1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2025; 15:1828-1876. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Ashique S, Kumar P, Taj T, Debnath B, Mukherjee S, Patel A, Sridhar SB, Panigrahy UP, Poonia P, Selim S, Hussain MS. Nanotechnology: A State of the Art for the Management of Ocular Disorders—A Roadmap. BIONANOSCIENCE 2025; 15:285. [DOI: 10.1007/s12668-025-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
|
3
|
Wu X, Hu M, Cai Y, Jia F, Ye Y, Yu N, Chen M, Wang K. Nano-based drug delivery systems for the treatment of non-infectious uveitis. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:124-134. [PMID: 40276028 PMCID: PMC12020850 DOI: 10.1016/j.aopr.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 04/26/2025]
Abstract
Background Uveitis is one of the most prevalent causes of global visual impairment. The current approaches to treating non-infectious uveitis (NIU) involve the utilization of corticosteroids, immunosuppressant and biologics agents. Nevertheless, the intricate ocular anatomy barriers and adverse side effects of the drugs pose significant obstacles to effective treatment outcomes. Main text To improve drug bioavailability and therapeutic outcomes for NIU while minimize side effects, researchers are committed to developing novel nano-based drug delivery systems (DDS), which have the capacity to achieve targeted delivery, increase bioavailability, achieve sustained release, reduce side effects and improve therapeutic effects. Thus, DDS based on nanotechnology, including liposome, dendrimer, hydrogels, nanoparticles, nanomicelles, nanosuspensions and nanoemulsions have emerged as promising alternatives to conventional ocular delivery methods for the management of NIU. Conclusions In this review, we summarize the current therapeutic challenges faced by NIU and describe various nano-based intraocular DDS involved in the treatment of NIU. It is concluded that nano-based DDS is an appealing approach to addressing the unmet needs for the treatment of NIU.
Collapse
Affiliation(s)
- Xingdi Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Mengyuan Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Yilu Cai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Naiji Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Min Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Kaijun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
4
|
Chaudhari P, Lewis SA, Ghate V. Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Cont Lens Anterior Eye 2025; 48:102367. [PMID: 39794261 DOI: 10.1016/j.clae.2025.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The eye is a highly sensitive and vital component that significantly affects human quality of life. Diseases that affect the eye are major contributors to visual impairment and blindness and can have a profound effect on an individual's well-being. Ocular drug delivery is challenging because of physiological and anatomical barriers. Invasive Intravitreal administration is primarily used for the treatment and management of posterior segmental disease. However, frequent intravitreal administration is associated with adverse effects. Furthermore, topical administration results in less than 5% ocular bioavailability, leading to a void in the safe and efficacious management of posterior segment diseases. Nanocarrier-based systems have been well explored as ocular therapeutics to overcome the sub-therapeutic management attributed to conventional eye drops and physiological and anatomical barriers. Since the first report of nanoparticles to date, the nanocarrier system has come a long way with the simplicity and versatility offered by the system. Significant progress has been made in the development of noninvasive nanocarrier systems and their interactions with the ocular surface. The nanocarrier system enhances precorneal retention, limits nontherapeutic absorption, and offers controlled drug release. This review aims to provide an overview of the recent advancements in noninvasive nanocarrier-based topical ocular drug delivery systems, including their interaction with the ocular surface, the barriers to their translation to clinical settings, and the associated scale-up challenges.
Collapse
Affiliation(s)
- Pinal Chaudhari
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, Karnataka, India
| |
Collapse
|
5
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025; 33:508-527. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
7
|
Vincze A, Simon E, Koplányi G, Stankovits JG, Balogh-Weiser D, Gyarmati B, Nagy ZZ, Balogh GT. Toward a high-throughput in vitro model for estimating vitreous humor permeability of topically applied drugs. Sci Rep 2025; 15:8768. [PMID: 40082516 PMCID: PMC11906762 DOI: 10.1038/s41598-025-93425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
The vitreous humor of the eye presents a crucial target for posterior segment therapy due to its proximity to the retina and relatively easy accessibility. Although intravitreous injections have long been the primary method for treating posterior segment disorders, recent successes in non-invasive topical treatments have led to the exploration of alternative administration routes. The objective of our study is to establish a platform for a Parallel Artificial Membrane Permeability Assay (PAMPA) model that mimics the posterior segment, modelling the permeation process of compounds applied topically on the eye. The study demonstrates the acceptor-phase effects of sodium hyaluronate and agar on passive permeability, while applying a previously published vitreous humor-mimetic material. Physicochemical similarities of the acceptor phase media and freshly excised porcine vitreous humor further support the applicability of the mimetic material, based on viscosity and zeta potential measurement. As a result, a new concept is introduced for measuring posterior segment permeability, with potential for future high throughput screening applications.
