1
|
Choi H, Kwak MJ, Choi Y, Kang AN, Mun D, Eor JY, Park MR, Oh S, Kim Y. Extracellular vesicles of Limosilactobacillus fermentum SLAM216 ameliorate skin symptoms of atopic dermatitis by regulating gut microbiome on serotonin metabolism. Gut Microbes 2025; 17:2474256. [PMID: 40028723 PMCID: PMC11881872 DOI: 10.1080/19490976.2025.2474256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent chronic inflammatory skin disorder. Its pathogenesis remains incompletely understood, resulting in considerable therapeutic challenges. Recent studies have highlighted the significance of the interaction between AD and gut microbiome. In this study, we investigated the effects of probiotic-derived extracellular vesicles on AD. Initially, we isolated and characterized extracellular vesicles from Limosilactobacillus fermentum SLAM 216 (LF216EV) and characterized their composition through multi-omics analysis. Gene ontology (GO) and pathway analysis classified LF216EV proteins into biological processes, molecular functions, and cellular components. Importantly, specific abundance in linoleic, oleic, palmitic, sebacic, and stearic acids indicating upregulated fatty acid metabolism were observed by metabolomic analysis. Furthermore, featured lipid profiling including AcylGlcADG and ceramide were observed in LF216EV. Importantly, in an atopic dermatitis-like cell model induced by TNFα/IFNγ, LF216EV significantly modulated the expression of immune regulatory genes (TSLP, TNFα, IL-6, IL-1β, and MDC), indicating its potential functionality in atopic dermatitis. LF216EV alleviated AD-like phenotypes, such as redness, scaling/dryness, and excoriation, induced by DNCB. Histopathological analysis revealed that LF216EV decreased epidermal thickness and mast cell infiltration in the dermis. Furthermore, LF216EV administration reduced mouse scratching and depression-related behaviors, with a faster onset than the classical treatment with dexamethasone. In the quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we observed a significant increase in the expression levels of htrb2c, sert, and tph-1, genes associated with serotonin, in the skin and gut of the LF216EV-treated group, along with a significant increase in the total serum serotonin levels. Gut microbiome analysis of the LF216EV-treated group revealed an altered gut microbiota profile. Correlation analysis revealed that the genera Limosilactobacillus and Desulfovibrio were associated with differences in the intestinal metabolites, including serotonin. Our findings demonstrate that LF216EV mitigates AD-like symptoms by promoting serotonin synthesis through the modulation of gut microbiota and metabolome composition.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Mi Ri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Pootaeng-On Y, Sirirak J, Yodsin N, Kuntiyong P, Charoensuksai P, Wongprayoon P, Jiajaroen S, Chainok K, Rayanil KO. Miliseol A-D: new lanostane triterpenoids from Miliusa sessilis and their wound-healing activity. Nat Prod Res 2025:1-10. [PMID: 40221442 DOI: 10.1080/14786419.2025.2491834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Investigation of the Miliusa sessilis hexane extract led to four novel lanostane triterpenoids, miliseol A-D (1-4) and five known compounds (5-9). Through extensive spectroscopic analyses, the new compounds were identified as (3β,23S)-23-methoxy-24-methylene-29-nor-5α-lanost-9(11)-en-3-ol (1), (3β,23S)-23-methoxy-24-methylene-5α-lanost-9(11)-en-3-ol (2), (3β,16β)-24-methylene-5α-lanost-9(11)-ene-3,16-diol (3), and (3β,24S)-24,241-epoxy-5α-lanost-9(11)-en-3-ol (4). The density functional theory (DFT) computations combined with a statistical procedure (DP4+) were used to identify the stereochemistry of compound 4. The X-ray crystallographic data was utilised to confirm the absolute configurations of compounds 1 and 3. The known compounds were isolated and elucidated as (+)-spathulenol (5), phytol (6), T-muurolol (7), β-sitosterol (8), and β-sitosterol-3-O-β-d-glucopyranoside (9) through spectroscopic analyses and comparison with the literature. Biological activity screening indicated that compound 1 promoted cell migration in the HaCaT cell line, with minimal cytotoxicity at the tested concentrations. This finding suggests its potential as an enhancing agent for skin wound healing.
Collapse
Affiliation(s)
- Yupa Pootaeng-On
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi Information Technology Campus, Phetchaburi, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Punlop Kuntiyong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Purin Charoensuksai
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Suwadee Jiajaroen
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Liu K, Cheong KL, He Y, Liew A, Huang C, Zhong S, Sathuvan M. Pitaya stem polysaccharide promotes wound healing by modulating macrophage polarization via single-cell RNA sequencing evidence. Int J Biol Macromol 2025; 308:142653. [PMID: 40158567 DOI: 10.1016/j.ijbiomac.2025.142653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Hyperactivation of M1 macrophages or delayed macrophage M2/M1 polarization during wound healing is a major obstacle to wound healing. Polysaccharide, as a biomaterial, has shown great potential and advantages in the field of wound dressings, but little is known about the role of polysaccharide (PSP) in wound healing. The aim of this study was to investigate the promotional effect of PSP on wound healing through its effect on macrophage M2/M1 polarization. The results showed that PSP treatment polarized the macrophage population toward an M2 phenotype, significantly accelerating wound closure in vivo, as evidenced by increased levels of collagen deposition, decreased levels of pro-inflammatory cytokines (INOS, IL-6, and IL-1β), and increased expression of CD31 (an angiogenic marker) and Ki67 (a cell proliferation marker). Functional changes in skin macrophages during wound healing were analyzed using single-cell RNA sequencing (scRNA-seq). The results highlighted a unique transcriptional signature associated with PSP-induced polarization of M2 macrophages. Moreover, PSP was found to upregulate the PI3K/Akt signaling pathway, which is crucial for cell survival, migration, and tissue repair. These results reveal that PSP can promote skin wound healing, emphasizing its potential as a natural product for treating skin wounds.
Collapse
Affiliation(s)
- Keying Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yunhua He
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Meichen Biotechnology Company Limited, Guangdong Suixi Dragon Fruit Science and Technology Small Courtyard, Zhanjiang, China
| | - Ahluk Liew
- Guangdong Meichen Biotechnology Company Limited, Guangdong Suixi Dragon Fruit Science and Technology Small Courtyard, Zhanjiang, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Malairaj Sathuvan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Kancheepuram District, Tamil Nadu, India
| |
Collapse
|
4
|
Wang R, Wang J, Wang Z, Pan J, Sun S, Ma C, Tang X, Lv S, Zhai S, Zhao G. Extraction methods, structural characteristics, biological activities, and applications of the polysaccharides from Gracilaria lemaneiformis: A review. Int J Biol Macromol 2025; 293:139316. [PMID: 39740720 DOI: 10.1016/j.ijbiomac.2024.139316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Gracilaria/Gracilariopsis lemaneiformis is an ecologically and economically valuable seaweed that has attracted attention for its unique flavour and rich nutritional content. Studies have shown that G. lemaneiformis contains a variety of chemical components, among which G. lemaneiformis polysaccharides (GLPs) are the main active components. GLPs are a class of biomolecules with significant pharmacological activities, which exhibit a variety of bioactivities in vitro and in vivo, including anti-inflammatory, immunomodulatory, regulating lipid metabolism, anti-oxidant, anti-allergic, and anti-cancer activity. Despite the great potential value of GLPs, their current research and review are still relatively limited, which hinders their development and utilization to some extent. Therefore, this study aims to systematically summaries the latest information on GLPs, covering extraction and purification methods, structural characterization, biological activities and conformational relationships. In addition, the potential applications of GLPs and related bibliometrics will be analyzed to provide basic data and references for future studies. In conclusion, this study will contribute to an in-depth understanding of the properties of GLPs and provide a strong scientific basis and direct reference for their more scientific and rational applications.
