1
|
Yao L, Zhang Z, Chen G, Sun Z, Chen X, Yang H. Enhancing biomass enzymatic hydrolysis performance by modified DES lignin. J Biotechnol 2025; 403:115-125. [PMID: 40252735 DOI: 10.1016/j.jbiotec.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
The enzymatic hydrolysis of lignocellulose continues to be encumbered by elevated production costs and diminished cellulase efficiency. In this work, modified DES recovered lignin was obtained by grafting acrylamide and acryloyl chloride to enhance glucose release. At a cellulase dosage of 5 FPU/g-cellulose and pH of 5.5, modified lignin promoted glucose yield of dilute-acid-pretreated wheat straw by 158 % compared with control. The mechanism by which modified lignin promotes enzymatic hydrolysis was further explored. The binding constant was reduced from (3.3510 ± 0.8361)* 104 to (2.7600 ± 0.6027)* 103 L•mol-1 after modification. Modified lignin could make α-helix content enhancement so that cellulase had a compact and stable spatial structure. Lignin binds within the catalytic tunnel of cellulase and that the modified lignin interacts with cellulase with increased hydrogen bonding, resulting in a more compact cellulase structure. The modified lignin might reduce the unproductive adsorption of cellulase, and increase stability and cellulose accessibility to reduce cellulase cost.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA
| | - Zhe Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Guangyu Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiyuan Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life science and Health engineering, Hubei University of Technology, Wuhan 430068, PR China.
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, PR China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
2
|
Jabeen N, Shahzady TG, Mohyuddin A, Amjad M, Batool F, Ulfat W, Hussain S, Goh HH, Kurniawan TA. Applicability of Ni@ZnO polymer nanocomposite as an adsorbent for removal of methylene blue dye from synthetic wastewater: Batch studies and multilinear regression (MLR) modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:214. [PMID: 39888533 DOI: 10.1007/s10661-025-13614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Synthetic organic dye such as methylene blue (MB) is non-biodegradable and highly toxic, released from textile wastewater. This work investigates the applicability of Ni@ZnO polymer nanocomposite for MB removal from the wastewater. To understand their differences before and after MB adsorption, composites' surface morphology was characterized by various techniques including scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transformation infrared (FT-IR) and UV-Vis spectrophotometer. The adsorption mechanism of target pollutants by the composites was also studied based on isotherm and kinetic models. The correlation between the optimized conditions and the percentage removal was further studied by applying multi linear regression (MLR) model. At the same concentration of 100 mg/L, it was found that under optimized conditions of 1 g/L of adsorbent, pH 7.5, and 190 min of reaction time, about 94% and 98% of MB removal were attained, respectively. In spite of the promising results, treated effluents were still unable to meet the required discharge standards of less than 1 mg/L mandated by local legislation. Furthermore, the MB adsorption by the composite was based on attractive electrostatic interactions. Overall, this study not only provides insights into the adsorption efficiency, but also evaluates the recyclability and stability of the adsorbent, addressing key challenges in practical wastewater treatment. By integrating its novel aspects, this work contributes to a more nuanced understanding of the Ni@ZnO composite's potential in environmental applications, distinguishing this work from existing literature on MB adsorption.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Chemistry, Lahore Garrison University, Lahore, 54470, Pakistan
| | | | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Muhammad Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Fatima Batool
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Wajad Ulfat
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | | |
Collapse
|
3
|
Mou L, Wu C, Li R, Zhu Y, Su G, Zhang Y. Rapid detection of microplastics/nanoplastics directly exposed to blood during intravenous injections via mie scattering spectra. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136193. [PMID: 39423646 DOI: 10.1016/j.jhazmat.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Microplastics/nanoplastics (M/NPs) are pervasive in the environment, leading to inevitable human exposure through various pathways and raising significant public and scientific concern. Understanding the sources and levels of M/NPs in human blood is crucial for environmental health studies. This work examined the content, type, shape, and size of M/NPs released directly into the bloodstream from medical devices via saline solution during intravenous (IV) injection. The results of the Mie scattering spectra method show that the M/NPs content from infusion bags was 1.0 ± 0.7 μg/L, mainly fibers, polyethylene, and polypropylene, with fragments being predominant. During a IV process, the initial 12 mL of saline from infusion tubes contained 8.4 ± 3.6 μg/L of M/NPs, primarily polyvinyl chloride and fibers. These results suggest that M/NPs exposure during IV therapy mainly originates from infusion tubing, necessitating high concern for exposure risks. Recommendations include: 1) reducing non-essential IV treatments, 2) discarding the initial 12 mL of saline solution flowing through the tubing during essential IV therapy, and 3) expediting the development of legal requirements and detection standards by national authorities and the healthcare industry to mitigate the risk of M/NPs exposure in the bloodstream.