Collapse
Affiliation(s)
- Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, Budapest, H-1092, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői Street 26, Budapest, H-1092, Hungary.
| | - Eszter Simon
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - József Gergely Stankovits
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Quay 3, Budapest, H-1111, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária Street 39, Budapest, H-1085, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, Budapest, H-1092, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői Street 26, Budapest, H-1092, Hungary.
| |
Collapse
|
8
|
Lim H, Seo Y, Min SJ, Yoo D, Heo DN, Kwon IK, Lee T. Construction of Chitosan Oligosaccharide-Coated Nanostructured Lipid Carriers for the Sustained Release of Strontium Ranelate. Tissue Eng Regen Med 2025:10.1007/s13770-025-00713-0. [PMID: 40072819 DOI: 10.1007/s13770-025-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS). METHODS To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer. The synthesis of COS-NLC was confirmed by measuring particle size and zeta potential, while surface morphology was evaluated using atomic force microscopy (AFM). SR loading efficiencies and release profiles were analyzed via reversed-phase high-performance liquid chromatography (RP-HPLC), and cytotoxicity was evaluated in mouse fibroblast L929 cells. RESULTS Particle characterization indicated that the COS coating slightly increased the particle size (i.e., from 128.99 ± 2.77 to 131.46 ± 2.13 nm) and zeta potential (i.e., from - 13.94 ± 0.49 to - 6.58 ± 0.32 mV) of the NLC. The COS-NLC exhibited a high SR-loading efficiency of ~ 86.31 ± 3.28%. An in vitro release test demonstrated an improved sustained release tendency of SR from the COS-NLC compared to that from the uncoated NLC. In cytotoxicity assays using L929 cells, the COS coating reduced the cytotoxicity of the formulated DDS, and the SR-COS-NLC exhibited a 1.4-fold higher cell regeneration effect than SR alone. CONCLUSION These findings suggest that the developed COS-NLC serve as an effective and biocompatible DDS platform for the delivery of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdae-mun-Gu, Seoul, 02447, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
9
|
Luhar M, Viradiya R, Panjabi S, Patel G. Nanotechnology in Ocular Drug Delivery: The Potential of Polymeric Micelles as a Drug Delivery Vehicle. J Ocul Pharmacol Ther 2025; 41:54-64. [PMID: 39263975 DOI: 10.1089/jop.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Conventional ocular drug delivery systems face challenges like rapid clearance, high dosages, low compliance, and poor bioavailability. A novel solution utilizes mucoadhesive polymers for controlled release, enhancing drug effectiveness while reducing dosages and frequency. Polymeric micelles, nanosized colloidal DDS, are set to modify drug delivery for challenging drugs mainly belonging to Biopharmaceutical Classification System class II (low solubility and high permeability), class III (high solubility and low permeability), and class IV (low solubility and low permeability). Micelles solubilize poorly soluble drugs, shielding them from degradation and macrophage uptake and extending drug action. Their small size enables them to breach ocular barriers, elevating therapeutic impact and bioavailability. This review explores polymeric micelles' potential in ocular drug delivery, covering their introduction, formulation, preparation, characterization, applications, recent progress, and challenges through critical analysis of all possible research communications so far. The review also scrutinizes the transition from lab to clinical use. Polymeric micelles revolutionize ocular drug delivery by surmounting limitations through enhanced solubilization, protection, and sustained release. This comprehensive review highlights their potential to improve ocular drug delivery practices.