Collapse
Affiliation(s)
- Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Zhichao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jiaojiao Pan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shiru Sun
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Cuixia Ma
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xiaobing Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Shaoqi Lv
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China.
| | - Ge Zhao
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
5
|
Chen SK, Liu JJ, Wang X, Luo H, He WW, Song XX, Yin JY, Nie SP. Self-assembled near-infrared-photothermal antibacterial Hericium erinaceus β-glucan/tannic acid/Fe (III) hydrogel for accelerating infected wound healing. Carbohydr Polym 2025; 348:122898. [PMID: 39567134 DOI: 10.1016/j.carbpol.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Bacterial infection severely hinders skin wound healing, highlighting the critical application value of developing antibacterial and anti-inflammatory hydrogel dressings. In this work, we focused on β-glucan from Hericium erinaceus (HEBG) as the research object, and proposed a solvent-induced combined temperature manipulation technique to trigger multilevel self-assembly of β-glucan. Furthermore, we incorporated green synthesized near-infrared photosensitizer tannic acid (TA)/iron (III) complex into the system. A hydrogel with exceptional antibacterial properties, capable of responding to near-infrared photothermal stimuli while exhibiting remarkable stiffness and structural consistency, was successfully synthesized. Under near-infrared radiation, HEBG/TA/Fe hydrogels produced local hyperthermia and exhibited excellent antibacterial activity against bacteria-infected wounds. Moreover, the HEBG/TA/Fe hydrogel demonstrates its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators TNF-α and IL-6, while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. Notably, the results of tissue staining revealed that the NIR + HEBG/TA/Fe5 hydrogel could effectively promoting granulation and vascularization, improving collagen deposition in infected wounds thereby accelerating the healing process. These findings indicate that mixed hydrogels exhibit potential as viable options for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Hui Luo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
6
|
Akgul B, Gulcan C, Tornaci S, Erginer M, Toksoy Oner E, Abamor ES, Acar S, Allahverdiyev AM. Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations. Macromol Biosci 2025; 25:e2400291. [PMID: 39461894 PMCID: PMC11727819 DOI: 10.1002/mabi.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
Collapse
Affiliation(s)
- Busra Akgul
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Cansu Gulcan
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Selay Tornaci
- IBSBDepartment of BioengineeringMarmara UniversityIstanbul34854Turkey
| | - Merve Erginer
- Institute of Nanotechnology and BiotechnologyIstanbul University‐CerrahpaşaIstanbul34500Turkey
- Health Biotechnology Joint Research and Application Center of ExcellenceEsenlerIstanbul34220Turkey
| | - Ebru Toksoy Oner
- IBSBDepartment of BioengineeringMarmara UniversityIstanbul34854Turkey
| | - Emrah Sefik Abamor
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Serap Acar
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Adil M. Allahverdiyev
- The V. Akhundov Scientific Research Medical Preventive InstituteBakuAZ1004Azerbaijan
| |
Collapse
|
7
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
8
|
Shen JW, Pan PK, Chen YY, Nan FH, Wu YS. Characteristics of Gracilariopsis lemaneiformis hydrocolloids and their effects on intestine PPAR signaling and liver lipid metabolism in Oreochromis niloticus: A multiomics analysis. Heliyon 2024; 10:e40416. [PMID: 39669144 PMCID: PMC11635660 DOI: 10.1016/j.heliyon.2024.e40416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
This study evaluated the effects of Gracilariopsis lemaneiformis hydrocolloids on Nile tilapia (Oreochromis niloticus) using an advanced multiomics approach (transcriptome and proteome) linked with genomic isoform structure to elucidate the biofunctions of G. lemaneiformis hydrocolloids. The results showed that G. lemaneiformis hydrocolloids did not affect growth, as indicated by the nonsignificant differences in growth and blood biochemical indicators. Regarding the response, both intestine and liver tissues were assessed. These findings indicate that 20 % G. lemaneiformis hydrocolloids enhanced cytokine expression, which may contribute to a biological function in the intestine and liver of O. niloticus. Genome and proteome profiles indicated that G. lemaneiformis hydrocolloids upregulated the intestine and liver peroxisome proliferator-activated receptor (PPAR) signaling pathway, nucleocytoplasmic transport, steroid biosynthesis, and histidine metabolism. In contrast, co-factor biosynthesis, nucleocytoplasmic transport, tryptophan metabolism, arginine and proline metabolism, arginine biosynthesis, and ribosome activity were downregulated. These findings indicate that G. lemaneiformis hydrocolloids significantly affect liver lipid and carbohydrate metabolism. Proteomics analysis revealed that G. lemaneiformis hydrocolloids upregulated the PPAR signaling pathway, playing a crucial role in lipid metabolism. In summary, 20 % G. lemaneiformis hydrocolloids are primarily involved in modulating the intestine and liver PPAR signaling pathway to regulate lipid metabolism.
Collapse
Affiliation(s)
- Jia-Wei Shen
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| |
Collapse
|
9
|
Liu J, Wang BY, Liu CH, Yang C, Zhao BT. Proteomic analysis reveals the mechanism that low molecular weight hyaluronic acid enhances cell migration in keratinocyte. J Pharm Biomed Anal 2024; 250:116402. [PMID: 39151299 DOI: 10.1016/j.jpba.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hyaluronic acid (HA), as an extracellular matrix, is known to promote wound healing, and its bioactivity is affected by molecular weight. However, the mechanism of LMW-HA on cells migration remains unclear. In this study, we investigated the effect of LMW-HA on cells migration and the underlying mechanism by employing proteomics. The scratch assay showed that LMW-HA can significantly enhance the migration of keratinocytes in vitro, and ten differentially expressed proteins (DEPs) were found to be associated with wound healing through proteomics and network pharmacology. The result of bioinformatic analysis indicated that these DEPs are involved in positive regulation of cell motility and cellular component movement. Moreover, protein targets of key pathways were further validated. The findings suggest that LMW-HA can promote wound healing by accelerating epithelization via the HIF-1α/VEGF pathway, which provides new insight and reference for HA to enhance cells migration.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bin Ya Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chun Huan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Bing Tian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Ndlovu SP, M Motaung SC, Adeyemi SA, Ubanako P, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate/carboxymethylcellulose gel formulations containing Capparis sepieria plant extract for wound healing. Ther Deliv 2024; 15:921-937. [PMID: 39529611 PMCID: PMC11583625 DOI: 10.1080/20415990.2024.2418800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.Materials & methods: Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of Capparis sepiaria. The formulations were characterized using appropriate techniques.Results: The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and in vitro whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.Conclusion: The gels' distinct features reveal their potential application as wound dressings for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, 2028, South Africa
| | - Derek Tantoh Ndinteh
- Drug Discovery and SmartMolecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| |
Collapse
|
11
|
Chen SK, Liu JJ, Wang X, Luo H, He WW, Song XX, Nie SP, Yin JY. Hericium erinaceus β-glucan/tannic acid hydrogels based on physical cross-linking and hydrogen bonding strategies for accelerating wound healing. Int J Biol Macromol 2024; 279:135381. [PMID: 39244132 DOI: 10.1016/j.ijbiomac.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The majority of natural fungal β-glucans exhibit diverse biological functionalities, such as immunomodulation and anti-inflammatory effects, attributed to their distinctive helix or highly branched conformation This study utilized β-glucan with helix conformation and high-viscosity extracted from Hericium erinaceus, employing freeze-thaw and solvent exchange strategies to induce multiple hydrogen bonding between molecules, thereby initiating the self-assembly process of β-glucan from random coil to stable helix conformation without chemical modifications. Subsequently, the natural bioactive compound tannic acid was introduced through physical entanglement, imparting exceptional antioxidant properties to the hydrogel. The HEBG/TA hydrogel exhibited injectable properties, appropriate mechanical characteristics, degradability, temperature-responsive tannic acid release, antioxidant activity, and hemostatic potential. In vivo experiments using skin full-thickness defect and deep second-degree burn wound models demonstrated significant therapeutic efficacy, including neovascularization, and tissue regeneration. Moreover, the HEBG/TA hydrogel demonstrated its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators (TNF-α, IL-6), while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. This study highlights the potential of combining natural β-glucan with bioactive molecules for skin repair.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Hui Luo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
12
|
Ndlovu SP, Motaung KSCM, Razwinani M, Alven S, Adeyemi SA, Ubanako PN, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Capparis sepiaria-Loaded Sodium Alginate Single- and Double-Layer Membrane Composites for Wound Healing. Pharmaceutics 2024; 16:1313. [PMID: 39458642 PMCID: PMC11510319 DOI: 10.3390/pharmaceutics16101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Effective wound dressing is the key solution to combating the increased death rate and prolonged hospital stay common to patients with wounds. Methods: Sodium alginate-based single- and double-layer membranes incorporated with Capparis sepiaria root extract were designed using the solvent-casting method from a combination of polyvinyl alcohol (PVA), Pluronic F127 (PF127), and gum acacia. Results: The successful preparation of the membranes and loading of the extract were confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The prepared membranes were biodegradable and non-toxic to human skin cells (HaCaT), with high biocompatibility of 92 to 112% cell viability and good hemocompatibility with absorbance ranging from 0.17 to 0.30. The membrane's highest water vapor transmission rate was 1654.7333 ± 0.736 g/m2/day and the highest % porosity was 76%. The membranes supported cellular adhesion and migration, with the highest closure being 68% after 4 days compared with the commercial wound dressings. This membrane exhibited enhanced antimicrobial activity against the pathogens responsible for wound infections. Conclusions: The distinct features of the membranes make them promising wound dressings for treating infected wounds.
