1
|
Yang M, Xie D, Ji W, Zhu SJ, Zhou Y. Oral Delivery of Lactococcus lactis Expressing Full-Length S Protein via Alginate-Chitosan Capsules Induces Immune Protection Against PEDV Infection in Mice. Vaccines (Basel) 2025; 13:421. [PMID: 40333306 PMCID: PMC12030989 DOI: 10.3390/vaccines13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their safety and genetic manipulability. This study aims to develop and evaluate an oral L. lactis-based vaccine expressing the full-length PEDV S protein. Methods: A recombinant L. lactis strain expressing the PEDV S protein was constructed and encapsulated in alginate-chitosan microcapsules. Vaccine stability was tested in simulated digestive fluids, and mice were orally immunized. Immune responses were evaluated by measuring specific antibodies, cytokines, and lymphocyte proliferation. Results: The recombinant L. lactis NZ3900/pNZ8149-S strain successfully expressed the full-length PEDV S protein and maintained stable plasmid inheritance. Oral immunization in mice induced detectable PEDV-specific immune responses. Both encapsulated and non-encapsulated vaccines stimulated the production of IgG and sIgA antibodies, as well as cytokines associated with Th1 and Th2 responses. Notably, encapsulation with alginate-chitosan significantly enhanced bacterial survival in digestive conditions and further amplified immune responses, including higher antibody titers, elevated levels of IFN-γ, IL-4, and IL-10, and greater lymphocyte proliferation, indicating improved immune memory. Conclusions: The oral L. lactis NZ3900/pNZ8149-S vaccine expressing the PEDV S protein effectively induced systemic and mucosal immunity in mice. Encapsulation with alginate-chitosan further enhanced its immunogenicity and stability in gastrointestinal conditions. These results suggest that both the engineered L. lactis strain and the encapsulation strategy contribute to the development of a promising oral vaccine platform for controlling PEDV in swine populations.
Collapse
Affiliation(s)
- Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Denglong Xie
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Wei Ji
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Zhou
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
- Yunnan Biopharmaceutical Co., Ltd., Kunming 650599, China
| |
Collapse
|
2
|
Wang L, Ou Y, Wang J, Ding L, Han S, Zhang L. Two-stepped pH-responsive peptide microsphere/carboxymethyl chitosan complex: enhanced protection of an inflamed dentin-pulp complex. J Mater Chem B 2025; 13:4879-4892. [PMID: 40171616 DOI: 10.1039/d4tb02826k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Dental caries is the most prevalent infectious disease affecting oral health, leading to the destruction of tooth hard tissues and dental pulp inflammation. The dentin-pulp complex, as the biological core of the tooth, can generate reparative dentin to protect the dental pulp from infection progression. However, untreated carious lesions chronically disrupt the structural integrity and reparative capacity of the dentin-pulp complex, thereby significantly compromising pulp vitality as deep caries progresses. In this study, a two-stepped pH-responsive peptide microsphere/carboxymethyl chitosan complex (PM/CS) was designed to offer comprehensive protection for the inflamed dentin-pulp complex. PM/CS has a three-dimensional network structure, and it constructs an intelligent drug delivery system by integrating TVH-19 self-assembled peptide microspheres that we developed earlier into carboxymethyl chitosan. This complex not only exhibited pH-controlled release characteristics, but also showed antibacterial properties against Streptococcus mutans and a mineralization-promoting effect on human dental pulp cells (hDPCs). PM/CS exerted acute anti-inflammatory effects on early pulpal lesions in rats, while longitudinal studies revealed its remarkable capacity to induce tertiary dentinogenesis, indicating therapeutic efficacy through biological modulation. This study provides a potential pulp capping complex material for the restoration treatment of the dentin-pulp complex under the influence of deep caries.
Collapse
Affiliation(s)
- Luoyao Wang
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yeling Ou
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Sili Han
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Centre for Stomatology & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
3
|
Zhang R, Yao X, Gao S, Xu T, Wang D, Sha L, Yang L. Sustained Delivery of Liraglutide Using Multivesicular Liposome Based on Mixed Phospholipids. Pharmaceutics 2025; 17:203. [PMID: 40006570 PMCID: PMC11859442 DOI: 10.3390/pharmaceutics17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Although peptides are widely used in the clinical treatment of various diseases due to their strong biological activity, they usually require frequent injections owing to their poor in vivo half-life. Therefore, there is a strong clinical need for sustained peptide formulations. Methods: In this study, liraglutide (Lir) and biocompatible multivesicular liposomes (MVLs) were utilized as the model drug and sustained-release carriers, respectively. The drug release rate of Lir-MVLs was controlled by changing the ratio of SPC and DEPC with different phase transition temperatures (PTT, PTTSPC = -20 °C, PTTDEPC = 13 °C). Results: As the SPC ratio increased, Lir-MVLs had more flexible lipid membranes, poorer structural stabilization, and fewer internal vesicles with larger particle sizes, contributing to faster release of Lir. After subcutaneous injection of Lir-MVLs, the blood glucose concentration (BGC) of db/db mice decreased to different levels. When the SPC-DEPC ratio was greater than 85:15, the drug release rate was too fast; the BGC remained below 16 mM for only 2-4 days, while when the drug release rate was too slow, was the case when the SPC-DEPC ratio was less than 50:50, the BGC also remained below 16 mM for only 2-3 days. However, when the SPC-DEPC ratio was 75:25, the BGC could be maintained below 16 mM for 8 days, indicating that the release properties of this ratio best met the pharmacological requirements of Lir. Conclusions: This study investigated the effects of phospholipids with different PTT on the release characteristics of Lir-MVLs, and provided ideas for the design of sustained-release peptide preparations.