Collapse
Affiliation(s)
- Lei Mou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Chuanliu Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaxian Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Guoqiang Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China.
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China, Xiamen University, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian Province, China.
| |
Collapse
|
4
|
Nie X, Huang X, Li M, Lu Z, Ling X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. TOXICS 2024; 12:872. [PMID: 39771087 PMCID: PMC11679158 DOI: 10.3390/toxics12120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments. By thoroughly examining and contrasting their remediation mechanisms and effects, this study provides a detailed evaluation of their influence on soil physicochemical properties, leachable heavy metal content, and microbial communities. Through bibliometric analysis, current research priorities and trends are highlighted, offering a multidimensional comparison of these amendments and clarifying their varying applicability and limitations. Furthermore, this review explores future prospects and the inherent challenges in soil amendments for heavy metal contamination, aiming to offer valuable insights and theoretical references for the development and selection of novel, efficient, multifunctional, environmentally friendly amendments.
Collapse
Affiliation(s)
- Xinyi Nie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Man Li
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaochi Lu
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Xinhe Ling
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
5
|
Socas-Hernández C, Miralles P, González-Sálamo J, Hernández-Borges J, Coscollà C. Assessment of anthropogenic particles content in commercial beverages. Food Chem 2024; 447:139002. [PMID: 38513486 DOI: 10.1016/j.foodchem.2024.139002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Microplastic (MPs) pollution is a current global concern that is affecting all environmental compartments and food sources. In this work, anthropogenic particles occurrence (MPs and natural and synthetic cellulosic particles), have been determined in 73 beverages packed in different containers. Overall, 1521 anthropogenic particles were found, being the lowest occurrence in water samples (7.2 ± 10.1 items·L-1) while beer had the highest (95.5 ± 91.8 items·L-1). Colourless/white particles were the most detected followed by blue and red colours. The highest mean size was 783 ± 715 μm in soft drinks. Cellulosic, both natural and semisynthetic particles, were the composition mostly found but regarding plastic polymers, it was polyester. Phenoxy resin particles from the can coatings were also identified in all metal containers which indicates that leaching from the packaging may be happening. The total estimated daily intake were 0.077 and 0.159 items·kg-1 body weight (b.w.)·day-1 for children and adult population, respectively.
Collapse
Affiliation(s)
- Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain.
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| |
Collapse
|
6
|
Mohammadbagheri Z, Movahedi B, Saeedi S, Rahmati A. An eco-friendly composite hydrogel based on covalently crosslinked cellulose/poly (glycerol citrate) for thallium (Ι) removal from aqueous solutions. Int J Biol Macromol 2024; 254:127840. [PMID: 37926325 DOI: 10.1016/j.ijbiomac.2023.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Cellulose/poly (glycerol citrate) reinforced with thiol-rich polyhedral oligomeric silsesquioxane and apple peel (POSS-SH@CAG-CEL/AP) was synthesized using gelation method in the presence of glutaraldehyde as a crosslinker agent and used as an efficient composite hydrogel for elimination of Tl(Ι) from aqueous solutions. This composite hydrogel and synthesized thiol-rich polyhedral oligomeric silsesquioxane were characterized by elemental analysis, FT-IR, NMR, TGA, and FE-SEM techniques. The effects of synthetic and environmental parameters on the adsorption capacity of the composite hydrogel were investigated and it was found that thiol-rich polyhedral oligomeric silsesquioxane has improved the hydrogel properties including the Tl(Ι) uptake and the thermal stability. The maximum adsorption capacity of 352.3 mg g-1 was obtained within 30 min under optimum reaction conditions. A typical Langmuir adsorption isotherm with was observed for adsorption of Tl(I) onto POSS-SH@CAG-CEL/AP and pseudo-second-order kinetic model provided the best correlation between experimental data. Thermodynamic studies showed that the Tl(I) adsorption was spontaneous process and exothermic. Also, the reusability tests confirmed that the POSS-SH@CAG-CEL/AP can be reused for four times without any remarkable change in its adsorption capacity. Thus, this reusable biobased composite hydrogel can be an ideal candidate for elimination of Tl(I) from aqueous solutions.