Collapse
Affiliation(s)
- Sindi P. Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Mapula Razwinani
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa;
| | - Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa;
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Philemon N. Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Thierry Y. Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
13
|
Wang M, Zhu Z, Wu X, Cheong K, Li X, Yu W, Yao Y, Wu J, Cao Z. Bioactive Polysaccharides from Gracilaria lemaneiformis: Preparation, Structures, and Therapeutic Insights. Foods 2024; 13:2782. [PMID: 39272547 PMCID: PMC11395005 DOI: 10.3390/foods13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Gracilaria lamaneiformis, a red seaweed, is an abundant source of bioactive polysaccharides with significant health-promoting properties. Nevertheless, the broad application of G. lamaneiformis in the nutraceutical and pharmaceutical sectors remains constrained due to the absence of comprehensive data. This review provides a detailed examination of the preparation methods, structural characteristics, and biological activities of G. lamaneiformis polysaccharides (GLPs). We explore both conventional and advanced extraction techniques, highlighting the efficiency and yield improvements achieved through methods such as microwave-, ultrasonic-, and enzyme-assisted extraction. The structural elucidation of GLPs using modern analytical techniques, including high-performance liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy, is discussed, providing comprehensive insights into their molecular composition and configuration. Furthermore, we critically evaluate the diverse biological activities of GLPs, including their antioxidant, anti-inflammatory, antitumor, and gut microbiota modulation properties. This review underscores the therapeutic potential of GLPs and suggests future research directions to fully harness their health benefits.
Collapse
Affiliation(s)
- Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaocheng Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kitleong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohua Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanli Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinlin Yao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhanhui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Li X, Yao W, Hu C, Lin C, You L, Mao J. Comparative Analysis of Gracilaria chouae Polysaccharides Derived from Different Geographical Regions: Focusing on Their Chemical Composition, Rheological Properties, and Gel Characteristics. Gels 2024; 10:454. [PMID: 39057478 PMCID: PMC11275624 DOI: 10.3390/gels10070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions.
Collapse
Affiliation(s)
- Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cebin Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
| |
Collapse
|
15
|
Zhang C, Xiao W, Wang H, Li L, Yang Y, Hao Y, Xu Z, Chen H, Nan W. Exosomes Derived from Mouse Breast Carcinoma Cells Facilitate Diabetic Wound Healing. Tissue Eng Regen Med 2024; 21:571-586. [PMID: 38472732 PMCID: PMC11087414 DOI: 10.1007/s13770-024-00629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Exosomes derived from breast cancer have been reported to play a role in promoting cell proliferation, migration, and angiogenesis, which has the potential to accelerate the healing process of diabetic wounds. The aim of this investigation was to examine the function of exosomes originating from 4T1 mouse breast carcinoma cells (TEXs) in the process of diabetic wound healing. METHODS The assessment of primary mouse skin fibroblasts cell proliferation and migration was conducted through the utilization of CCK-8 and wound healing assays, while the tube formation of HUVECs was evaluated by tube formation assay. High-throughput sequencing, RT-qPCR and cell experiments were used to detect the roles of miR-126a-3p in HUVECs functions in vitro. The in vivo study employed a model of full-thickness excisional wounds in diabetic subjects to explore the potential therapeutic benefits of TEXs. Immunohistochemical and immunofluorescent techniques were utilized to evaluate histological changes in skin tissues. RESULTS The findings suggested that TEXs facilitate diabetic wound healing through the activation of cell migration, proliferation, and angiogenesis. An upregulation of miR-126a-3p has been observed in TEXs, and it has demonstrated efficient transferability from 4T1 cells to HUVEC cells. The activation of the PI3K/Akt pathway has been attributed to miR-126a-3p derived from TEXs. CONCLUSIONS The promotion of chronic wound healing can be facilitated by TEXs through the activation of cellular migration, proliferation, and angiogenesis. The activation of the PI3K/Akt pathway by miR-126a-3p originating from TEXs has been discovered, indicating a potential avenue for enhancing the regenerative capabilities of wounds treated with TEXs.
Collapse
Affiliation(s)
- Chao Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wenchi Xiao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hao Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Linxiao Li
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yan Yang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yongwei Hao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhihao Xu
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hongli Chen
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wenbin Nan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
16
|
Chen H, Zhang T, Yan S, Zhang S, Fu Q, Xiong C, Zhou L, Ma X, Wang R, Chen G. Protective effects of the bioactive peptide from maggots against skin flap ischemia‒reperfusion injury in rats. Heliyon 2024; 10:e29874. [PMID: 38694094 PMCID: PMC11058300 DOI: 10.1016/j.heliyon.2024.e29874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Ischemia‒reperfusion (I/R) injury is a frequently observed complication after flap surgery, and it affects skin flap survival and patient prognosis. Currently, there are no proven safe and effective treatment options to treat skin flap I/R injury. Herein, the potential efficacies of the bioactive peptide from maggots (BPM), as well as its underlying mechanisms, were explored in a rat model of skin flap I/R injury and LPS- or H2O2-elicited RAW 264.7 cells. We demonstrated that BPM significantly ameliorated the area of flap survival, and histological changes in skin tissue in vivo. Furthermore, BPM could markedly restore or enhance Nrf2 and HO-1 levels, and suppress the expression of pro-inflammatory cytokines, including TLR4, p-IκB, NFκB p65, p-p65, IL-6, and TNF-α in I/R-injured skin flaps. In addition, BPM treatment exhibited excellent biocompatibility with an adequate safety profile, while it exhibited superior ROS-scavenging ability and the upregulation of antioxidant enzymes in vitro. Mechanistically, the above benefits related to BPM involved the activation of Nrf2/HO-1 and suppression of TLR4/NF-κB pathway. Taken together, this study may provide a scientific basis for the potential therapeutic effect of BPM in the prevention of skin flap I/R injury and other related diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Tianqi Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Su Yan
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shan Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qiuyue Fu
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Chuchu Xiong
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lina Zhou
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, PR China
| | - Xiao Ma
- Yixing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yixing, Jiangsu, PR China
| | - Rong Wang
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Gang Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| |
Collapse
|
17
|
Sun Y, Li L, Zhang Y, Xue C, Chang Y. An enzyme-pHBH method for specific quantification of porphyran. Int J Biol Macromol 2024; 257:128530. [PMID: 38042319 DOI: 10.1016/j.ijbiomac.2023.128530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Porphyran, the major polysaccharide extracted from Porphyra, exhibits tremendous potential for development as functional food or pharmaceutical due to its multiple biological activities. The quantitative analysis of porphyran is important for the quality control in product development. However, the specific quantitative method of porphyran has not been established, and the lack of reference substance makes the quantification more challenging. Here, a common component of porphyran, with high purity, similar molecular weight distribution, sourced from different Porphyra producing areas in China was first prepared by a series of isolation and purification steps, and utilized as the reference substance for porphyran quantification. Subsequently, the porphyran was fully degraded into oligosaccharides by using a β-porphyranase, followed by employing para-hydroxybenzoic acid hydrazide (pHBH) method to detect the content of the generated reducing sugar. The enzyme-pHBH method for porphyran specific quantification was established. Results showed that this method was validated with good linearity, high accuracy and precision, and reliability. Addtionally, NaCl with a concentration below 0.5 %, alcohol under 8 % and other polysaccharide including chitosan, agarose, chondrotin sulfate, alginate, hyaluronic acid and κ-carrageenan did not interfere with this method. This approach is promising for quality control of the porphyran products and offers a feasible strategy for the specific quantification of other polysaccharides.