Collapse
Affiliation(s)
- Runpeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Xinyu Yao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Siqi Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Tingting Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Luping Sha
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| |
Collapse
|
4
|
Sajeev D, Rajesh A, Nethish Kumaar R, Aswin D, Jayakumar R, Nair SC. Chemically modified chitosan as a functional biomaterial for drug delivery system. Carbohydr Res 2025; 548:109351. [PMID: 39671874 DOI: 10.1016/j.carres.2024.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity. Modified chitosan is the most effective functional biomaterial that can be used to deliver the drugs to the targeted site. With diverse and versatile characteristics, it can be fabricated into various drug delivery systems such as membranes, beads, fibers, microparticles, composites, and scaffolds, for different drug delivery methods. Integrating nanotechnology with modified chitosan enhanced the delivery attributes of antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, protein/peptides, and nucleic acids for intended use toward desired therapeutic outcomes. The review brings out an overview of the research regarding drug delivery systems utilizing modifying chitosan detailing the properties, functionality, and applications.
Collapse
Affiliation(s)
- Devika Sajeev
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Aparna Rajesh
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - R Nethish Kumaar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - D Aswin
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
5
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
6
|
Blagodatskikh IV, Vyshivannaya OV, Tishchenko NA, Bezrodnykh EA, Piskarev VE, Aysin RR, Antonov YA, Orlov VN, Tikhonov VE. Interaction between reacetylated chitosan and albumin in alcalescent media. Carbohydr Res 2024; 545:109277. [PMID: 39299161 DOI: 10.1016/j.carres.2024.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Interaction of chitosan and its derivatives with proteins of animal blood at blood pH relevant conditions is of a particular interest for construction of antimicrobial chitosan/protein-based drug delivery systems. In this work, the interaction of a series of N-reacetylated oligochitosans (RA-CHI) having Mw of 10-12 kDa and differing in the degree of acetylation (DA 19, 24, and 40 %) with bovine serum albumin (BSA) in alkalescent media is described in first. It is shown that RA-CHI forms soluble complexes with BSA in solutions with pH 7.4 and a low ionic strength. Light scattering study shows that soluble RA-CHI complexes have spherical form with the radius of about 100 nm. Circular dichroism, fluorescent spectroscopy, and micro-IR spectroscopy studies show that the secondary structure of BSA in soluble complexes remain intact. Isothermal titration calorimetry of RA-CHI with DA 24 % and BSA mixing in the buffers with different ionization heats reveals a significant contribution of electrostatic forces to the binding process and an additional ionization of chitosan due to the proton transfer from the buffer substance. An increase of ionic strength to the blood relevant value 0.15 M suppresses the binding. It is shown that application of RA-CHI with higher DA value leads to a decrease in the affinity of RA-CHI to BSA and an alteration of the interaction mechanism. The finding opens an opportunity to the application of N-reacetylated chitosan derivatives in the complex systems compatible with blood plasma proteins.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Oxana V Vyshivannaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia; Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, 119991, Russia
| | - Nikita A Tishchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Evgeniya A Bezrodnykh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Vladimir E Piskarev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Rinat R Aysin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Victor N Orlov
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow, 119992, Russia
| | - Vladimir E Tikhonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia.
| |
Collapse
|
7
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
8
|
Nath N, Chakroborty S, Vishwakarma DP, Goga G, Yadav AS, Mohan R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57289-57313. [PMID: 36857000 PMCID: PMC9975880 DOI: 10.1007/s11356-023-26135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The lightweight, low-density, and low-cost natural polymers like cellulose, chitosan, and silk have good chemical and biodegradable properties due to their individually unique structural and functional elements. However, the mechanical properties of these polymers differ from each other. In this scenario, chitosan lacks good mechanical properties than cellulose and silk. The synthesis of nano natural polymer and reinforcement with suitable chemical compounds as the development of nanocomposite gives them promising multidisciplinary applications. Many kinds of research are already published with innovative bio-derived polymeric functional materials (Bd-PFM) applications. Most research interest is carried out on health concerns. Lots of attention has been paid to biomedical applications of Bd-PFM as biosensors. This review aims to provide a glimpse of the nanostructures Bd-PFM biosensors.
