ma14164720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023]
Abstract
Chitosan (Chi) and 77KS, a lysine-derived surfactant, form polyelectrolyte complexes that reverse their charge from positive to negative at higher 77KS concentrations, forming aggregates that have been embedded with amoxicillin (AMOX). Dispersion of this complex was used to coat polydimethylsiloxane (PDMS) films, with an additional layer of anionic and hydrophilic hyaluronic acid (HA) as an outer adsorbate layer to enhance protein repulsion in addition to antimicrobial activity by forming a highly hydrated layer in combination with steric hindrance. The formed polysaccharide-based bilayer on PDMS was analyzed by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and surface zeta (ζ)-potential. All measurements show the existence and adhesion of the two layers on the PDMS surface. Part of this study was devoted to understanding the underlying protein adsorption phenomena and identifying the mechanisms associated with biofouling. Thus, the adsorption of a mixed-protein solution (bovine serum albumin, fibrinogen, γ-globulin) on PDMS surfaces was studied to test the antifouling properties. The adsorption experiments were performed using a quartz crystal microbalance with dissipation monitoring (QCM-D) and showed improved antifouling properties by these polysaccharide-based bilayer coatings compared to a reference or for only one layer, i.e., the complex. This proves the benefit of a second hyaluronic acid layer. Microbiological and biocompatibility tests were also performed on real samples, i.e., silicone discs, showing the perspective of the prepared bilayer coating for medical devices such as prostheses, catheters (balloon angioplasty, intravascular), delivery systems (sheaths, implants), and stents.
Collapse
Affiliation(s)
- Urban Ajdnik
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | | | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova 30, 1000 Ljubljana, Slovenia;
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (A.Š.); (B.Ž.)
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (A.Š.); (B.Ž.)
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia;
| | - Lidija Fras Zemljič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
36
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
37
|
Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Polymers (Basel) 2021; 13:2041. [PMID: 34206515 PMCID: PMC8271609 DOI: 10.3390/polym13132041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Valerio Brucato
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
38
|
Chen K, Pan H, Ji D, Li Y, Duan H, Pan W. Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112245. [PMID: 34225884 DOI: 10.1016/j.msec.2021.112245] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Wound healing is a complicated process constituted of four successive physiological stages involving wound bleeding, inflammatory response, cell proliferation and tissue remodeling. During this period, bacteria can easily infect the wound. Therefore, we prepared a novel curcumin-loaded sandwich-like nanofibrous membrane (CSNM) using sequential electrospinning for the hemostasis, antibacterial and accelerate wound healing. The morphology of the nanofibrous membrane was analyzed by SEM. In addition, the water absorption capacity, water vapor transmission rate, water contact-angle, and in vitro drug release were all tested. Then in vitro and in vivo hemostatic experiments demonstrated that CSNM has a good hemostatic effect. Antioxidant effect was assessed by the DPPH radical scavenging method and CSNM presented a high antioxidant activity. Additionally, CSNM demonstrated excellent antibacterial activity by the disk diffusion method. Furthermore, the rat dorsal skin defects model revealed that the CSNM distinctly induced the granulation tissue grew, collagen deposition and epithelial tissue remodeling. Meanwhile, the results of the immunohistochemical staining showed that the CSNM can facilitate the expression of CD31 and TGF-β in the early stage of the wound, thereby accelerating wound healing. In general, this study proved that the multifunctional CSNM has great potential as wound dressing in wound healing.
Collapse
Affiliation(s)
- Kai Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- School of Pharmaceutical Science, Liaoning University, 66 ChongShan Mid Road, Shenyang 110036, China
| | - Dongxu Ji
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yunjian Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongliang Duan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
39
|
Wu YX, Ma H, Wang JL, Qu W. Production of chitosan scaffolds by lyophilization or electrospinning: which is better for peripheral nerve regeneration? Neural Regen Res 2021; 16:1093-1098. [PMID: 33269755 PMCID: PMC8224144 DOI: 10.4103/1673-5374.300463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022] Open
Abstract
Both lyophilization and electrospinning are commonly used to make chitosan scaffolds. However, it remains unknown which method is better for cell growth. In this study, we established the following groups: (1) lyophilization group-chitosan scaffolds were prepared by lyophilization method and seeded with Schwann cells from Sprague-Dawley rats aged 3-5 days; (2) electrospinning group-chitosan scaffolds were prepared by electrospinning method and seeded with Schwann cells; (3) control group-Schwann cells were cultured on culture dishes. The growth of Schwann cells was evaluated by immunofluorescence and scanning electron microscopy. Western blot assay was performed to explore the mechanism of Schwann cell growth. Both materials were non-toxic and suitable for the growth of Schwann cells. The pores produced by electrospinning were much smaller than those produced by lyophilization. The proliferation rate and adhesion rate of Schwann cells in the electrospinning group were higher than those in the lyophilization group. Schwann cells cultured on electrospinning scaffolds formed a Bungner band-like structure, and a much greater amount of brain-derived neurotrophic factor was secreted, which can promote the growth of neurons. Our findings show that the chitosan scaffold prepared by the electrospinning method has a nanofiber structure that provides an extracellular matrix that is more favorable for cell-cell interactions. The electrospinning method is more suitable for nerve regeneration than the lyophilization method. This research was approved by the Medical Ethical Committee of Dalian Medical University (approval No. AEE1-2016-045) on March 3, 2016.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Department of Hand Microsurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Lan Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei Qu
- Department of Hand Microsurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
40
|
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021; 13:1105. [PMID: 33808492 PMCID: PMC8037451 DOI: 10.3390/polym13071105] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential components. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given application. Depending on this, scaffold materials can be of natural or synthetic origin, degradable or nondegradable. In this review, an overview of various natural and synthetic polymers and their possible composite scaffolds with their physicochemical properties including biocompatibility, biodegradability, morphology, mechanical strength, pore size, and porosity are discussed. The scaffolds fabrication techniques and a few commercially available biopolymers are also tabulated.