Collapse
Affiliation(s)
- Yuhao Sun
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Marine Life Research Center, Laoshan Laboratory, 1 Wenhai Road, Qingdao 266237, China
| | - Ling Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Marine Life Research Center, Laoshan Laboratory, 1 Wenhai Road, Qingdao 266237, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Marine Life Research Center, Laoshan Laboratory, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
18
|
Sakaew W, Somintara S, Jongsomchai K, El-Abid J, Wongprasert K, Kovensky J, Rudtanatip T. Octanoyl esterification of low molecular weight sulfated galactan enhances the cellular uptake and collagen expression in fibroblast cells. Biomed Rep 2023; 19:99. [PMID: 37954636 PMCID: PMC10633818 DOI: 10.3892/br.2023.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Low molecular weight sulfated galactan (LMSG) supplemented with octanoyl ester (Oct-LMSG) demonstrated superior wound healing activity compared to the unsupplemented LMSG in a fibroblast wound model. To test the hypothesis that the increased bioactivity of Oct-LMSG may depend on its penetration into the plasma membrane, its cellular uptake was investigated and collagen production in fibroblast cells was assessed for the first time. The cellular uptake of Oct-LMSG was examined using indirect immunofluorescence and a confocal laser scanning microscope. In addition, the degree of fibroblast activation associated with this uptake was evaluated. The results indicated increased LMSG internalization in fibroblasts treated with Oct-LMSG. Transmission electron micrographs revealed the ultrastructure of active protein production in fibroblasts upon treatment with Oct-LMSG. In addition, Oct-LMSG upregulated the expression of type I collagen mRNA and proteins, as well as related signaling molecules involved in collagen synthesis, including collagen type I α1 chain (Col1A1), Col1A2, phosphorylated (p)-Smad2/3 and p-Smad4. The current findings support the notion that the supplementation of LMSG with octanoyl enhanced its cellular uptake into fibroblasts and, as a result, regulated the expression of type I collagen in fibroblasts via the activation of the Smad signaling pathway. This study demonstrates the therapeutic potential of Oct-LMSG in promoting tissue regeneration.
Collapse
Affiliation(s)
- Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jamal El-Abid
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - José Kovensky
- Laboratory of Glycochemistry and Agroresources UR 7378, Picardie Institute of Chemistry FR 3085, University of Picardie Jules Verne, 80000 Amiens, France
| | - Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Miguel SP, D’Angelo C, Ribeiro MP, Simões R, Coutinho P. Chemical Composition of Macroalgae Polysaccharides from Galician and Portugal Coasts: Seasonal Variations and Biological Properties. Mar Drugs 2023; 21:589. [PMID: 37999413 PMCID: PMC10672017 DOI: 10.3390/md21110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides extracted from the Codium sp. and Osmundea sp. macroalgae collected in different seasons (winter, spring and summer) from the Galician and North Portugal coasts were characterised, aiming to support their biomedical application to wound healing. An increase in polysaccharides' sulphate content was registered from winter to summer, and higher values were obtained for Osmundea sp. In turn, the monosaccharide composition constantly changed with a decrease in glucose in Osmundea sp. from spring to winter. For Codium sp., a higher increase was noticed regarding glucose content in the Galician and Portugal coasts. Galactose was the major monosaccharide in all the samples, remaining stable in all seasons and collection sites. These results corroborate the sulphate content and antioxidant activity, since the Osmundea sp.-derived polysaccharides collected in summer exhibited higher scavenging radical ability. The biocompatibility and wound scratch assays revealed that the Osmundea sp. polysaccharide extracted from the Portugal coast in summer possessed more potential for promoting fibroblast migration. This study on seasonal variations of polysaccharides, sulphate content, monosaccharide composition and, consequently, biological properties provides practical guidance for determining the optimal season for algae harvest to standardise preparations of polysaccharides for the biomedical field.
Collapse
Affiliation(s)
- Sónia P. Miguel
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Caíque D’Angelo
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rogério Simões
- FibEnTech, Fiber Materials and Envornmental Technologies, University of Beira Interior, R. Marques Avila e Bolama, 6201-001 Covilhã, Portugal;
| | - Paula Coutinho
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
20
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
21
|
Wang DD, Zhang LZ, Pang CJ, Ye JZ. Astragaloside IV promotes keratinocyte proliferation and migration through upregulating lncRNA H19 recruited ILF3 to enhance the stability of CDK4 mRNA. Kaohsiung J Med Sci 2023; 39:811-823. [PMID: 37132584 DOI: 10.1002/kjm2.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Skin is the first line of the body to resist pathogen invasion. A potentially fatal infection may result from problems with wound healing. Small molecule drugs like astragaloside IV (AS-IV) show pro-healing activities, but the mechanisms are not fully understood. Using real-time quantitative PCR and a western blot assay, the amount of gene expression was evaluated. The proliferation and migration of keratinocytes were determined by MTS and wound healing assay, respectively. The binding of lncRNA H19 to RBP protein ILF3 and the binding of ILF3 protein to CDK4 mRNA were confirmed by RNA immunoprecipitation. Treatment with AS-IV enhanced the expression of lncRNA H19, ILF3, and CDK4 and improved the proliferation and migration of keratinocytes HaCaT. Additionally, apoptosis of keratinocytes was attenuated by AS-IV. Further studies showed that both lncRNA H19 and ILF3 were important for AS-IV-mediated keratinocyte growth and migration. In addition, lncRNA H19 recruited ILF3 to increase CDK4 mRNA level and enhanced cell proliferation. We discovered a lncRNA H19/ILF3/CDK4 axis that is activated by AS-IV to promote keratinocyte migration and proliferation. These results elucidate the mechanism of action of AS-IV and justify its application in further application in wound healing treatment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Li-Ze Zhang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Cheng-Jian Pang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Jian-Zhou Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
22
|
Malairaj S, Veeraperumal S, Yao W, Subramanian M, Tan K, Zhong S, Cheong KL. Porphyran from Porphyra haitanensis Enhances Intestinal Barrier Function and Regulates Gut Microbiota Composition. Mar Drugs 2023; 21:md21050265. [PMID: 37233459 DOI: 10.3390/md21050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, the effects of a homogenous porphyran from Porphyra haitanensis (PHP) on the intestinal barrier and gut microbiota were investigated. The results showed that oral administration of PHP resulted in a higher luminal moisture content and a lower pH environment for the growth of beneficial bacteria in the colon of mice. PHP significantly increased the production of total short-chain fatty acids during the fermentation process. PHP made the intestinal epithelial cells of mice arrange more tidily and tightly with a significant increase in mucosal thickness. PHP also increased the amount of mucin-producing goblet cells and the expression of mucin in the colon, which maintained the structure and function of the intestinal mucosal barrier. Moreover, PHP up-regulated the expression of tight junctions including ZO-1 and occludin, improving the intestinal physical barrier function. The results of 16S rRNA sequencing showed that PHP regulated the composition of gut microbiota in mice, increasing the richness and diversity of gut microbiota and the ratio of Firmicutes to Bacteroidetes. This study revealed that the intake of PHP is beneficial for the gastrointestinal tract and PHP could be a potential source of prebiotics in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sathuvan Malairaj
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanzi Yao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mugesh Subramanian
- Research and Development Center, Genexia Bioserv, Chennai 600045, Tamilnadu, India
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Saiyi Zhong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
23
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
24
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
25
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
26
|
Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skincare is one of the most profitable product categories today. Consumers’ demand for skin-friendly products has stimulated the development of natural-ingredient-based cosmeceutical preparations over synthetic chemicals. Thus, natural polysaccharides have gained much attention since the promising potent efficacy in wound healing, moisturizing, antiaging, and whitening. The challenge is to raise awareness of polysaccharides with excellent bioactivities from natural sources and consequently incorporate them in novel and safer cosmetics. This review highlights the benefits of natural polysaccharides from plants, algae, and fungi on skin health, and points out some obstacles in the application of natural polysaccharides.