Collapse
Affiliation(s)
- Nibedita Nath
- Department of Chemistry, D.S Degree College, Laida, Sambalpur, Odisha, India
| | | | | | - Geetesh Goga
- Department of Mechanical Engineering, Bharat Group of Colleges, Sardulgarh, Punjab, 151507, India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| | - Ravindra Mohan
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
9
|
Hachity-Ortega JA, Jerezano-Domínguez AV, Pazos-Rojas LA, Flores-Ledesma A, Pazos-Guarneros DDC, Parra-Solar KA, Reyes-Cervantes E, Juárez-Díaz I, Medina ME, González-Martínez M, Castillo-Silva BE, Ávila-Curiel BX, Hernández-Juárez J, Rivera-Urbalejo A, Gordillo-Guerra PG, Casillas-Santana MA. Effect of glycerol on properties of chitosan/chlorhexidine membranes and antibacterial activity against Streptococcus mutans. Front Microbiol 2024; 15:1430954. [PMID: 39211317 PMCID: PMC11358066 DOI: 10.3389/fmicb.2024.1430954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Chitosan membranes with glycerol can function as an effective dispersing agent for different antibiotics or active ingredients that can be used in the treatment of diseases present in the oral cavity. Methods The effects of the addition of glycerol on the mechanical, water absorption, swelling, pH, thickness, disintegration, rugosity, and antibacterial properties of chitosan-chlorhexidine- glycerol membranes were investigated in this study. Results and discussion Mechanical results indicated that chitosan membranes' rugosity, strength, flexion, and thickness differed at loading 1, 3, 5, 10, 15, and 20% of glycerol (p < 0.05). The chitosan membranes' rugosity, dissolution, strength, and pH results were significantly enhanced by the presence of glycerol at 3, 5, and 10% concentrations. In this investigation, the antimicrobial activity model used was the inhibition of Streptococcus mutans CDBB-B-1455 by chitosan-chlorhexidine membranes. It was observed that there was no change in inhibition with different concentrations of glycerol. The results suggest that chitosan-glycerol-chlorhexidine membranes may be a potential candidate for topical antiseptic application in buccal-dental disorders caused by S. mutans, such as caries, periodontal diseases, and oral squamous cell carcinoma, helping to prevent the development of serious conditions that can compromise human health.
Collapse
Affiliation(s)
- José Alberto Hachity-Ortega
- Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca, Mexico
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Laura Abisai Pazos-Rojas
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Puebla, Mexico
| | | | | | - Karla Aimée Parra-Solar
- Facultad de Ingeniería y Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eric Reyes-Cervantes
- Direccción de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ismael Juárez-Díaz
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Manuel E. Medina
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Veracruz, Mexico
| | | | | | | | - Jesús Hernández-Juárez
- CONAHCyT-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Oaxaca, Mexico
| | - América Rivera-Urbalejo
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Survival of Microorganism, Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Paola G. Gordillo-Guerra
- Departamento de Sistemas Biológicos, Unidad Xochimilco, Universidad Autónoma Metropolitana, Ciudad de Mexico, Mexico
| | | |
Collapse
|
10
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
11
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Trivedi S, Belgamwar V. Fabrication and optimization of chitosan-g-m-PEG-NH 2 copolymer for advanced glioblastoma therapy using surface engineered lentinan loaded nanovesicles for nasal delivery. Int J Biol Macromol 2024; 273:133125. [PMID: 38897498 DOI: 10.1016/j.ijbiomac.2024.133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits a high mortality with an incidence rate of 3-5 per 100,000 each year, which demands existence of newer approach for its treatment. The current study focuses on synthesis of novel lipidic nanovesicles (LNs) loaded with highly potent macromolecule Lentinan (LNT) and surface modified with methoxy poly (ethylene glycol; PEG) amine (m-PEG-NH2)-grafted-chitosan (CS) for intranasal delivery. The grafting procedure was optimized using Box Behnken design (BBD) to limit the use of organic solvents. The fabricated polymer showed enhanced aqueous solubility, biodegradability and mucoadhesion, resulting in higher nasal mucosa permeation (z = 53.52 μm). The presence of PEG enabled the sustained release of LNT till 48 h and assisted in achieving higher accumulation of LNT in CSF (41.7 ± 3.1 μg/mL) and a higher brain targeting potential of 96.3 ± 2.31 % (p < 0.05). In-vitro cellular studies showed the enhanced anti-GBM effect of LNT on U87 MG cells by reducing the cell viability (~2 times reduction in IC50 value) accompanied with large number of cells undergoing late apoptosis and death (p < 0.05) because of the higher cellular uptake (63.22 ± 3.01 ng/100 cells) of novel formulation. The copolymer comprising LNs were biocompatible, stable and can be used as an effective tool in the management of GBM.