Collapse
Affiliation(s)
- Zahra Mohammadbagheri
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Behrooz Movahedi
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Shaghayegh Saeedi
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
7
|
Acuña-Nicolás J, Montesinos-Vázquez T, Pérez-Silva I, Galán-Vidal CA, Ibarra IS, Páez-Hernández ME. Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers (Basel) 2023; 15:3086. [PMID: 37514475 PMCID: PMC10384298 DOI: 10.3390/polym15143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Since lead is a highly toxic metal, it is necessary to detect its presence in different samples; unfortunately, analysis can be complicated if the samples contain concentrations below the detection limit of conventional analytical techniques. Solid phase extraction is a technique that allows the carrying out of a pre-concentration process and thus makes it easy to quantify analytes. This work studied the efficiency of sorption and preconcentration of lead utilizing polysulfone (PSf) fibers grafted with acrylic acid (AA). The best conditions for Pb(II) extraction were: pH 5, 0.1 mol L-1 of ionic strength, and 40 mg of sorbent (70% of removal). The sorbed Pb(II) was pre-concentrated by using an HNO3 solution and quantified using flame atomic absorption spectrometry. The described procedure was used to obtain a correlation curve between initial concentrations and those obtained after the preconcentration process. This curve and the developed methodology were applied to the determination of Pb(II) concentration in a water sample contained in a handmade glazed clay vessel. With the implementation of the developed method, it was possible to pre-concentrate and determine a leached Pb(II) concentration of 258 µg L-1.
Collapse
Affiliation(s)
- Jessica Acuña-Nicolás
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Tanese Montesinos-Vázquez
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Irma Pérez-Silva
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Carlos A Galán-Vidal
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Israel S Ibarra
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - M Elena Páez-Hernández
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| |
Collapse
|
8
|
Li F, Xie Z, Wen J, Tang T, Jiang L, Hu G, Li M. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Int J Mol Sci 2023; 24:ijms24108922. [PMID: 37240268 DOI: 10.3390/ijms24108922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel. Various factors influencing batch adsorption capacity, including pH, contact time, and solution concentration, were investigated. The results showed that the adsorption kinetics were in good agreement with the pseudo-second-order kinetic model and that the adsorption isotherms followed the Langmuir model. The maximum adsorption capacities calculated by the Langmuir model are 106.3, 333.3, and 163.9 mg/g for Cu(II), Pb(II), and Cd(II), respectively. Furthermore, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDS) results demonstrated that cationic exchange and electrostatic interaction were the main heavy metal ions adsorption mechanisms. These results demonstrate that CE-PAANa graft copolymer sorbents from cellulose-rich SCB can potentially be used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Fuchao Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhemin Xie
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
9
|
Amjad M, Mohyuddin A, Nadeem S, Ulfat W, Saeed S, Asghar N, Ahmed S. Development of biodegradable vinyl acetate and acrylic acid grafted gelatin copolymer for dye adsorption. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Li H, Zhu L, Ma M, Wu H, An L, Yang Z. Occurrence of microplastics in commercially sold bottled water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161553. [PMID: 36640894 DOI: 10.1016/j.scitotenv.2023.161553] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous in all environmental compartments, including food and water. A growing body of evidence suggests the potential health impacts of continuous microplastic ingestion on humans. However, a lack of information on microplastic exposure to humans through drinking water and the high heterogeneity of available data limits advancements in health risk assessments. In the present study, laser direct infrared spectroscopy (LD-IR) was used to determine the occurrence of microplastics in bottled water sold in China. Then, the ingestion level of microplastics through drinking water was estimated. The results showed that the average microplastic abundance in bottled water was 72.32 ± 44.64 items/L, which was higher than that detected in tap water (49.67 ± 17.49 items/L). Overall, the microplastic structures were dominated by films and mainly consisted of cellulose and PVC. Their sizes were concentrated in the range of 10-50 μm, accounting for 67.85 ± 8.40 % of the total microplastics in bottled water and 75.50 % in tap water. The estimated daily intake of microplastics (EDI) by infants through bottled water and tap water was almost twice as high as that by adults, although adults ingested more microplastics. The present results provide valuable data for further assessing human health risks associated with exposure to microplastics.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Long Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mindong Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhanhong Yang
- Environmental Standards Institute of Ministry of Ecology and Environment of the People's Republic of China, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
A highly efficient biomass-based adsorbent fabricated by graft copolymerization: Kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal. J Colloid Interface Sci 2022; 616:12-22. [DOI: 10.1016/j.jcis.2022.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
|
12
|
Guleria A, Kumari G, Lima EC, Ashish DK, Thakur V, Singh K. Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153689. [PMID: 35143799 DOI: 10.1016/j.scitotenv.2022.153689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is most abundant, ecofriendly and sustainable material on this green planet which has received great attention due to exhaustion of petroleum reserves and various environmental complications. Due to its abundance and sustainability, it has been opted in number of advanced applications i.e. synthesis of green chemicals, biofuels, paper, packaging, biocomposite and for discharge of toxic contaminants from wastewaters. Utilization of sustainable biomass for removal of toxic pollutants from wastewater is robust technique due to its low-cost and easy availability. In this review, we have summarized removal of inorganic pollutants by sustainable lignocellulosic biomass in their natural as well as in chemically functionalized form. Various techniques for modification of sustainable biomass have been discussed and it was found that modified biomass showed better biosorption ability as compared to natural biomass. We conclude that modified biomass biosorbents are useful for removal of toxic inorganic pollutants to deficient levels. Several modification strategies can improve the qualities of biosorbent, however grafting is the most successful among them, as demonstrated in this work. The numerous grafting methods using a free radical grafting process are also summarized in this review article. This review also gathers studies comparing sorption capabilities with and without modification using modified and unmodified biosorbents. Chemically modified cellulosic biomass is favoured over untreated biomass because it has a higher adsorption efficiency, which is favoured by a large number of reactive binding sites, improved ion-exchange characteristics, and more functional groups available after modification.
Collapse
Affiliation(s)
- Ashish Guleria
- Department of Applied Sciences, WIT, Dehradun 248007, India
| | - Garima Kumari
- Department of Biotechnology, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh 173101, India
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), 15003, Brazil
| | - Deepankar Kumar Ashish
- Department of Civil Engineering, Maharaja Agrasen Institute of Technology, Maharaja Agrasen University, Baddi 174103, India.