Collapse
Affiliation(s)
- Mehul Luhar
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| | - Ravi Viradiya
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Sanjay Panjabi
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
10
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
11
|
Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier applications of retinal nanomedicine: progress, challenges and perspectives. J Nanobiotechnology 2025; 23:143. [PMID: 40001147 PMCID: PMC11863789 DOI: 10.1186/s12951-025-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/04/2025] [Indexed: 02/27/2025] Open
Abstract
The human retina is a fragile and sophisticated light-sensitive tissue in the central nervous system. Unhealthy retinas can cause irreversible visual deterioration and permanent vision loss. Effective therapeutic strategies are restricted to the treatment or reversal of these conditions. In recent years, nanoscience and nanotechnology have revolutionized targeted management of retinal diseases. Pharmaceuticals, theranostics, regenerative medicine, gene therapy, and retinal prostheses are indispensable for retinal interventions and have been significantly advanced by nanomedical innovations. Hence, this review presents novel insights into the use of versatile nanomaterial-based nanocomposites for frontier retinal applications, including non-invasive drug delivery, theranostic contrast agents, therapeutic nanoagents, gene therapy, stem cell-based therapy, retinal optogenetics and retinal prostheses, which have mainly been reported within the last 5 years. Furthermore, recent progress, potential challenges, and future perspectives in this field are highlighted and discussed in detail, which may shed light on future clinical translations and ultimately, benefit patients with retinal disorders.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Linna Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
12
|
Szalai B, Budai-Szűcs M, Kovács A, Berkó S, Gróf I, Deli MA, Katona G, Balogh GT, Jójárt-Laczkovich O. The effect of mucoadhesive polymers on ocular permeation of thermoresponsive in situ gel containing dexamethasone-cyclodextrin complex. Int J Pharm 2024; 667:124848. [PMID: 39447934 DOI: 10.1016/j.ijpharm.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Dexamethasone (DXM) is a commonly used corticosteroid in the treatment of ocular inflammatory conditions that affect more and more people. The aim of this study was to evaluate the effect of the combination of hydroxypropyl-β-cyclodextrin (HPBCD), in situ gelling formulations, and other mucoadhesive polymers, i.e., hydroxypropyl methylcellulose (HPMC) and zinc-hyaluronate (ZnHA), on permeation by applying in vitro and ex vivo ophthalmic permeation models. Additionally, gelling properties, in vitro drug release, and mucoadhesion were measured to determine the impact of these factors on permeation and ultimately on bioavailability. The results showed that GEL1 and GEL2 had an optimal gelling temperature, 36.3 ℃ and 34.6 ℃, respectively. Moreover, the combination of Poloxamer 407 (P407) with other polymers improved the mucoadhesion (GEL1: 1333.7 mN) compared with formulations containing only P407 (P12: 721.8 mN). Both HPBCD and the gel matrix had a considerable influence on the drug release and permeability of DXM, and the combination could facilitate the permeation into the aqueous humor. After 30 min of treatment, the DXM concentration in the aqueous humor was 1.16-1.37 µg∕mL in case of the gels, whereas DXM could not be detected when treated with the DXM suspension. The results of the experiments using an in vitro cell line indicated that the formulations could be considered safe for topical treatment of the eye. In conclusion, with application of a small amount of HPMC (0.2 % w∕w), the concentration of P407 could be reduced to 12 % w/w while maintaining the ideal gelling properties and gel structure without negatively affecting permeability compared with the formulation containing a higher amount of P407. Furthermore, the gel matrix may also provide programmed and elongated drug release.
Collapse
Affiliation(s)
- Boglárka Szalai
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Ilona Gróf
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, 7-9 Hőgyes Endre u., Budapest H-1092, Hungary; Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3., Budapest H -1111, Hungary
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary.
| |
Collapse
|
13
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
14
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
15
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
16
|
Yu L, Meng Q, Li M, Tian L, Wu X, Jie Y. Heating-driven self-assembled glycyrrhizin nanomicelles loading bisdemethoxycurcumin: Preparation, characterization, and efficacy evaluation on experimental dry eye. Colloids Surf B Biointerfaces 2024; 245:114206. [PMID: 39255746 DOI: 10.1016/j.colsurfb.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
In this study, a simple but novel preparation method was developed by heating a mixture of dipotassium glycyrrhizinate (DG) and bisdemethoxycurcumin (BDMC) in aqueous solution, and a DG self-assembled nanomicelles-loading BDMC (named B@DNM) ophthalmic solution was successfully fabricated with this heating-driven process. AutoDock simulation analysis revealed that Pi-Alkyl hydrophobic interactions between BDMC and DG played important role in this self-assembled B@DNM. The optimized B@DNM, with a DG:BDMC mass ratio of 40:1 and heating time of 6 h, had a high encapsulation efficacy of 96.70 ± 0.13 % and particle sizes of 117.50 ± 6.07 nm. The apparent solubility of BDMC in B@DNM was significantly improved from bare BDMC (10.40 ± 0.16 μg/ml to 1405.60 ± 6.78 μg/ml) in artificial tears after 4 h incubation. B@DNM had great storage stability as an aqueous ophthalmic solution. B@DNM showed significantly improved in vitro antioxidant activity. Ex vivo hen's egg test-chorioallantoic membrane assay and long-term in vivo mouse eye tolerance evaluation showed that B@DNM had good ocular safety profiles. B@DNM showed improved in vivo corneal permeation profiles in the mouse eyes. Topical administration of B@DNM achieved a significantly improved efficacy on a mouse model of dry eye disease (DED), including accelerating corneal wound healing, restoring corneal sensitivity, and inhibiting corneal neovascularization. Regulation of the high mobility group box 1 signal pathway was involved in B@DNM's strong therapeutic effects. These findings demonstrate that heating is a simple method to prepare ocular nanoformulation with DG, and B@DNM might be a potential ocular drug for treating DED.