Collapse
Affiliation(s)
- M. Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India;
| | | | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
- Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | |
Collapse
|
41
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
42
|
Hybrid Collagen Hydrogel/Chondroitin-4-Sulphate Fortified with Dermal Fibroblast Conditioned Medium for Skin Therapeutic Application. Polymers (Basel) 2021; 13:polym13040508. [PMID: 33567703 PMCID: PMC7914873 DOI: 10.3390/polym13040508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen–hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
Collapse
|
43
|
The Anti-inflammatory Protein TSG-6 Induced by S. aureus Regulates the Chemokine Function of Endothelial Cells In Vitro by Inhibiting the Chemokine-Glycosaminoglycan Interaction. Inflammation 2021; 44:1194-1202. [PMID: 33471224 DOI: 10.1007/s10753-021-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
The aim of this study was to explore the effect of the anti-inflammatory protein TSG-6 induced by Staphylococcus bacteria on the regulation of chemokine function in endothelial cells by inhibiting the chemokine-glycosaminoglycan interaction. To cultivate human umbilical vein endothelial cells and Staphylococcus aureus bacteria, respectively, after the experiment is divided into the control group, S. aureus bacteria-induced group, S. aureus bacteria glycosaminoglycans about 1 mg/L sugar group, S. aureus bacteria glycosaminoglycans about 5 mg/L sugar group, and S. aureus bacteria glycosaminoglycans about 10 mg/L sugar group, E-selectin; intercellular adhesion molecule-1 (ICAM-1); monocyte chemoattractant protein-1 (MCP-1); interleukin-8 (IL-8) expression level; chemokine CXCL9, CXCL10, and CXCL11 mRNA and protein expression level; and TSG mRNA and protein expression level were determined in each cell; the endothelial cell proliferation and vascular endothelial cell function indicators were analyzed. The expression levels of E-selectin, ICAM-1, IL-8, MCP-1, and chemokines CXCL9, CXCL10, and CXCL11 mRNA and protein in each group at 6, 12, and 24 h were significantly different (P < 0.05). TSG mRNA and protein expression levels, endothelial cell proliferation ability, and vascular endothelial cell function were also significantly different (P < 0.05). The expression levels of E-selectin, ICAM-1, IL-8, MCP-1, endothelial cell proliferation ability, and vascular endothelial cell function in the Staphylococcus aureus-induced group were lower than those in the control group and the Staphylococcus aureus glycosaminoglycan group, and the mRNA and protein expression levels of chemokines CXCL9, CXCL10, and CXCL11, and TSG mRNA and protein expression levels were higher. With the increase of glycosaminoglycan concentration, the above indexes were improved. The anti-inflammatory protein TSG-6 induced by S. aureus can regulate the chemokine function of endothelial cells by inhibiting the chemokine-glycosaminoglycan interaction.