Collapse
|
27
|
Don TM, Ma CH, Huang YC. In Situ Release of Ulvan from Crosslinked Ulvan/Chitosan Complex Films and Their Evaluation as Wound Dressings. Polymers (Basel) 2022; 14:polym14245382. [PMID: 36559749 PMCID: PMC9786826 DOI: 10.3390/polym14245382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
When a wound forms due to any injuries, it should be covered with a functional wound dressing for accelerating wound healing and reducing infection. In this study, crosslinked ulvan/chitosan complex films were prepared with or without the addition of glycerol and chlorophyll, and their wound healing properties were evaluated for potential application in wound dressing. The results showed that the tensile strength and elongation at break of the prepared ulvan/chitosan complex films were 2.23-2.48 MPa and 83.8-108.5%, respectively. Moreover, their water vapor transmission rates (WVTRs) were in the range of 1791-2029 g/m2-day, providing suitable environment for wound healing. Particularly, these complex films could release ulvan in situ in a short time, and the film with chlorophyll added had the highest release rate, reaching 62.8% after 20 min of releasing. In vitro studies showed that they were biocompatible toward NIH 3T3 and HaCaT cells, and promoted the migration of NIH 3T3 cells. These complex films could protect HaCaT cells from oxidative damage and reduce the production of reactive oxygen species (ROS); the addition of chlorophyll also effectively reduced the inflammatory response induced by LPS as found in the reduction in both NO and IL-6. Animal models showed that the complex films added with glycerol and chlorophyll could promote wound healing in the early stage, while accelerating the regeneration of dermal glands and collagen production. Briefly, these ulvan/chitosan complex films had good physiochemical properties and biological activity, and could accelerate wound healing both in vitro and in vivo.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., New Taipei City 251301, Taiwan
- Correspondence: (T.-M.D.); (Y.-C.H.)
| | - Chen-Han Ma
- Department of Food Science, National Taiwan Ocean University, No. 2 Beining Rd., Keelung City 20224, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2 Beining Rd., Keelung City 20224, Taiwan
- Correspondence: (T.-M.D.); (Y.-C.H.)
| |
Collapse
|
28
|
Rudtanatip T, Somintara S, Sakaew W, El-Abid J, Cano ME, Jongsomchai K, Wongprasert K, Kovensky J. Sulfated Galactans from Gracilaria fisheri with Supplementation of Octanoyl Promote Wound Healing Activity In Vitro and In Vivo. Macromol Biosci 2022; 22:e2200172. [PMID: 36066490 DOI: 10.1002/mabi.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/22/2022] [Indexed: 01/15/2023]
Abstract
Sulfated galactans (SG) isolated from Gracilaria fisheri is partially degraded (DSG), and subsequentially supplemented with octanoyl (DSGO) and sulfate (DSGS) groups. The molecular weights of DSG, DSGO, and DSGS are 7.87, 152.79, and 97.07 kDa, respectively. The modification is confirmed using FTIR and NMR, while in vitro wound healing activity is assessed using scratched wound fibroblasts. The results reveal that DSGO exhibits highest percentage of wound closure in scratched fibroblast L929 cells. Furthermore, DSGO is able to promote proliferation and accelerate migration of scratched fibroblasts, which correspond to the regulation of proteins and mRNA (Ki67, p-FAK, vimentin, and E-cadherin) determined by Western blotting and qPCR analysis. The superior wound healing activity of DSGO is also confirmed in excision wound of rats. The results demonstrate that DSGO significantly enhances the percentage of wound closure, re-epithelialization, and collagen arrangement, increases α-smoth muscle actin (α-SMA) and vimentin expression, and decreases that of tumor necrosis factor-α (TNF-α) at the wound site. The results suggest that degraded SG supplemented with medium-chain fatty acids of octanoyl group may pass through the membrane, subsequently activating the mediators associated with proliferation and migration of fibroblasts, which can potentially lead to the promotion of wound healing activity.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Jamal El-Abid
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| | - Maria Emilia Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| |
Collapse
|
29
|
Jellyfish Polysaccharides for Wound Healing Applications. Int J Mol Sci 2022; 23:ijms231911491. [PMID: 36232791 PMCID: PMC9569628 DOI: 10.3390/ijms231911491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded “jellyfishication” of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients.
Collapse
|
30
|
Sun JH, Song S, Yang JF. Oral administration of sea cucumber ( Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway. Food Funct 2022; 13:9796-9809. [PMID: 36128874 DOI: 10.1039/d2fo01372j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of the oral administration of sea cucumber protein (SCP) on wound healing. SCP was isolated and purified from the body wall of Stichopus japonicus. A mouse skin incision model was operated on to evaluate the wound repair effect of SCP. The histological changes in the skin at the wound sites of BALB/c mice were observed by staining with haematoxylin and eosin (H&E) and Masson's trichrome. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression of inflammatory cytokines in BALB/c mice. The boost cell migration ability was detected by a scratch assay after HaCaT cells were cultured with digested SCP (dSCP). Western blotting and RT-PCR assays were performed to determine the mechanism of SCP promoting wound healing. As a result, the wound healing rate in the SCP high dose group was 1.3-fold, compared to that in the blank group on day 14. Also, increased epidermal thickness and 1.79-fold collagen deposition contrasted with the blank group. Additionally, SCP could up-regulate the levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α) from day 3 to 7 firstly and decreased from day 7 to 14. IL-8 expression continuously decreased while the level of anti-inflammatory factor (IL-10) increased during the healing stage. Furthermore, the cell closure area reached 67% after being treated with 50 μg mL-1 of dSCP for 48 h. Cell proliferation was associated with the dSCP-activated PI3K/AKT/mTOR pathway. Taken together, SCP can be orally used as an effective agent for wound repair.