Collapse
Affiliation(s)
- Sagar Trivedi
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Veena Belgamwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| |
Collapse
|
13
|
Antoniou V, Mourelatou EA, Galatou E, Avgoustakis K, Hatziantoniou S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024; 16:868. [PMID: 39065565 PMCID: PMC11280172 DOI: 10.3390/pharmaceutics16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan's positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Varvara Antoniou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
| | - Elena A. Mourelatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Eleftheria Galatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| |
Collapse
|
14
|
Wang X, Sun H, Mu T. Materials and structure of polysaccharide-based delivery carriers for oral insulin: A review. Carbohydr Polym 2024; 323:121364. [PMID: 37940264 DOI: 10.1016/j.carbpol.2023.121364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease that affects >500 million patients worldwide. Subcutaneous injection of insulin is the most effective treatment at present. However, regular needle injections will cause pain, inflammation, and other adverse consequences. In recent years, significant progress has been made in non-injectable insulin preparations. Oral administration is the best way of administration due to its simplicity, convenience, and good patient compliance. However, oral insulin delivery is hindered by many physiological barriers in the gastrointestinal tract, resulting in the low relative bioavailability of direct oral insulin delivery. To improve the relative bioavailability, a variety of insulin delivery vectors have been developed. Polysaccharides are used to achieve safe and effective insulin loading due to their excellent biocompatibility and protein affinity. The functional characteristics of polysaccharide-based delivery carriers, such as pH responsiveness, mucosal adhesion, and further functionalization modifications, enhance the gastrointestinal absorption and bioavailability of insulin. This paper reviews the materials and structures of oral insulin polysaccharide-based carriers, providing ideas for further improving the relative bioavailability of oral insulin.
Collapse
Affiliation(s)
- Xinran Wang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
15
|
Jiang Z, Song Z, Cao C, Yan M, Liu Z, Cheng X, Wang H, Wang Q, Liu H, Chen S. Multiple Natural Polymers in Drug and Gene Delivery Systems. Curr Med Chem 2024; 31:1691-1715. [PMID: 36927424 DOI: 10.2174/0929867330666230316094540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhendong Liu
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Xingbo Cheng
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Hongbo Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Qingnan Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, 450003, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
16
|
Bredikhin M, Sawant S, Gross C, Antonio ELS, Borodinov N, Luzinov I, Vertegel A. Highly Adhesive Antimicrobial Coatings for External Fixation Devices. Gels 2023; 9:639. [PMID: 37623093 PMCID: PMC10453896 DOI: 10.3390/gels9080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.
Collapse
Affiliation(s)
- Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Christopher Gross
- Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Erik L. S. Antonio
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Nikolay Borodinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Igor Luzinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| |
Collapse
|
17
|
Xue Q, Wu J, Lv Z, Lei Y, Liu X, Huang Y. Photothermal Superhydrophobic Chitosan-Based Cotton Fabric for Rapid Deicing and Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37389997 DOI: 10.1021/acs.langmuir.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Superhydrophobic cotton fabrics have a lot of potential for use in practical settings. The majority of superhydrophobic cotton fabrics, however, only serve one purpose and are made from fluoride or silane chemicals. Therefore, it remains a challenge to develop multifunctional superhydrophobic cotton fabrics using environmentally friendly raw materials. In this study, chitosan (CS), amino carbon nanotubes (ACNTs), and octadecylamine (ODA) were used as raw materials to create CS-ACNTs-ODA photothermal superhydrophobic cotton fabrics. The cotton fabric that was created showed a remarkable superhydrophobic property with a water contact angle of 160.3°. The surface temperature of CS-ACNTs-ODA cotton fabric can rise by up to 70 °C when exposed to simulated sunlight, demonstrating the fabric's remarkable photothermal capabilities. Additionally, the coated cotton fabric is capable of quick deicing. Ice particles (10 μL) melted and began to roll down in 180 s under the light of "1 sun". The cotton fabric exhibits good durability and adaptability in terms of mechanical qualities and washing tests. Moreover, the CS-ACNTs-ODA cotton fabric displays a separation efficacy of more than 91% when used to treat various oil and water mixtures. We also impregnate the coating on polyurethane sponges, which can quickly absorb and separate oil and water mixtures.
Collapse
Affiliation(s)
- Qianwen Xue
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangqin Wu
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zaosheng Lv
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Lei
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuegang Liu
- Jingzhou Conservation Center, Jingzhou 434020, China
| | - Yanfen Huang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
18
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
19
|
Sajid A, Castronovo M, Goycoolea FM. On the Fractionation and Physicochemical Characterisation of Self-Assembled Chitosan-DNA Polyelectrolyte Complexes. Polymers (Basel) 2023; 15:2115. [PMID: 37177260 PMCID: PMC10180698 DOI: 10.3390/polym15092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan is extensively studied as a carrier for gene delivery and is an attractive non-viral gene vector owing to its polycationic, biodegradable, and biocompatible nature. Thus, it is essential to understand the chemistry of self-assembled chitosan-DNA complexation and their structural and functional properties, enabling the formation of an effective non-viral gene delivery system. In this study, two parent chitosans (samples NAS-032 and NAS-075; Mw range ~118-164 kDa) and their depolymerised derivatives (deploy nas-032 and deploy nas-075; Mw range 6-14 kDa) with degrees of acetylation 43.4 and 4.7%, respectively, were used to form polyelectrolyte complexes (PECs) with DNA at varying [-NH3+]/[-PO4-] (N/P) molar charge ratios. We investigated the formation of the PECs using ζ-potential, asymmetric flow field-flow fractionation (AF4) coupled with multiangle light scattering (MALS), refractive index (RI), ultraviolet (UV) and dynamic light scattering (DLS) detectors, and TEM imaging. PEC formation was confirmed by ζ-potential measurements that shifted from negative to positive values at N/P ratio ~2. The radius of gyration (Rg) was determined for the eluting fractions by AF4-MALS-RI-UV, while the corresponding hydrodynamic radius (Rh), by the DLS data. We studied the influence of different cross-flow rates on AF4 elution patterns for PECs obtained at N/P ratios 5, 10, and 20. The determined rho shape factor (ρ = Rg/Rh) values for the various PECs corresponded with a sphere morphology (ρ ~0.77-0.85), which was consistent with TEM images. The results of this study represent a further step towards the characterisation of chitosan-DNA PECs by the use of multi-detection AF4 as an important tool to fractionate and infer aspects of their morphology.