Collapse
Affiliation(s)
- Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Mengshuang Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Qingdao Women and Children's Hospital, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
18
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
19
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
21
|
Ranch K, Chawnani D, Jani H, Acharya D, Patel CA, Jacob S, Babu RJ, Tiwari AK, Al-Tabakha MM, Boddu SHS. An update on the latest strategies in retinal drug delivery. Expert Opin Drug Deliv 2024; 21:695-712. [PMID: 38787783 DOI: 10.1080/17425247.2024.2358886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.
Collapse
Affiliation(s)
- Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Devarshi Acharya
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Amrutlal Patel
- Department of Pharmacology & Pharmacy practices, L. M. College of Pharmacy, Ahmedabad, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates UAE
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Moawia M Al-Tabakha
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
22
|
Padaga SG, Ch S, Paul M, Wable BD, Ghosh B, Biswas S. Chitosan oligosaccharide/pluronic F127 micelles exhibiting anti-biofilm effect to treat bacterial keratitis. Carbohydr Polym 2024; 330:121818. [PMID: 38368100 DOI: 10.1016/j.carbpol.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Mono or dual chitosan oligosaccharide lactate (COL)-conjugated pluronic F127 polymers, FCOL1 and FCOL2 were prepared, self-assembled to form micelles, and loaded with gatifloxacin. The Gati@FCOL1/Gati@FCOL2 micelles preparation process was optimized by QbD analysis. Micelles were characterized thoroughly for size, CMC, drug compatibility, and viscosity by GPC, DLS, SEM, IR, DSC, and XRD. The micelles exhibited good cellular uptake in both monolayers and spheroids of HCEC. The antibacterial and anti-biofilm activities of the micelles were evaluated on P. aeruginosa and S. aureus. The anti-quorum sensing activity was explored in P. aeruginosa by analyzing micelles' ability to produce virulence factors, including AHLs, pyocyanin, and the motility behavior of the organism. Gati@FCOL2 Ms was mucoadhesive, cornea-penetrant, antibacterial, and inhibited the biofilm formation by P. aeruginosa and S. aureus significantly more than Gati@FCOL1. A significant reduction in bacterial load in mice cornea was observed after Gati@FCOL2 Ms-treatment to the P. aeruginosa-induced bacterial keratitis-infected mice.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Sanjay Ch
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Bhavika Deepak Wable
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
23
|
Paganini V, Chetoni P, Di Gangi M, Monti D, Tampucci S, Burgalassi S. Nanomicellar eye drops: a review of recent advances. Expert Opin Drug Deliv 2024; 21:381-397. [PMID: 38396342 DOI: 10.1080/17425247.2024.2323208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Research on nanotechnology in medicine has also involved the ocular field and nanomicelles are among the applications developed. This approach is used to increase both the water solubility of hydrophobic drugs and their penetration/permeation within/through the ocular tissues since nanomicelles are able to encapsulate insoluble drug into their core and their small size allows them to penetrate and/or diffuse through the aqueous pores of ocular tissues. AREAS COVERED The present review reports the most significant and recent literature on the use of nanomicelles, made up of both surfactants and amphiphilic polymers, to overcome limitations imposed by the physiology of the eye in achieving a high bioavailability of drugs intended for the therapeutic areas of greatest commercial interest: dry eye, inflammation, and glaucoma. EXPERT OPINION The results of the numerous studies in this field are encouraging and demonstrate that nanomicelles may be the answer to some of the challenges of ocular therapy. In the future, new molecules self-assembling into micelles will be able to meet the regulatory requirements for marketing authorization for their use in ophthalmic formulations.