Collapse
Affiliation(s)
- Jing-He Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Jing-Feng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| |
Collapse
|
31
|
Zhu S, Yang Z, Kong L, Kong L, Zhang Y. Arbutin Inhibited Heat Stress-Induced Apoptosis and Promoted Proliferation and Migration of Heat-Injured Dermal Fibroblasts and Keratinocytes by Activating PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8798861. [PMID: 36159569 PMCID: PMC9499752 DOI: 10.1155/2022/8798861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Objective Studies have shown that arbutin has antioxidant and anti-inflammatory activities, which makes it suitable for treating skin wounds. We designed this study to investigate the effect of arbutin on heat-induced apoptosis, proliferation, and migration of dermal fibroblasts and keratinocytes and to explore the molecular mechanism. Methods In vitro, HaCAT and dermal fibroblast (DFL) cells were cultured and used to establish a heat stress-injured skin cell model. We investigated the effects of arbutin on apoptosis, proliferation, and migration of HaCAT and DFL cells after heat stress injury. We then used immunoblotting to detect the expression of p-PI3K, PI3K, p-AKT, and AKT proteins for studying the underlying mechanisms and used a PI3K/AKT inhibitor (LY294002) to verify the efficacy of arbutin in HaCAT and DFL cells with heat stress injury. Results Arbutin strongly inhibited heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells in vitro. Our results also showed that arbutin strongly decreased the ratio of Bax/Bcl2 protein expression and PCNA protein expression in HaCAT and DFL cells after treatment with heat stress. Furthermore, we also found that arbutin significantly increased the ratio of p-PI3K/PI3K and p-AKT/AKT protein expression, and LY294002 markedly reversed the effect of arbutin on heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells. Conclusion Our finding indicated that arbutin inhibited heat stress-induced apoptosis and promoted proliferation and migration of heat-injured dermal fibroblasts and epidermal cells by activating the PI3K/AKT signaling pathway, suggesting that arbutin may provide an alternative therapeutic approach for the treatment of skin injury.
Collapse
Affiliation(s)
- Shugang Zhu
- Department of Burn and Plastic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Lili Kong
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yuezhi Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
32
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
33
|
Extraction, Characterization, and Structure of a Novel Heteropolysaccharide from Lepidium sativum and Its Effects on Wound Healing in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7858865. [PMID: 36051487 PMCID: PMC9427275 DOI: 10.1155/2022/7858865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
Abstract
The present study undertakes the extraction of a novel polysaccharide from Lepidium sativum (PLS) and the determination of its physicochemical composition and antioxidant properties, as well as its potential wound healing activity in alloxan-induced diabetic rats. This polysaccharide presented a lighter natural color, whose luminosity (L∗), red-green intensity (a∗), and blue-yellow intensity (b∗) were recorded at 63.26, 5.87, and 27.28, respectively. The PLS was structurally characterized by Fourier transform infrared (FT-IR) spectroscopy, UV spectrum, high performance liquid chromatography (HPLC), gas chromatography (GC), nuclear resonance magnetic (NMR), and high-pressure gel filtration chromatography. The FT-IR and UV spectra showed the characteristic band of polysaccharides. According to HPLC, the crude PLS is a heteropolysaccharide composed of glucose, xylose, and galactose. Results obtained by 1H NMR indicated that PLS consisted of three monosaccharide residues with α and β anomers. This novel polysaccharide had an average molecular weight of 98.51 kDa and displayed potential antioxidant activities determined through three different assays: scavenging activity against 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, and reducing power. These results strongly support the beneficial effects of the PLS to accelerate wound healing in diabetic rats. Indeed, its application significantly increased wound contraction percentage (98 ± 1.11%) after 14 days of experiment. Furthermore, the histological assessment of the PLS-treated group demonstrated complete reepithelialized wounds by accelerating collagen synthesis. In general, the findings affirmed that PLS is efficient on wound closure in alloxan-induced diabetic rats.
Collapse
|
34
|
Wu Y, Liu J, Hao H, Hu L, Zhang X, Luo L, Zeng J, Zhang W, Nam Wong I, Huang R. A new polysaccharide from Caulerpa chemnitzia induces molecular shifts of immunomodulation on macrophages RAW264.7. Food Chem X 2022; 14:100313. [PMID: 35539819 PMCID: PMC9079710 DOI: 10.1016/j.fochx.2022.100313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Investigation on Caulerpa chemnitzia polysaccharides led to the finding of a new polysaccharide (CCP). The basic components of CCP were the total sugar (59.18% ± 0.57%), the uronic acids (36.75% ± 0.28%) and the sulfate (42.50% ± 0.42%), in total content. The physicochemical analysis revealed that CCP was a heteropolysaccharide with a molecular weight of 321.6 KDa, and composed of arabinose, fucose, glucose, mannose, galactose, xylose, fructose, ribose, glucuronic acid and galacturonic acid. The immunomodulatory assay showed that CCP played an important role in activating cell viability, the nitric oxide product and cytokines (IL-6 and TNF-α) secretion. Furthermore, the transcript-metabolic analysis displayed a total of 7692 differentially expressed genes (DEGs) and 95 differentially accumulated metabolites (DAMs), and revealed that CCP may play an immunomodulatory effect by activating NF-κB signaling pathway and arachidonic acid metabolism pathway. These findings will provide a basic understanding to further investigation of Caulerpa polysaccharides.
Collapse
Affiliation(s)
- Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lianxiang Luo
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jincheng Zeng
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Io Nam Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Algal sulfated polysaccharide-based hydrogels enhance gelling properties and in vitro wound healing compared to conventional hydrogels. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zaghloul EH, Ibrahim MIA. Production and Characterization of Exopolysaccharide From Newly Isolated Marine Probiotic Lactiplantibacillus plantarum EI6 With in vitro Wound Healing Activity. Front Microbiol 2022; 13:903363. [PMID: 35668753 PMCID: PMC9164304 DOI: 10.3389/fmicb.2022.903363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Because of its safety, biological activities, and unique properties, exopolysaccharide (EPS) from lactic acid bacteria (LAB) has been developed as a potential biopolymer. A few studies have investigated the EPS produced by marine LAB. This study reports the wound healing activity of an EPS produced by a marine isolate identified as Lactiplantibacillus plantarum EI6, in addition to assessing L. plantarum EI6's probiotic properties. EI6 demonstrated promising antimicrobial activity against different pathogenic bacteria, as well as the ability to withstand stomach pH 3, tolerate 0.3% bile salt concentration, and exhibit no signs of hemolysis. Furthermore, EI6 was able to produce 270 mg/L of EPS upon growth for 48 h at 37°C in an MRS medium enriched with 1.0% of sucrose. The chemical features of the novel EI6-EPS were investigated: the UV-vis estimated a high carbohydrate content of ~91.5%, and the FTIR emphasized its polysaccharide nature by the characteristic hydroxyl, amide I, II, & III, and glycosidic linkage regions. The GC-MS and NMR analyses revealed the existence of five monosaccharides, namely, rhamnose, galactose, mannose, glucose, and arabinose, existing mainly in the pyranose form and linked together by α- and β-glycosidic linkages. EI6-EPS was found to be safe (IC50 > 100 μg/ml) and induced human skin fibroblasts (HSF) proliferation and migration. These findings imply that EI6 can be used as a safe source of bioactive polymer in wound care.
Collapse
|
37
|
Wang K, Liu K, Zha F, Wang H, Gao R, Wang J, Li K, Xu X, Zhao Y. Preparation and characterization of chondroitin sulfate from large hybrid sturgeon cartilage by hot-pressure and its effects on acceleration of wound healing. Int J Biol Macromol 2022; 209:1685-1694. [PMID: 35461870 DOI: 10.1016/j.ijbiomac.2022.04.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 01/02/2023]
Abstract
In this paper, a combination of hot-pressure, enzymatic hydrolysis and membrane separation process is used for efficiently and environmentally friendly extraction of chondroitin sulfate (CS) from large hybrid sturgeon cartilage, namely, HPCS. The recovery and yield of CS were 93.68% and 36.47% under the optimized conditions. Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) indicated that the HPCS was composed of monosulfated disaccharides in position 6 and 4 of the N-acetyl-D-galactosamine (58.38% and 27.34%, respectively) and nonsulfated disaccharide (14.29%), which was similar to the composition of CS extracted by dilute alkali-enzymatic hydrolysis-chemical precipitation from large hybrid sturgeon cartilage (SCS). The wound healing results indicated that HPCS could promote cell migration and proliferation, alleviate inflammation and facilitate angiogenesis, which results in its excellent wound treatment activity. These results provide theoretical and practical significance for the production and application of chondroitin sulfate.