Collapse
|
20
|
Chang YT, Huang TH, Alalaiwe A, Hwang E, Fang JY. Small interfering RNA-based nanotherapeutics for treating skin-related diseases. Expert Opin Drug Deliv 2023:1-16. [PMID: 37088710 DOI: 10.1080/17425247.2023.2206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
21
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Pino P, Bosco F, Mollea C, Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics 2023; 15:pharmaceutics15030970. [PMID: 36986831 PMCID: PMC10053511 DOI: 10.3390/pharmaceutics15030970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic wounds are a major concern for global health, affecting millions of individuals worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence in the population is set to increase in the forthcoming years. This burden is further worsened by the rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents, zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory properties, and as a source of essential zinc ions. This review analyses the most recent developments in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films, but also hydrogel or electrospun bandages—from the different preparation techniques to their properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release properties are examined and linked to the preparation methods. Antimicrobial assays over a wide range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered to provide a comprehensive assessment framework. While early results are promising, a systematic and standardised testing procedure for the comparison of antibacterial properties is still lacking, partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed, on one hand, the determination of the best strategies for the design, engineering, and application of n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities for future research.
Collapse
|
23
|
Al-Absi MY, Caprifico AE, Calabrese G. Chitosan and Its Structural Modifications for siRNA Delivery. Adv Pharm Bull 2023; 13:275-282. [PMID: 37342385 PMCID: PMC10278227 DOI: 10.34172/apb.2023.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 07/30/2023] Open
Abstract
The use of RNA interference mechanism and small interfering RNA (siRNA) in cancer gene therapy is a very promising approach. However, the success of gene silencing is underpinned by the efficient delivery of intact siRNA into the targeted cell. Nowadays, chitosan is one of the most widely studied non-viral vectors for siRNA delivery, since it is a biodegradable, biocompatible and positively charged polymer able to bind to the negatively charged siRNA forming nanoparticles (NPs) that will act as siRNA delivery system. However, chitosan shows several limitations such as low transfection efficiency and low solubility at physiological pH. Therefore, a variety of chemical and non-chemical structural modifications of chitosan were investigated in the attempt to develop a chitosan derivative showing the features of an ideal siRNA carrier. In this review, the most recently proposed chemical modifications of chitosan are outlined. The type of modification, chemical structure, physicochemical properties, siRNA binding affinity and complexation efficiency of the modified chitosan are discussed. Moreover, the resulting NPs characteristics, cellular uptake, serum stability, cytotoxicity and gene transfection efficiency in vitro and/or in vivo are described and compared to the unmodified chitosan. Finally, a critical analysis of a selection of modifications is included, highlighting the most promising ones for this purpose in the future.
Collapse
|
24
|
Complexation of oligochitosan with sodium caseinate in alkalescent and weakly acidic media. Carbohydr Polym 2023; 302:120391. [PMID: 36604069 DOI: 10.1016/j.carbpol.2022.120391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Сomplexation of oligochitosan (OCHI) having the degree of acetylation (DA 26 %) with sodium caseinate (SC) at pH 5.8 and 7.2 is described and compared with the complexation of OCHI (DA 2 %) at pH 5.8. In the alkalescent medium, the complexation of OCHI (DA 26 %) is weaker and dualistic depending on SC concentration in the system. In the diluted alkalescent system, the formation of only soluble complexes is observed at OCHI/SC ratio ≤0.9. In the semi diluted one, the complexation results in the formation of insoluble complexes those composition changes symbatically with the OCHI/SC ratio in the system. At pH 5.8, OCHI/SC ratio in insoluble complexes remains the same regardless of OCHI/SC ratio in the solution. At pH 5.8, the electrostatic complexation weakens with an increase in DA and is completely suppressed at a high ionic strength. These results can be promising for construction of biodegradable protein/chitosan drug delivery systems.