Collapse
Affiliation(s)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| |
Collapse
|
24
|
Wang R, Li Y, Gao S, Zhang Y, He Z, Ji J, Yang X, Ye L, Zhao L, Liu A, Zhai G. An active transport dual adaptive nanocarrier designed to overcome the corneal microenvironment for neovascularization therapy. Biomater Sci 2024; 12:361-374. [PMID: 37982147 DOI: 10.1039/d3bm01349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The eyes have a complicated microenvironment with many clearance mechanisms, making it challenging for effective drug delivery to the targeted areas of the eyes. Substrate transport mediated by active transporters is an important way to change drug metabolism in the ocular microenvironment. We designed multifunctional, dual-adaptive nanomicelles (GSCQ@NTB) which could overcome multiple physiological barriers by acting on both the efflux transporter and influx transporter to achieve deep delivery of the P-gp substrate in the cornea. Specifically, an effective "triple" antiangiogenic agent, nintedanib (NTB), was loaded into the biocompatible micelles. The expression of the efflux transporter was reversed by grafting quercetin. The peptide (glycylsarcosine, GS) was modified to target the influx transporter "Peptide Transporter-1" (PepT-1). Quercetin (QRT) and nintedanib (NTB) were transported to the cornea cooperatively, achieving long retention on the ocular surface and high compatibility. In a New Zealand rabbit model, within 8 hours after local administration, GSCQ@NTB was enriched in corneal stromal neovascularization and effectively inhibited the progress of neovascularization. Its effectiveness is slightly better than that in the first-line clinical application of steroids. In this study, we introduce the preparation of a dual adaptive nano-micelle system, which may provide an effective non-invasive treatment for corneal neovascularization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, P.R. China
| | - Guangxi Zhai
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
25
|
Binkhathlan Z, Ali R, Alomrani AH, Abul Kalam M, Alshamsan A, Lavasanifar A. Role of Polymeric Micelles in Ocular Drug Delivery: An Overview of Decades of Research. Mol Pharm 2023; 20:5359-5382. [PMID: 37769017 DOI: 10.1021/acs.molpharmaceut.3c00598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Local drug delivery to the eye through conventional means has faced many challenges due to three essential barriers: (a) the complex structure of the cornea limiting drug absorption, (b) the capacity of ocular absorptive cells in drug metabolism, and (c) the washing effect of eye tears. Polymeric micelles (PMs) have been the focus of much interest for ocular drug delivery due to several advantages they provide for this application, including the capacity for the solubilization of hydrophobic drugs, nonirritability, nanoscopic diameter, and the clarity of their aqueous solution not interfering with vision. The potential to increase the release and residence time of incorporated medication at the site of absorption is also a bonus advantage for these delivery systems. This Review covers research conducted on single or mixed micelles prepared from small amphiphilic molecules, copolymers (diblock, triblock, and graft), and gel systems containing micelles. The purpose of this review is to provide an update on the status of micellar ocular delivery systems for different indications, with a focus on preclinical and clinical drug development. In this context, we are discussing the anatomy of the eye, various ocular barriers, different micellar formulations, and their benefits in ocular drug delivery, as well as the role of PMs in the management of ocular diseases both in preclinical models and in clinic. The encouraging preclinical effectiveness findings from experiments conducted in both laboratory settings and live animals have paved the way for the advancement of micellar systems in clinical trials for ocular administration and the first nanomicallar formulation approved for clinical use by the United States Food and Drug Administration (marketed as Cequa by Sun Pharmaceuticals).
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah H Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| |
Collapse
|
26
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
27
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
28
|
Lu J, Zhu X, Zhang M, Jiang X, Guo W, Jiang F, Cao F. In vitro and in vivo assessment of structural integrity for HPCD complex@Liposome nanocomposites from ocular surface to the posterior segment of the eye. Carbohydr Polym 2023; 315:120960. [PMID: 37230631 DOI: 10.1016/j.carbpol.2023.120960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Investigating the structural integrity of carriers in transit from ocular surface to ocular posterior segment is essential for an efficient topical drug delivery system. In this study, dual-carrier hydroxypropyl-β-cyclodextrin complex@Liposome (HPCD@Lip) nanocomposites were developed for the efficient delivery of dexamethasone. Förster Resonance Energy Transfer with near-infrared I fluorescent dyes and in vivo imaging system were used to investigate the structural integrity of HPCD@Lip nanocomposites after crossing Human conjunctival epithelial cells (HConEpiC) monolayer and in ocular tissues. The structural integrity of inner HPCD complexes was monitored for the first time. The results suggested that 23.1 ± 6.4 % of nanocomposites and 41.2 ± 4.3 % of HPCD complexes could cross HConEpiC monolayer with an intact structure at 1 h. 15.3 ± 8.4 % of intact nanocomposites could reach at least sclera and 22.9 ± 1.2 % of intact HPCD complexes could reach choroid-retina after 60 min in vivo, which showed that the dual-carrier drug delivery system could successfully deliver intact cyclodextrin complexes to ocular posterior segment. In conclusion, in vivo assessment of structural integrity of nanocarriers is greatly significant for guiding the rational design, higher drug delivery efficiency and clinical transformation for topical drug delivery system to the posterior segment of the eye.