| | - Vaishali Thakur
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi 174103, India
| | - Kulvinder Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| |
Collapse
|
13
|
Zhang T, Liu S, Li H, Ma J, Wang X, Shi H, Wang Z, Zhang F, Niu M, Guo Y. One-pot preparation of amphoteric cellulose polymers for simultaneous recovery of ammonium and dihydrogen phosphate from wastewater and reutilizing as slow-release fertilizer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Bagasse Cellulose Composite Superabsorbent Material with Double-Crosslinking Network Using Chemical Modified Nano-CaCO 3 Reinforcing Strategy. NANOMATERIALS 2022; 12:nano12091459. [PMID: 35564167 PMCID: PMC9104651 DOI: 10.3390/nano12091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
Abstract
To improve the salt resistance of superabsorbent materials and the gel strength of superabsorbent materials after water absorption, a bagasse cellulose-based network structure composite superabsorbent (CAAMC) was prepared via graft copolymerization of acrylamide/acrylic acid (AM/AA) onto bagasse cellulose using silane coupling agent modified nano-CaCO3 (MNC) and N,N′-methylene bisacrylamide (MBA) as a double crosslinker. The acrylamide/acrylic acid was chemically crosslinked with modified nano-CaCO3 by C-N, and a stable double crosslinked (DC) network CAAMC was formed under the joint crosslinking of N,N′-methylene bisacrylamide and modified nano-CaCO3. Modified nano-CaCO3 plays a dual role of crosslinking agent and the filler, and the gel strength of composite superabsorbent is two times higher than that of N,N′-methylene bisacrylamide single crosslinking. The maximum absorbency of CAAMC reached 712 g/g for deionized water and 72 g/g for 0.9 wt% NaCl solution. The adsorption process of CAAMC was simulated by materials studio, and the maximum adsorption energy of amino and carboxyl groups for water molecules is −2.413 kJ/mol and −2.240 kJ/mol, respectively. According to the results of CAAMC soil water retention, a small amount of CAAMC can greatly improve the soil water retention effect.
Collapse
|
15
|
Liu Y, Yan Y, Zhao L, Zhang Y, Zhang L, Zan X. Thermally stable poly (acrylic acid‐acrylamide‐biomass‐fly ash) composites with improved temperature resistance and salt resistance. J Appl Polym Sci 2022. [DOI: 10.1002/app.51533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu China
- Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Urumqi China
| | - Yangtian Yan
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu China
| | - Lin Zhao
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu China
| | - Yagang Zhang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu China
- Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Urumqi China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Urumqi China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Urumqi China
| |
Collapse
|
16
|
Zhang J, Huang D, Liu S, Yang Z, Dong X, Zhang H, Huang W, Zhou S, Wei Y, Hua W, Jin Y, Zhou W, Zheng W. Water soluble photocurable carboxymethyl cellulose‐based bioactive hydrogels for digital light processing. J Appl Polym Sci 2022. [DOI: 10.1002/app.52155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiancheng Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
- Key Laboratory of Breast Diseases in Jiangxi Province Third Hospital of Nanchang Nanchang China
| | - Shuifeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Zijun Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Shuzhen Zhou
- Eastern Along Pharmaceutical Co., Ltd Foshan China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research Tsinghua University Beijing China
| | - Weijian Hua
- Mechanical Engineering Department University of Nevada Reno Reno Nevada USA
| | - Yifei Jin
- Mechanical Engineering Department University of Nevada Reno Reno Nevada USA
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
17
|
Liu Y, Fan H, Wang X, Zhang J, Li W, Wang R. Controllable synthesis of bifunctional corn stalk cellulose as a novel adsorbent for efficient removal of Cu 2+ and Pb 2+ from wastewater. Carbohydr Polym 2022; 276:118763. [PMID: 34823785 DOI: 10.1016/j.carbpol.2021.118763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
A corn stalk cellulose-based adsorbent with bifunctional groups of -NH-/-NH2 and C-S/C=S for efficient removal of Cu2+ and Pb2+ was successfully synthesized. Under specific alkali and reaction conditions, 4.58 mmol/g of C-S/C=S groups were further introduced on surface of aminated cellulose with 6.99 mmol/g of amino groups. The introduced CS2 would only participate in the esterification with -NH2 groups to form special dithiocarbamate (DTC) structures containing -NH- groups (-NHCS2-). The synthesized DTC structures would not reduce total amount of -NH-/-NH2 groups on aminated cellulose to keep its excellent adsorption performance for Cu2+, and the introduced appropriate number of C-S/C=S groups could ensure the efficient removal of Pb2+. It was suitable for removal of coexisting Cu2+ and Pb2+ with low initial concentration in real wastewater, and the removal rates were both close to 100%. The application of the bifunctional cellulose offered a novel way for purpose of 'waste treatment by waste'.