Collapse
|
25
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
26
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
27
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Patentology of chitinous biomaterials. Part II: chitosan. Carbohydr Polym 2022; 301:120224. [DOI: 10.1016/j.carbpol.2022.120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
|
29
|
Zheng G, Cui Y, Jiang Z, Zhou M, Yu Y, Wang P, Wang Q. Fiber-based photothermal, UV-resistant, and self-cleaning coatings fabricated by silicon grafted copolymers of chitosan derivatives and gallic acid. Int J Biol Macromol 2022; 222:1560-1577. [PMID: 36195235 DOI: 10.1016/j.ijbiomac.2022.09.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Superhydrophobic and hydrophobic properties are generally created by adopting low surface free energy materials. Therefore, most studies have focused on creating surface hydrophobicity by using hydrophobic or fluorinated materials. However, few studies are reported on realizing surface hydrophobicity by directly introducing hydrophilic molecules, which is also a challenge. Herein, with platinum nanozyme as the catalyst, the novel hydrophobic coatings have been rapidly gained via anchoring the polymer of hydrophilic gallic acid and chitosan or chitosan quaternary ammonium salt onto cotton fabric surface. Notably, the novel hydrophobic coatings exhibit significant advances compared with conventional hydrophobic ones created by utilizing fluorinated or hydrophobic materials, which breaks the limitation of employing low surface energy materials for gaining surface hydrophobicity. Subsequently, the sodium methyl silicate was grafted on the polymer's coatings to strengthen surface hydrophobicity and the abrasion resistance of hydrophobicity. Interestingly, the heating could induce the hydrophilicity of cotton fabric to recover to hydrophobicity. Moreover, the hydrophobic coatings also possess good photothermal conversion, UV resistance, and anti-oxidation activity for self-cleaning application and oil water separation. Briefly, the present work may open a new direction for preparing novel hydrophobic coatings by combining gallic acid and chitosan-based macromolecular carbohydrates.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int J Nanomedicine 2022; 17:4195-4210. [PMID: 36134203 PMCID: PMC9484277 DOI: 10.2147/ijn.s373430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Liver fibrosis is mainly characterized by the formation of fibrous scars. Galactosylated chitosan (GC) has gained increasing attention as a liver-targeted drug carrier in recent years. The present study aimed to investigate the availability of betulinic acid-loaded GC nanoparticles (BA-GC-NPs) for liver protection. Covalently-conjugated galactose, recognized by asialoglycoprotein receptors exclusively expressed in hepatocytes, was employed to target the liver. Materials and Methods Galactose was coupled to chitosan by chemical covalent binding. BA-GC-NPs were synthesized by wrapping BA into NPs via ion-crosslinking method. The potential advantage of BA-GC-NP as a liver-targeting agent in the treatment of liver fibrosis has been demonstrated in vivo and in vitro. Results BA-GC-NPs with diameters <200 nm were manufactured in a virtually spherical core-shell arrangement, and BA was released consistently and continuously for 96 h, as assessed by an in vitro release assay. According to the safety evaluation, BA-GC-NPs demonstrated good biocompatibility at the cellular level and did not generate any inflammatory reaction in mice. Importantly, BA-GC-NPs showed an inherent liver-targeting potential in the uptake behavioral studies in cells and bioimaging tests in vivo. Efficacy tests revealed that administering BA-GC-NPs in a mouse model of liver fibrosis reduced the degree of liver injury in mice. Conclusion The findings showed that BA-GC-NPs form a safe and effective anti-hepatic fibrosis medication delivery strategy.
Collapse
Affiliation(s)
- Zi Chao Wu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Research Institute, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, 050035, People's Republic of China
| | - Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jia Yan Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jing Shu Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, People's Republic of China
| |
Collapse
|
31
|
Umar AK, Luckanagul JA, Zothantluanga JH, Sriwidodo S. Complexed Polymer Film-Forming Spray: An Optimal Delivery System for Secretome of Mesenchymal Stem Cell as Diabetic Wound Dressing? Pharmaceuticals (Basel) 2022; 15:867. [PMID: 35890165 PMCID: PMC9324405 DOI: 10.3390/ph15070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes-related wounds have physiological factors that make healing more complicated. High sugar levels can increase microbial infection risk while limiting nutrition and oxygen transfer to the wound area. The secretome of mesenchymal stem cells has been widely known for its efficacy in regenerative therapy. However, applying the secretome directly to the wound can reduce its effectiveness. In this review, we examined the literature on synthesizing the combinations of carboxymethyl chitosan, hyaluronic acid, and collagen tripeptides, as well as the possibility of physicochemical properties enhancement of the hydrogel matrix, which could potentially be used as an optimal delivery system of stem cell's secretome for diabetic wound healing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
32
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
33
|
Ładniak A, Jurak M, Wiącek AE. The effect of chitosan/TiO 2/hyaluronic acid subphase on the behaviour of 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. BIOMATERIALS ADVANCES 2022; 138:212934. [PMID: 35913237 DOI: 10.1016/j.bioadv.2022.212934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The main aim of the study was to determine the effect of two polysaccharides: chitosan (Ch) and hyaluronic acid (HA), and/or titanium dioxide (TiO2) on the structure and behaviour of the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane. To achieve this goal the surface pressure as a function of the area per molecule (π-A) isotherm for the phospholipid monolayer was recorded. The shape of the π-A isotherms and compression-decompression cycles, as well as the compression modulus values, were analysed in terms of biocompatibility. Besides, morphology and thickness of the phospholipid layers obtained by means of Brewster angle microscope at different π, were determined. The obtained results show that both polysaccharides Ch, HA, as well inorganic TiO2 affect slightly the structure of the DOPC monolayer but do not disrupt it. Their presence brings no typical arrangements of both the polar heads and tails of DOPC molecules at the interface.