Collapse
Affiliation(s)
- Jinhui Lu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China; Department of Dizal Pharmaceutical Co. Ltd., 199 Liangjing Rd, Pudong District, Shanghai 201203, China
| | - Xiaomeng Zhu
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Meng Zhang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Xunchan Jiang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
29
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
30
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
31
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
32
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
33
|
Li X, Jiang X, Zhou X, Cheng Y, Cao F. Development of dexamethasone suspension eye drops: A comparative investigation of ternary and quaternary cyclodextrin aggregates. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
35
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
36
|
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers (Basel) 2023; 15:polym15061373. [PMID: 36987154 PMCID: PMC10054733 DOI: 10.3390/polym15061373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The eye has anatomical structures that function as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of medications administered topically. The development of polymeric nano-based drug-delivery systems (DDS) could be the solution to these challenges: it can pass through ocular barriers, offering higher bioavailability of administered drugs to targeted tissues that are otherwise inaccessible; it can stay in ocular tissues for longer periods of time, requiring fewer drug administrations; and it can be made up of polymers that are biodegradable and nano-sized, minimizing the undesirable effects of the administered molecules. Therefore, therapeutic innovations in polymeric nano-based DDS have been widely explored for ophthalmic drug-delivery applications. In this review, we will give a comprehensive overview of polymeric nano-based drug-delivery systems (DDS) used in the treatment of ocular diseases. We will then examine the current therapeutic challenges of various ocular diseases and analyze how different types of biopolymers can potentially enhance our therapeutic options. A literature review of the preclinical and clinical studies published between 2017 and 2022 was conducted. Thanks to the advances in polymer science, the ocular DDS has rapidly evolved, showing great promise to help clinicians better manage patients.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Said Ashkar
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrieda Jain
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
37
|
Zashikhina N, Gladnev S, Sharoyko V, Korzhikov-Vlakh V, Korzhikova-Vlakh E, Tennikova T. Synthesis and Characterization of Nanoparticle-Based Dexamethasone-Polypeptide Conjugates as Potential Intravitreal Delivery Systems. Int J Mol Sci 2023; 24:ijms24043702. [PMID: 36835114 PMCID: PMC9962198 DOI: 10.3390/ijms24043702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The use of dexamethasone for eye disease treatment is limited by its low solubility, bioavailability, and rapid elimination when applied topically. The covalent conjugation of dexamethasone with polymeric carriers is a promising strategy to overcome existing drawbacks. In this work, amphiphilic polypeptides capable of self-assembly into nanoparticles were proposed as potential delivery systems for intravitreal delivery. The nanoparticles were prepared and characterized using poly(L-glutamic acid-co-D-phenylalanine) and poly(L-lysine-co-D/L-phenylalanine) as well as poly(L-lysine-co-D/L-phenylalanine) covered with heparin. The critical association concentration for the polypeptides obtained was in the 4.2-9.4 μg/mL range. The hydrodynamic size of the formed nanoparticles was between 90 and 210 nm, and they had an index of polydispersity between 0.08 and 0.27 and an absolute zeta-potential value between 20 and 45 mV. The ability of nanoparticles to migrate in the vitreous humor was examined using intact porcine vitreous. Conjugation of DEX with polypeptides was performed by additional succinylation of DEX and activation of carboxyl groups introduced to react with primary amines in polypeptides. The structures of all intermediate and final compounds were verified by 1H NMR spectroscopy. The amount of conjugated DEX can be varied from 6 to 220 µg/mg of polymer. The hydrodynamic diameter of the nanoparticle-based conjugates was increased to 200-370 nm, depending on the polymer sample and drug loading. The release of DEX from the conjugates due to hydrolysis of the ester bond between DEX and the succinyl moiety was studied both in a buffer medium and a vitreous/buffer mixture (50/50, v/v). As expected, the release in the vitreous medium was faster. However, the release rate could be controlled in the range of 96-192 h by varying the polymer composition. In addition, several mathematical models were used to assess the release profiles and figure out how DEX is released.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Sergei Gladnev
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo str. 6-8, St. Petersburg 197022, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Correspondence:
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
38
|
Gogoi NR, Marbaniang D, Pal P, Ray S, Mazumder B. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges. Pharm Nanotechnol 2022; 10:268-278. [PMID: 35946098 DOI: 10.2174/2211738510666220806102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
Collapse
Affiliation(s)
- Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- Department of Pharmaceutical Sciences, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
39
|
Dludla SBK, Mashabela LT, Ng’andwe B, Makoni PA, Witika BA. Current Advances in Nano-Based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: A Review and Envisaged Future Perspectives. Polymers (Basel) 2022; 14:polym14173580. [PMID: 36080651 PMCID: PMC9460529 DOI: 10.3390/polym14173580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Optimal vision remains one of the most essential elements of the sensory system continuously threatened by many ocular pathologies. Various pharmacological agents possess the potential to effectively treat these ophthalmic conditions; however, the use and efficacy of conventional ophthalmic formulations is hindered by ocular anatomical barriers. Recent novel designs of ophthalmic drug delivery systems (DDS) using nanotechnology show promising prospects, and ophthalmic formulations based on nanotechnology are currently being investigated due to their potential to bypass these barriers to ensure successful ocular drug delivery. More recently, stimuli-responsive nano drug carriers have gained more attention based on their great potential to effectively treat and alleviate many ocular diseases. The attraction is based on their biocompatibility and biodegradability, unique secondary conformations, varying functionalities, and, especially, the stimuli-enhanced therapeutic efficacy and reduced side effects. This review introduces the design and fabrication of stimuli-responsive nano drug carriers, including those that are responsive to endogenous stimuli, viz., pH, reduction, reactive oxygen species, adenosine triphosphate, and enzymes or exogenous stimuli such as light, magnetic field or temperature, which are biologically related or applicable in clinical settings. Furthermore, the paper discusses the applications and prospects of these stimuli-responsive nano drug carriers that are capable of overcoming the biological barriers of ocular disease alleviation and/or treatment for in vivo administration. There remains a great need to accelerate the development of stimuli-responsive nano drug carriers for clinical transition and applications in the treatment of ocular diseases and possible extrapolation to other topical applications such as ungual or otic drug delivery.