Collapse
Affiliation(s)
- Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Fengchao Zha
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Haiyan Wang
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China; Hisense (Shandong) Refrigerator Co., Ltd., 266100 Qingdao, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Keyi Li
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China.
| |
Collapse
|
38
|
Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C, Cheong KL. Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X 2022; 13:100197. [PMID: 35498989 PMCID: PMC9039929 DOI: 10.1016/j.fochx.2021.100197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Gracilaria lemaneiformis polysaccharide (GLP) has varieties of antioxidation, however, the therapeutic effects of GLP on ulcerative colitis (UC) and the potential mechanisms involved are still incomplete. In the study, the analysis of the ζ-potential, thermal, and morphology properties demonstrated that GLP was a negatively charged polymer, and had great thermostability and irregular network. Moreover, the GLP treatment has the effects of reducing the severity of colitis caused by dextran sulfate sodium by alleviating the colon damage of mice, and increasing the amount of short-chain fatty acids in the intestines, alleviating histopathological inflammation. The sequencing results and α-diversity analysis showed that GLP could improve biodiversity, restore the abundance of Bacteroidetes, and decrease the proportion of Firmicutes. The level of CCL-25 and CCR-9 were inhibited, CD40 and TGF-β1 were increased. In summary, GLP has potentiality to be utilized as a hopeful functional food to the UC patients.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiuyong Yu
- Maynntetra (Shantou) Bio-technology Co., Ltd., Shantou, Guangdong, China
| | - Changqi Shi
- Maynntetra (Shantou) Bio-technology Co., Ltd., Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| |
Collapse
|
39
|
Zheng Z, Li M, Jiang P, Sun N, Lin S. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway. Eur J Pharmacol 2022; 921:174885. [DOI: 10.1016/j.ejphar.2022.174885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
40
|
Qiu SM, Aweya JJ, Liu X, Liu Y, Tang S, Zhang W, Cheong KL. Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydr Polym 2022; 275:118696. [PMID: 34742423 DOI: 10.1016/j.carbpol.2021.118696] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.
Collapse
Affiliation(s)
- Si-Min Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China..
| |
Collapse
|
41
|
Long X, Hu X, Liu S, Pan C, Chen S, Li L, Qi B, Yang X. Insights on preparation, structure and activities of Gracilaria lemaneiformis polysaccharide. Food Chem X 2021; 12:100153. [PMID: 34816120 PMCID: PMC8591341 DOI: 10.1016/j.fochx.2021.100153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gracilaria lemaneiformis is a kind of edible economic red algae, which is rich in polysaccharide, phycobiliprotein, pigments, minerals and other nutrients and functional components. Polysaccharide is one of the main active components of Gracilaria lemaneiformis, which has been reported to present various physiological bioactivities, including regulation of glycolipid metabolism, immune, anti-tumor, anti-inflammatory and other biological activities. This paper aims to provide a brief summary of extraction, purification, structural characteristics, and physiological activities of Gracilaria lemaneiformis polysaccharide (GLP). This article is able to provide theoretical basis for the future research and exploitation of GLP, and improve its potential development to promote the healthy and sustainable processing and high value utilization industry of Gracilaria lemaneiformis.
Collapse
Affiliation(s)
- Xiaoshan Long
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
42
|
Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells. Food Chem X 2021; 12:100157. [PMID: 34816122 PMCID: PMC8593598 DOI: 10.1016/j.fochx.2021.100157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural analysis showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of β-(1 → 3)- and α-(1 → 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1β by 89.93%, 67.82% and 38.06%, respectively. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.
Collapse
|
43
|
Xie XT, Zheng LX, Duan HM, Liu Y, Chen XQ, Cheong KL. Structural characteristics of Gracilaria lemaneiformis oligosaccharides and their alleviation of dextran sulphate sodium-induced colitis by modulating the gut microbiota and intestinal metabolites in mice. Food Funct 2021; 12:8635-8646. [PMID: 34346464 DOI: 10.1039/d1fo01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis (UC) is a chronic lifetime disorder with a high incidence worldwide. A functional food-based method to prevent UC would be a good option for disease control. G. lemaneiformis oligosaccharides (GLOs) should have potent benefits for the gastrointestinal tract, based on in vitro fermentation assessed in our previous study. This study evaluated the therapeutic potential of GLOs in UC, as well as their possible mechanisms of action. The administration of GLOs was able to reduce the severity of dextran sulphate sodium-induced colitis by protecting mice from weight loss, reductions in colon length, inflammatory infiltration, and colon damage. Gut microbiota composition analysis showed that at the phylum level, GLOs could restore the composition of Bacteroidetes and decrease the level of Firmicutes. Consistently, it increased the contents of beneficial microbial metabolites and short-chain fatty acids in the mouse colitis model. In conclusion, GLOs could comprise a promising functional food strategy to alleviate UC symptoms.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Li-Xin Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Hui-Min Duan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
44
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
45
|
Yao W, Chen X, Li X, Chang S, Zhao M, You L. Current trends in the anti-photoaging activities and mechanisms of dietary non-starch polysaccharides from natural resources. Crit Rev Food Sci Nutr 2021; 62:9021-9035. [PMID: 34142906 DOI: 10.1080/10408398.2021.1939263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Photoaging is a complex and multistage process triggered mainly by ultraviolet (UV) radiation due to exposure to sunlight. Photoaging induces DNA damage and oxidative stress that initiate an inflammatory response and an increase of matrix metalloproteinases (MMPs) expression, which results in cumulative changes in skin appearance, structure, and functions, and eventually causes skin carcinogenesis. Dietary polysaccharides from bio-resources have been utilized as functional ingredients in healthy food, cosmetics, and drug due to their good bioactivities. However, a systematic introduction to their effects and underlying mechanisms in anti-photoaging is limited. This review discusses the damage and pathogenesis of UV-induced photoaging and summarizes the up-to-date advances in research on the anti-photoaging activity of non-starch polysaccharides from natural edible resources considering the influence of oxidative stress, DNA damage, MMPs regulation, inflammation, and melanogenesis, primarily focusing on the cellular and molecular mechanisms. This paper will help to understand the anti-photoaging functions of dietary non-starch polysaccharides from natural resources and further application in drug and functional food.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Xiong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Aly AA, Ahmed MK. Fibrous scaffolds of Ag/Fe co-doped hydroxyapatite encapsulated into polycaprolactone: Morphology, mechanical and in vitro cell adhesion. Int J Pharm 2021; 601:120557. [PMID: 33798687 DOI: 10.1016/j.ijpharm.2021.120557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
The development of a scaffold matrix to promote wound healing is a critical requirement to improve the health care system. For this purpose, electrospun scaffolds of polycaprolactone (PCL) have been encapsulated with hydroxyapatite (HAP) doped with different contributions Ag ions. The obtained scaffolds have been investigated by XRD, FTIR and FESEM. It was shown that scaffolds were configured as cross-linked network with diameters around 0.6, 0.9, 2.1, and 2.5 μm for 0.0Ag/Fe-HAP@PCL, 0.4Ag/Fe-HAP@PCL, 0.6Ag/Fe-HAP@PCL, and 0.8Ag/Fe-HAP@PCL, respectively. Additionally, the composition of 0.8Ag/Fe-HAP@PCL exhibited the highest roughness average of 34 nm, while the inorganic root of co-dopant HAP recorded 44.8 nm. The mechanical properties have been investigated and showed that the maximum strain at break was about 129.31 ± 5.4% at no additional Ag ions, and reached its lowest value of 103.02 ± 3.5% at 0.2Ag/Fe-HAP@PCL. On the other hand, cell viability increased from 94.74 ± 4 to 98.9 ± 4% for 0.0Ag/Fe-HAP@PCL and 0.6Ag/Fe-HAP@PCL, respectively. Further, the antibacterial activity was investigated and exhibited that the inhibition zones of E. coli increased from 0.0 at 0.0Ag/Fe-HAP@PCL to 7.5 ± 1.3 mm for 0.8Ag/Fe-HAP@PCL. Moreover, the in vitro cell attachment showed that fibroblast cells proliferated and spread on the fibers' surface and through scaffolds' porosity.