Collapse
|
44
|
Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, Bonferoni MC, Vályi P, Burián K, Csányi E, Sandri G, Ferrari F. Electrospun Scaffolds in Periodontal Wound Healing. Polymers (Basel) 2021; 13:307. [PMID: 33478155 PMCID: PMC7835852 DOI: 10.3390/polym13020307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is a set of inflammatory conditions affecting the tissues surrounding the teeth predominantly sustained by bacterial infections. The aim of the work was the design and the development of scaffolds based on biopolymers to be inserted in the periodontal pocket to restore tissue integrity and to treat bacterial infections. Nanofibrous scaffolds were prepared by means of electrospinning. Gelatin was considered as base component and was associated to low and high molecular weight chitosans and alginate. The scaffolds were characterized by chemico-physical properties (morphology, solid state-FTIR and differential scanning calorimetry (DSC)-surface zeta potential and contact angle), and mechanical properties. Moreover, preclinical properties (cytocompatibility, fibroblast and osteoblast adhesion and proliferation and antimicrobial properties) were assessed. All the scaffolds were based on cylindrical and smooth nanofibers and preserved their nanofibrous structure upon hydration independently of their composition. They possessed a high degree of hydrophilicity and negative zeta potentials in a physiological environment, suitable surface properties to enhance cell adhesion and proliferation and to inhibit bacteria attachment. The scaffold based on gelatin and low molecular weight chitosan proved to be effective in vitro to support both fibroblasts and osteoblasts adhesion and proliferation and to impair the proliferation of Streptococcus mutans and Aggregatibacter actinomycetemcomitans, both pathogens involved in periodontitis.
Collapse
Affiliation(s)
- Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| |
Collapse
|
45
|
Miele D, Catenacci L, Rossi S, Sandri G, Sorrenti M, Terzi A, Giannini C, Riva F, Ferrari F, Caramella C, Bonferoni MC. Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. MATERIALS 2020; 13:ma13214698. [PMID: 33105584 PMCID: PMC7659940 DOI: 10.3390/ma13214698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023]
Abstract
Collagen, thanks to its biocompatibility, biodegradability and weak antigenicity, is widely used in dressings and scaffolds, also as electrospun fibers. Its mechanical stability can be improved by adding polycaprolactone (PCL), a synthetic and biodegradable aliphatic polyester. While previously collagen/PCL combinations were electrospun in solvents such as hexafluoroisopropanol (HFIP) or trifluoroethanol (TFE), more recently literature describes collagen/PCL nanofibers obtained in acidic aqueous solutions. A good morphology of the fibers represents in this case still a challenge, especially for high collagen/PCL ratios. In this work, thanks to preliminary rheological and physicochemical characterization of the solutions and to a Design of Experiments (DOE) approach on process parameters, regular and dimensionally uniform fibers were obtained with collagen/PCL ratios up to 1:2 and 1:1 w/w. Collagen ratio appeared relevant for mechanical strength of dry and hydrated fibers. WAXS and FTIR analysis showed that collagen denaturation is related both to the medium and to the electrospinning process. After one week in aqueous environment, collagen release was complete and a concentration dependent stimulatory effect on fibroblast growth was observed, suggesting the fiber suitability for wound healing. The positive effect of collagen on mechanical properties and on fibroblast biocompatibility was confirmed by a direct comparison of nanofiber performance after collagen substitution with gelatin.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Alberta Terzi
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
- Correspondence:
| |
Collapse
|
46
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Colangelo MT, Elviri L, Belletti S, Mattarozzi M, Govoni P, Bergonzi C, Careri M, Bettini R, Guizzardi S, Galli C. 3D-printed chitosan scaffolds modified with D-(+) raffinose and enriched with type IV collagen to improve epithelial cell colonization. Biomed Mater 2020; 15:055018. [DOI: 10.1088/1748-605x/ab9552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Ruggeri M, Bianchi E, Rossi S, Vigani B, Bonferoni MC, Caramella C, Sandri G, Ferrari F. Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics 2020; 12:pharmaceutics12090815. [PMID: 32867241 PMCID: PMC7559814 DOI: 10.3390/pharmaceutics12090815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic wounds, such as pressure ulcers, diabetic ulcers, venous ulcers and arterial insufficiency ulcers, are lesions that fail to proceed through the normal healing process within a period of 12 weeks. The treatment of skin chronic wounds still represents a great challenge. Wound medical devices (MDs) range from conventional and advanced dressings, up to skin grafts, but none of these are generally recognized as a gold standard. Based on recent developments, this paper reviews nanotechnology-based medical devices intended as skin substitutes. In particular, nanofibrous scaffolds are promising platforms for wound healing, especially due to their similarity to the extracellular matrix (ECM) and their capability to promote cell adhesion and proliferation, and to restore skin integrity, when grafted into the wound site. Nanotechnology-based scaffolds are emphasized here. The discussion will be focused on the definition of critical quality attributes (chemical and physical characterization, stability, particle size, surface properties, release of nanoparticles from MDs, sterility and apyrogenicity), the preclinical evaluation (biocompatibility testing, alternative in vitro tests for irritation and sensitization, wound healing test and animal wound models), the clinical evaluation and the CE (European Conformity) marking of nanotechnology-based MDs.
Collapse
|
49
|
Nesměrák K, Pospíchal R. Spectrometric methods in pharmaceutical analysis of glycosaminoglycans: the state-of-the-art. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 2020; 156:153-170. [DOI: 10.1016/j.ijbiomac.2020.03.207] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|