Collapse
Affiliation(s)
- Siphokazi B. K. Dludla
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Leshasha T. Mashabela
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Brian Ng’andwe
- University Teaching Hospitals-Eye Hospital, Private Bag RW 1 X Ridgeway, Lusaka 10101, Zambia
| | - Pedzisai A. Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (P.A.M.); (B.A.W.)
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Correspondence: (P.A.M.); (B.A.W.)
| |
Collapse
|
40
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
41
|
Liu H, Liu D, Ji M, Xiao P, Qin Y, Zhao J, Wang N, Gou J, Yin T, He H, Chen G, Zhang Y, Tang X. Inflammation-targeted sialic acid-dexamethasone conjugates for reducing the side effects of glucocorticoids. Int J Pharm 2022; 622:121900. [PMID: 35690305 DOI: 10.1016/j.ijpharm.2022.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
As a potent glucocorticoid drug (GCs), Dexamethasone (Dex) is widely used clinically for the treatment of inflammatory diseases. However, such side effects as Cushing's syndrome and osteoporosis caused severe distress to patients. Herein, a sialic acid (SA)-modified dexamethasone conjugate (Dex-SA) was synthesized successfully to reduce side effects by targeting inflammatory diseases. The solubility of Dex-SA in water reached 58 times that of Dex, which meets the need for intravenous administration. The excellent stability of Dex-SA in plasma also laid a foundation for targeting disease sites. According to cellular uptake and biodistribution experiments, Dex-SA was more readily to be taken up by inflammatory cells and accumulated in diseased kidneys compared to Dex, which is attributed to the interaction of SA with E-selectin receptors overexpressed on the surface of inflammatory vascular endothelial cells. Besides, the pharmacodynamics studies of acute kidney injury showed that Dex-SA and Dex could produce comparable therapeutic effects. More importantly, Dex-SA was found to significantly reduce Dex-related side effects, as measured by blood glucose, red blood cells and immune cells, etc. At last, molecular docking results were obtained to confirm that Dex-SA could enter the cells by binding specifically with the E-selectin receptor, for combination with glucocorticoid receptors in the cytoplasm to exert pharmacological effects. Our study is expected to contribute a new strategy to the safe and effective targeting treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Dongdong Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Yi Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Jiansong Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Na Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| |
Collapse
|
42
|
Design of an L-Valine-Modified Nanomicelle-Based Drug Delivery System for Overcoming Ocular Surface Barriers. Pharmaceutics 2022; 14:pharmaceutics14061277. [PMID: 35745853 PMCID: PMC9230556 DOI: 10.3390/pharmaceutics14061277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
The incidence of ocular surface disease (OSD) is increasing, with a trend towards younger ages. However, it is difficult for drugs to reach the deep layers of the cornea due to ocular surface barriers, and bioavailability is less than 5%. In this study, DSPE-PEG2000 was modified with L-valine (L-Val), and an HS15/DSPE-PEG2000-L-Val nanomicelle delivery system containing baicalin (BC) (BC@HS15/DSPE-PEG2000-L-Val) was constructed using thin-film hydration, with a high encapsulation rate, small particle size and no irritation to the ocular surface. Retention experiments on the ocular surface of rabbits and an in vivo corneal permeation test showed that, compared with the control, nanomicelles not only prolonged retention time but also enhanced the ability to deliver drugs to the deep layers of the cornea. The results of a protein inhibition and protein expression assay showed that nanomicelles could increase uptake in human corneal epithelial cells (HCEC) through energy-dependent endocytosis mediated by clathrin, caveolin and the carrier pathway mediated by PepT1 by inhibiting the overexpression of claudin-1 and ZO-1 and suppressing the expression of PepT1-induced by drug stimulation. These results indicate that BC@HS15/DSPE-PEG2000-L-Val is suitable for drug delivery to the deep layers of the ocular surface, providing a potential approach for the development of ocular drug delivery systems.