Collapse
Affiliation(s)
- Yi Liu
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China
| | - Hongying Fan
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China
| | - Xuan Wang
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China
| | - Jian Zhang
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China
| | - Wenting Li
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China
| | - Rong Wang
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Environmental Testing Center of Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
18
|
Huang Y, Zhang Q. Highly Efficient Removal of Cu(II) with Modified Electrolytic Manganese Residue as A Novel Adsorbent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06506-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
El Nemr A, Eleryan A, Ragab S. Synthesis of 6-cellulose-triethylenetetramine-glutaraldehyde for removal of toxic chromium from an aquatic environment. DESALINATION AND WATER TREATMENT 2022; 245:129-143. [DOI: 10.5004/dwt.2022.27960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
20
|
Direct grafting of cellulose nanocrystals with poly(ionic liquids) via Gamma-ray irradiation and their utilization for adsorptive removal of CR. Int J Biol Macromol 2022; 194:1029-1037. [PMID: 34856214 DOI: 10.1016/j.ijbiomac.2021.11.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
In this work, a simple but effective method based on Gamma-ray initiated polymerization was reported for the first time through direct irradiation of CNCs and ionic liquid monomer to obtain poly (ionic liquids) functionalized CNCs (IL@CNCs). The adsorptive removal of Congo red (CR) from aqueous solution by IL@CNCs was also examined and the influence of contact time, pH values, initial concentrations and temperature on adsorption behavior was investigated in detail. Under the same adsorption conditions, the adsorption capacity was increased from 59.72 mg/g (CNCs) to 195.83 mg/g (IL@CNCs). The results of the adsorption isotherm and adsorption kinetics showed that the experimental data were more suitable to be described by the Freundlich isotherm adsorption model and the pseudo-second-order model. The adsorption process of CR on the surface of the adsorbent was endothermic and spontaneous. When the aqueous solution was acidic, it was more conducive to the adsorption of CR. At 100% breakthrough, the value of adsorption capacity is 199.95 mg/g and the value of partition coefficient is 9.64. Moreover, the adsorption capacity is expected to be further improved through adjustment of polymerization parameters and this method can also be used for preparation other poly (ionic liquids) modified composites.
Collapse
|
21
|
Eleryan A, El Nemr A, Idris AM, Alghamdi MM, El-Zahhar AA, Said TO, Sahlabji T. Feasible and eco-friendly removal of hexavalent chromium toxicant from aqueous solutions using chemically modified sugarcane bagasse cellulose. TOXIN REV 2021; 40:835-846. [DOI: 10.1080/15569543.2020.1790606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Ahmed Eleryan
- Division of Environmental, Department of Marine Pollution, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Ahmed El Nemr
- Division of Environmental, Department of Marine Pollution, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Abubakr M. Idris
- Environmental Monitoring, Assessment and Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Majed M. Alghamdi
- Environmental Monitoring, Assessment and Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Adel A. El-Zahhar
- Environmental Monitoring, Assessment and Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Nuclear Chemistry, AEA, Cairo, Egypt
| | - Tarek O. Said
- Division of Environmental, Department of Marine Pollution, National Institute of Oceanography and Fisheries, Alexandria, Egypt
- Environmental Monitoring, Assessment and Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Taher Sahlabji
- Environmental Monitoring, Assessment and Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
22
|
Saleh TA, Tuzen M, Sarı A. Evaluation of poly(ethylene diamine-trimesoyl chloride)-modified diatomite as efficient adsorbent for removal of rhodamine B from wastewater samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55655-55666. [PMID: 34138426 DOI: 10.1007/s11356-021-14832-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Diatomite (D) as a low-cost and eco-friendly clay was modified by ethylene diamine (EDA)-trimesoyl chloride (TMC) polymer to achieve a novel adsorbent for efficient removal of rhodamine B dye (RB) from wastewater samples. The EDA-TMC polymer was grafted to the surface of diatomite by in situ interfacial polymerization. The prepared p(EDA-TMC)/D adsorbent was characterized by XRD, FTIR, and SEM/EDX techniques. The effective experimental parameters on the adsorption performance were optimized with factorial design analysis. The equilibrium data were better correlated by non-linear Langmuir model compared to non-linear Freundlich model. The Langmuir monolayer adsorption capacity of the p(EDA-TMC)/D adsorbent was determined as 371.8 mg g-1. The key adsorption parameters were optimized by experimental design analysis. The kinetic findings showed the adsorption mechanism of RB onto p(EDA-TMC)/D adsorbent was well designated by the pseudo-second-order kinetic model. The thermodynamic results indicate that the RB adsorption had an exothermic character in thermal nature and was less favorable with increasing temperature from 20 to 60 °C. Furthermore, the adsorption/desorption yield of p(EDA-TMC)/D was still 80%/70% after 5th cycle and reduced to 60%/52% at the end of 8th cycle. Thus, the present study revealed that the developed p(EDA-TMC)/D composite had great adsorption potential for removal of RB from wastewater samples compared to that of different kinds of adsorbents reported in the literature.