Collapse
Affiliation(s)
- Agata Ładniak
- Institute of Chemical Sciences, Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; Laboratory of X-ray Optics, Department of Chemistry, Institue of Biology Sciences, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland.
| | - Małgorzata Jurak
- Institute of Chemical Sciences, Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Agnieszka E Wiącek
- Institute of Chemical Sciences, Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
34
|
Complexation behavior of carboxymethyl short-chain amylose and quaternized chitosan. Int J Biol Macromol 2022; 209:1914-1921. [PMID: 35500772 DOI: 10.1016/j.ijbiomac.2022.04.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
The complexation of carboxymethyl short-chain amylose (CSA) and hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and the stability of CSA/HACC nanocomplex were investigated. Resonance light scattering (RLS), turbidity, nanoparticle size and zeta potential analyses revealed that the complex coacervation occurred between CSA and HACC. The mass ratio and pH markedly influenced the complexation behavior; CSA with a higher degree of substitution (DS0.2) altered the complexation at a lower mass ratio and pH, increasing the turbidity and RLS intensity. The results of particle size and zeta potential analyses indicated that CSA/HACC complexes possessed the good pH and ionic strength stability. In addition to electrostatic interactions, hydrogen bonding and hydrophobic effects were also determined to be involved in the complexation process using thermal titration calorimetry (ITC). Additionally, the process was spontaneous, and CSA with a higher DS showed stronger complexation ability. These results may enable the understanding of polysaccharide complex behaviors.
Collapse
|
35
|
Pickering emulsions stabilized with chitosan/gum Arabic particles: Effect of chitosan degree of deacetylation on the physicochemical properties and cannabidiol (CBD) topical delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Exploring the potential of redispersible nanocomplex-in-microparticles for enhanced oral insulin delivery. Int J Pharm 2022; 612:121357. [PMID: 34890708 DOI: 10.1016/j.ijpharm.2021.121357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Polyelectrolyte nanocomplex (PEC) is a promising carrier for insulin encapsulation. However, tenacious enzymatic degradation and insufficient penetration in mucus and enterocyte are the dominating obstacles for their oral insulin delivery. Besides, the rate of insulin release should be tuned to achieve desired therapeutic effect and meanwhile with scale-up potential. Thus, PEC embedded microparticles were fabricated in this study to solve the above dilemma. First of all, insulin loaded PEC with sodium dodecyl sulfate (SDS) coating was prepared by self-assembly method and then spray-dried using different ratio chitosan (CS)/ polyvinyl alcohol (PVA) as the matrix to obtain the microparticles. Influence of the CS/PVA ratio on the in vitro and in vivo properties of the redispersed PEC was investigated systemically. It was demonstrated that when CS 50 kDa was used in the matrix, all the PEC could be well redispersed with particle size less than 250 nm, and good stability in the gastrointestinal tract, further improved enzymatic stability was achieved by nanoparticles-in-microparticles design, with CS/PVA 1:1 and 4:1 groups showing better and comparable protection. Insulin release from the microparticles decreased with the increase of CS ratio in the CS/PVA matrix. Spray-dried microparticles had less influence on the mucus penetration of the in situ redispersed PEC, with enhanced insulin permeation observed in different intestinal segments in a CS/PVA ratio dependent manner. And the CS/PVA 1:1 group, which presented good enzymatic stability, enhanced mucus penetration and moderate insulin release rate, exhibited the highest relative pharmacological availability of 6.80%. In conclusion, PEC in microparticles design using CS/PVA as the composite matrix is a potential platform for enhanced oral insulin delivery.
Collapse
|
37
|
Khayrova A, Lopatin S, Shagdarova B, Sinitsyna O, Sinitsyn A, Varlamov V. Evaluation of Antibacterial and Antifungal Properties of Low Molecular Weight Chitosan Extracted from Hermetia illucens Relative to Crab Chitosan. Molecules 2022; 27:577. [PMID: 35056890 PMCID: PMC8777618 DOI: 10.3390/molecules27020577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
This study shows the research on the depolymerisation of insect and crab chitosans using novel enzymes. Enzyme preparations containing recombinant chitinase Chi 418 from Trichoderma harzianum, chitinase Chi 403, and chitosanase Chi 402 from Myceliophthora thermophila, all belonging to the family GH18 of glycosyl hydrolases, were used to depolymerise a biopolymer, resulting in a range of chitosans with average molecular weights (Mw) of 6-21 kDa. The depolymerised chitosans obtained from crustaceans and insects were studied, and their antibacterial and antifungal properties were evaluated. The results proved the significance of the chitosan's origin, showing the potential of Hermetia illucens as a new source of low molecular weight chitosan with an improved biological activity.