Collapse
|
43
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
44
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Sun L, Zhang M, Shi Y, Fang L, Cao F. Rational design of mixed nanomicelle eye drops with structural integrity investigation. Acta Biomater 2022; 141:164-177. [PMID: 35032720 DOI: 10.1016/j.actbio.2022.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Chitosan oligosaccharide-stearic acid-Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine (CSO-SA-VVV5:2/DOPE) nanomicelles were rationally designed and developed for topical drug delivery to the posterior segment of the eye. The new ligand of VVV selected by computer-aided design exhibited better peptide transporter 1 active targeting in human conjunctival epithelial cells (HConEpiC) than other ligands mentioned in this project. The classic membrane fusion lipid of DOPE was indicated to facilitate the stability and lysosomal escape of the mixed nanomicelles. Förster Resonance Energy Transfer was used to investigate the integrity of mixed nanomicelles in HConEpiC after passing through cell monolayer as well as in ocular tissues after topical administration. The results indicated that mixed nanomicelles could keep more intact micellar structure than CSO-SA nanomicelles in transit. These findings suggested that CSO-SA-VVV5:2/DOPE nanomicelles could overcome multiple ocular barriers and offer an efficient strategy for drug delivery from ocular surface to the posterior segment of the eye. STATEMENT OF SIGNIFICANCE: Ocular drug delivery systems face multiple physiological barriers in delivering drugs to the posterior segment of the eye by topical administration. In this study, new ligand of Valyl-Valyl-Valine was selected with computer-aided design for active targeting to peptide transporter 1 and anchored onto nanomicelles. Chitosan oligosaccharide-stearic acid- Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine nanomicelles were rational designed. The mixed nanomicelles exhibited better active targeting ability and lysosomal escape. Nanomicellar integrity analysis with fluorescence resonance energy transfer technique demonstrated that mixed nanomicelles significantly enhanced cell permeability and exhibited more intact micellar structure in transit. These results suggested that the mixed nanomicelle eye drops have the potential to deliver drugs from ocular surface to the posterior segment of the eye.
Collapse
Affiliation(s)
- Liping Sun
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China; Institute of Innovation, Heze Modern Medicinal Port Management and Service Center, 2999 Changjiang East Road, Heze, 274000, China
| | - Meng Zhang
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Yu Shi
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
46
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
47
|
Chitosan oligosaccharide/alginate nanoparticles as an effective carrier for astaxanthin with improving stability, in vitro oral bioaccessibility, and bioavailability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107246] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Zhao F, Fan S, Ghate D, Romanova S, Bronich TK, Zhao S. A Hydrogel Ionic Circuit Based High-Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107315. [PMID: 34716729 PMCID: PMC8813891 DOI: 10.1002/adma.202107315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Iontophoresis is an electrical-current-based, noninvasive drug-delivery technology, which is particularly suitable for intraocular drug delivery. Current ocular iontophoresis devices use low current intensities that significantly limit macromolecule and nanoparticle (NP) delivery efficiency. Increasing current intensity leads to ocular tissue damage. Here, an iontophoresis device based on a hydrogel ionic circuit (HIC), for high-efficiency intraocular macromolecule and NP delivery, is described. The HIC-based device is capable of minimizing Joule heating, effectively buffering electrochemical (EC) reaction-generated pH changes, and absorbing electrode overpotential-induced heating. As a result, the device allows safe application of high current intensities (up to 87 mA cm-2 , more than 10 times higher than current ocular iontophoresis devices) to the eye with minimal ocular cell death and tissue damage. The high-intensity iontophoresis significantly enhances macromolecule and NP delivery to both the anterior and posterior segments by up to 300 times compared to the conventional iontophoresis. Therapeutically effective concentrations of bevacizumab and dexamethasone are delivered to target tissue compartments within 10-20 min of iontophoresis application. This study highlights the significant safety enhancement enabled by an HIC-based device design and the potential of the device to deliver therapeutic doses of macromolecule and NP ophthalmic drugs within a clinically relevant time frame.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shan Fan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepta Ghate
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
49
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|