Collapse
Affiliation(s)
- Amany A Aly
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - M K Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt; Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt.
| |
Collapse
|
47
|
Mapoung S, Umsumarng S, Semmarath W, Arjsri P, Thippraphan P, Yodkeeree S, Limtrakul (Dejkriengkraikul) P. Skin Wound-Healing Potential of Polysaccharides from Medicinal Mushroom Auricularia auricula-judae (Bull.). J Fungi (Basel) 2021; 7:jof7040247. [PMID: 33806146 PMCID: PMC8064461 DOI: 10.3390/jof7040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Auricularia auricula-judae, a nutrient-rich mushroom used in traditional medicine, is a macrofungi that exhibits various biological properties. In this study, we have reported on the mechanisms that promote the wound-healing effects of a water-soluble polysaccharide-rich extract obtained from A. auricula-judae (AAP). AAP contained high amounts of polysaccharides (349.83 ± 5.00 mg/g extract) with a molecular weight of 158 kDa. The main sugar composition of AAP includes mannose, galactose, and glucose. AAP displayed antioxidant activity in vitro and was able to abort UVB-induced intracellular ROS production in human fibroblasts in cellulo. AAP significantly promoted both fibroblast and keratinocyte proliferation, migration, and invasion, along with augmentation of the wound-healing process by increasing collagen synthesis and decreasing E-cadherin expression (All p < 0.05). Specifically, the AAP significantly accelerated the wound closure in a mice skin wound-healing model on day 9 (2.5%AAP, p = 0.031 vs. control) and day 12 (1% and 2.5%AAP with p = 0.009 and p < 0.001 vs. control, respectively). Overall, our results indicate that the wound-healing activities of AAP can be applied in an AAP-based product for wound management.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Division of Veterinary Preclinical Sciences, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 51000, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: or
| |
Collapse
|
48
|
Bian Y, Wang H, Xu J, Wang Z, Du X, Wang Y, Du Y. Polydopamine-Ag composite surface guides HBMSCs adhesion and proliferation. Biomed Mater 2021; 16:025003. [PMID: 33470977 DOI: 10.1088/1748-605x/abdd6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) are regarded as an important resource in the field of maxillofacial bone regeneration because of their favorable properties when compared with other stem cells. Hence, finding suitable materials that could extend the application of HBMSCs has become an emerging medical topic and socioeconomic problem. In this work, polydopamine (PDA)-Ag surface was fabricated by PDA assisted photoreduction method, and the obtained PDA-Ag composite surface significantly promoted HBMSCs adhesion and proliferation. This effect is highly related to the amount of Ag nanoparticles (Ag NPs) present on the PDA surface. The behavior of HBMSCs on PDA-Ag surface could be spatially manipulated by controlling the distribution of Ag NPs on PDA surface (by controlling UV light). The general adhesion property allows the PDA-Ag surface to be fabricated on various substrates, making it a simple, general and controllable method for the fabrication of bioactive surface for HBMSCs.
Collapse
Affiliation(s)
- Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China. Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Hassan AA, Radwan HA, Abdelaal SA, Al-Radadi NS, Ahmed MK, Shoueir KR, Hady MA. Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity. Int J Pharm 2020; 593:120143. [PMID: 33279712 DOI: 10.1016/j.ijpharm.2020.120143] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/13/2023]
Abstract
The development of a scaffold matrix that can inhibit bacterial infection and promote wound healing simultaneously is an essential demand to improve the health care system. Hydroxyapatite (HAP) doped with different concentrations of silver ions (Ag+) were incorporated into electrospun nanofibrous scaffolds of polycaprolactone (PCL) using the electrospinning technique. The formed phase was identified using XRD, while the morphological and roughness behavior were investigated using FESEM. It was shown that scaffolds were configured in randomly distributed nanofibers with diameters around of 0.19-0.40, 0.31-0.54, 1.36, 0.122-0.429 μm for 0.0Ag-HAP@PCL, 0.2Ag-HAP@PCL, 0.6Ag-HAP@PCL, and 0.8Ag-HAP@PCL, respectively. Moreover, the maximum roughness peak height increased significantly from 179 to 284 nm, with the lowest and highest contributions of Ag. The mechanical properties were examined and displayed that the tensile strength increased from 3.11 ± 0.21 MPa to its highest value at 3.57 ± 0.31 MPa for 0.4Ag-HAP@PCL. On the other hand, the cell viability also was enhanced with the addition of Ag and improved from 97.1 ± 4.6% to be around 102.3 ± 3.1% at the highest contribution of Ag. The antibacterial activity was determined, and the highest imbibition zones were achieved at the highest Ag dopant to be 12.5 ± 1.1 mm and 11.4 ± 1.5 mm against E. coli and S. aureus. The in vitro cell proliferation was observed through human fibroblasts cell lone (HFB4) and illustrated that cells were able to grow and spread not only on the fibers' surface but also, they were spreading and adhered through the deep pores.
Collapse
Affiliation(s)
- Abeer A Hassan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hyam A Radwan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Said A Abdelaal
- Department of Chemistry, Faculty of Science, Jazan University, Saudi Arabia
| | - Najlaa S Al-Radadi
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Monawara 14177, Saudi Arabia
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt; Egypt Nanotechnology Center (EGNC), Cairo University, El‑Sheikh Zayed 12588, Egypt.
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
50
|
Luo M, Hu K, Zeng Q, Yang X, Wang Y, Dong L, Huang F, Zhang R, Su D. Comparative analysis of the morphological property and chemical composition of soluble and insoluble dietary fiber with bound phenolic compounds from different algae. J Food Sci 2020; 85:3843-3851. [PMID: 33078401 DOI: 10.1111/1750-3841.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
The morphological, physicochemical, and biochemical properties of soluble and insoluble dietary fiber from seven types of algae were investigated. The soluble dietary fiber (SDF) contents (6.48 to 60.90% of the total fiber) in most of the investigated algae were significantly lower than the insoluble dietary fiber (IDF) contents (39.10 to 93.52% of the total fiber). It can be inferred from the infrared and UV-Vis spectra that the SDF and IDF of algae may contain cellulose, hemicellulose, various monosaccharides, phenolic compounds, and quinone pigments. The bound phenolic in the seven algae varied widely in contents (3.76 to 14.08 mg GAE/g in IDF and 1.94 to 8.61 mg GAE/g in SDF), whose antioxidant activities in the IDF were stronger than those in SDF because of different phenolic compositions. The HPLC-mass spectrometry (MS)/MS results showed that the IDF may contain methyl-8α-hydroxy-grindelate-7β-O-7'β-ether hydrate, hydroxydecanoic acid, and malyngic acid. PRACTICAL APPLICATION: Polysaccharides of high content in algae cannot be digested by humans, hence regarded as dietary fibers. A large amount of bound phenolic compounds in dietary fibers can add to the biological activities of dietary fibers. These topics are important to the development of seaweed-based functional foods.
Collapse
Affiliation(s)
- Mukang Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China.,Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, P.R. China
| | - Kaixi Hu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Yulin Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, P.R. China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, P.R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| |
Collapse
|