Collapse
Affiliation(s)
- Adelya Khayrova
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
- Entoprotech Ltd., Skolkovo Innovation Centre, 121205 Moscow, Russia
| | - Sergey Lopatin
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| | - Balzhima Shagdarova
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| | - Olga Sinitsyna
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia; (O.S.); (A.S.)
| | - Arkady Sinitsyn
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia; (O.S.); (A.S.)
| | - Valery Varlamov
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.L.); (B.S.); (V.V.)
| |
Collapse
|
38
|
Chitosan nanoparticles synthesis and surface modification using histidine/ polyethylenimine and evaluation of their gene transfection efficiency in breast cancer cells. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
40
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
41
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
42
|
Nicolle L, Journot CMA, Gerber-Lemaire S. Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization. Polymers (Basel) 2021; 13:4118. [PMID: 34883621 PMCID: PMC8659004 DOI: 10.3390/polym13234118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a natural biopolymer that has gained great interest in many research fields due to its promising biocompatibility, biodegradability, and favorable mechanical properties. The versatility of this low-cost polymer allows for a variety of chemical modifications via covalent conjugation and non-covalent interactions, which are designed to further improve the properties of interest. This review aims at presenting the broad range of functionalization strategies reported over the last five years to reflect the state-of-the art of CS derivatization. We start by describing covalent modifications performed on the CS backbone, followed by non-covalent CS modifications involving small molecules, proteins, and metal adjuvants. An overview of CS-based systems involving both covalent and electrostatic modification patterns is then presented. Finally, a special focus will be given on the characterization techniques commonly used to qualify the composition and physical properties of CS derivatives.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (L.N.); (C.M.A.J.)
| |
Collapse
|
43
|
Serbezeanu D, Bercea M, Butnaru M, Enache AA, Rîmbu CM, Vlad‐Bubulac T. Development of histamine reinforced poly(vinyl alcohol)/chitosan blended films for potential biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Maria Bercea
- Department of Natural Polymers, Bioactive and Biocompatible Materials “Grigore T. Popa” University of Medicine and Pharmacy Iasi Romania
| | - Maria Butnaru
- Department of Natural Polymers, Bioactive and Biocompatible Materials “Grigore T. Popa” University of Medicine and Pharmacy Iasi Romania
| | | | - Cristina Mihaela Rîmbu
- Department of Public Health Faculty of Veterinary Medicine “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine Iasi Romania
| | - Tăchiță Vlad‐Bubulac
- Department of Polycondensation and Thermally Stable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| |
Collapse
|
44
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
45
|
Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 2021; 185:20-30. [PMID: 34116092 DOI: 10.1016/j.ijbiomac.2021.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 01/23/2023]
Abstract
Chitosan-loaded nanomedicines provide a greater opportunity for the treatment of respiratory diseases. Natural biopolymer chitosan and its derivatives have a large number of proven pharmacological actions like antioxidant, wound healing, immuno-stimulant, hypocholesterolemic, antimicrobial, obesity treatment, anti-inflammatory, anticancer, bone tissue engineering, antifungal, regenerative medicine, anti-diabetic and mucosal adjuvant, etc. which attracted its use in the pharmaceutical industry. As compared to other polysaccharides, chitosan has excellent mucoadhesive characteristics, less viscous, easily modified into the chemical and biological molecule and gel-forming property due to which the drugs retain in the respiratory tract for a longer period of time providing enhanced therapeutic action of the drug. Chitosan-based nanomedicines would have the greatest effect when used to transport poor water soluble drugs, macromolecules like proteins, and peptides through the lungs. In this review, we highlight and discuss the role of chitosan and its nanomedicines in the treatment of chronic respiratory diseases such as pneumonia, asthma, COPD, lung cancer, tuberculosis, and COVID-19.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
46
|
Wang Z, Ma Z, Sun J, Yan Y, Bu M, Huo Y, Li YF, Hu N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers (Basel) 2021; 13:813. [PMID: 33800960 PMCID: PMC7961771 DOI: 10.3390/polym13050813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
In order to replace nonrenewable resources and decrease electronic waste disposal, there is a rapidly rising demand for the utilization of reproducible and degradable biopolymers in flexible electronics. Natural biopolymers have many remarkable characteristics, including light weight, excellent mechanical properties, biocompatibility, non-toxicity, low cost, etc. Thanks to these superior merits, natural functional biopolymers can be designed and optimized for the development of high-performance flexible electronic devices. Herein, we provide an insightful overview of the unique structures, properties and applications of biopolymers for electronic skins (e-skins) and flexible strain sensors. The relationships between properties and sensing performances of biopolymers-based sensors are also investigated. The functional design strategies and fabrication technologies for biopolymers-based flexible sensors are proposed. Furthermore, the research progresses of biopolymers-based sensors with various functions are described in detail. Finally, we provide some useful viewpoints and future prospects of developing biopolymers-based flexible sensors.
Collapse
Affiliation(s)
- Ziying Wang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Zongtao Ma
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Jingyao Sun
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yuhua Yan
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Miaomiao Bu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yanming Huo
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yun-Fei Li
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|