Collapse
Affiliation(s)
- Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Mineral, Dhahran, 31261, Saudi Arabia
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Center of Research Excellence in Renewable Energy (CORERE), Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
23
|
Amphiphilic Graft Copolymers of Hydroxypropyl Cellulose Backbone with Nonpolar Polyisobutylene Branches. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Quantum mechanical study on physisorption of dissolved metal ions in seawater using cellulose, chitosan and chitin. Int J Biol Macromol 2021; 183:2109-2120. [PMID: 34097962 DOI: 10.1016/j.ijbiomac.2021.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Density Functional Theory (DFT) calculations were performed to investigate the adsorption of alkali and alkaline earth metal ions, Na+, K+, Mg2+, and Ca2+ present in seawater by biopolymers, cellulose, chitosan, and chitin. Analysis of the optimized geometries of the complexes formed by physisorption of metal ions on biopolymers reveals that monomer of chitin is the best biopolymer for adsorption of Mg2+ ion. Water as a solvent reduces the reactivity of complexes formed, playing a significant role in complex stability, which further proved the effective use of cellulose, chitosan and chitin for real-time applications. Natural Bond Orbital (NBO) analysis and quantum reactivity descriptors of the optimized geometries indicate that the electronic charge transfer between the biopolymer and metal ions acts as a driving force for the complex formation. This study also highlights the significant role of water in physisorption of metal ions on biopolymer.
Collapse
|
25
|
Waheed A, Baig N, Ullah N, Falath W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112360. [PMID: 33752053 DOI: 10.1016/j.jenvman.2021.112360] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Water quality plays a central role in the well-being of all the living organisms on planet Earth. The ever-increasing human population and consequently increasing industrialization, urbanization, and chemically boosted cultivation are rapidly contaminating already stressed water resources. The availability of clean drinking water has become scarce for masses across the globe, and this situation is becoming alarming in developing countries. Therefore, the immediate need for cost-effective, easily accessible, eco-friendly, portable, thermally efficient, and chemically stable technologies and materials is desperately felt to meet the high global demand for clean water. To search for effective materials for wastewater treatment, the hyper-cross-linked porous polymers (HCPs) have emerged as an excellent class of porous materials for wastewater treatment due to their unique features of high surface area, tunability, biodegradability, and chemical versatility. This review describes the advances in fabrication strategies and the efficient utilization of hyper-cross-linked porous polymers for wastewater treatment. Moreover, this review specifically discusses the hyper-cross-linked porous polymers effectiveness for the separation of the dyes, nutrients, inorganic ions, organic contaminants, and toxic metals ions. Finally, the review provides insight into the challenges and prospects in the area of hyper-cross-linked porous polymers. Overall, the hyper-cross-linked porous polymers with empowering proper functionalization can provide an opportunity for the wastewater treatment not only to remove toxic contaminants but also to make contaminated water useful for various applications.
Collapse
Affiliation(s)
- Abdul Waheed
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nadeem Baig
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
26
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
27
|
Lubis R, Wirjosentono B, Eddyanto, Septevani AA. Preparation, characterization and antimicrobial activity of grafted cellulose fiber from durian rind waste. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
A novel ε-polylysine-modified microcrystalline cellulose based antibacterial hydrogel for removal of heavy metal. Int J Biol Macromol 2020; 163:1915-1925. [DOI: 10.1016/j.ijbiomac.2020.09.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
|