1
|
Chen H, Shuai C, Wang B, Chen K, Li X, Zhang L, Cao H, Xue F. Construction of Bletilla striata polysaccharide-coconut oil gel-like Pickering emulsions driven by depletion flocculation interactions. Int J Biol Macromol 2025; 311:144052. [PMID: 40348214 DOI: 10.1016/j.ijbiomac.2025.144052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
To overcome the inherent emulsifying limitations of Bletilla striata polysaccharides while preserving their bioactive activity, we developed DBSP-5-based gel-like Pickering emulsions combining plant-derived carboxylated cellulose nanocrystals (cCNC) and coconut oil, stabilized without surfactants to enable eco-friendly applications in biomedical and cosmetic formulations. While cCNC stabilized coconut oil into gel-like emulsions, water precipitation occurred after 7 days. A dual-layer stabilization strategy employed degraded Bletilla striata polysaccharides (DBSP)-5, leveraging its depletion effect to enhance cCNC adsorption onto droplets, reinforcing the flocculating network. The addition of DBSP-5 in ratios of 1:5, 2:5, and 1:1, emulsion droplets aggregated into gel-like structures. Rheological analysis showed DBSP-5 improved emulsion stability via depletion effects, augmented the emulsion structures and ionic stability, and exhibited effectiveness against temperature changes. Furthermore, emulsions with 1:5 and 2:5 ratios exhibited strong elastic recovery, indicating a reinforced three-dimensional cCNC-coconut oil network. This dual-layer approach enhances polysaccharide delivery potential by optimizing emulsion stability and gelation.
Collapse
Affiliation(s)
- Haoying Chen
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Ce Shuai
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Li Zhang
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Han Cao
- Ruijin-Yatsen Joint Laboratory, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Feng Xue
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
2
|
Jian C, Bin W, Xinkang H, Jun X, Jinsong Z, Wenhua G, Kefu C. Refining and application of lignin-containing cellulose nanofibers by recyclable tetrahydrofuran/water system. Int J Biol Macromol 2025; 305:141053. [PMID: 39978506 DOI: 10.1016/j.ijbiomac.2025.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Lignin-containing cellulose nanofibers (LCNF) have attracted attention for their excellent properties, however traditional LCNF preparation method has problems with by-product waste and solvent recovery. Therefore, a recyclable tetrahydrofuran (THF)/water system was proposed in this study to achieve full-component refining of lignocellulose and value-added utilization of by-products. Firstly, lignocellulose was pretreated with THF/water to successfully separate pulp, lignin nanoparticles (LNPs) and polysaccharides, and ~70 % of THF was recovered. Further mechanical grinding of the pulp can obtain LCNF with enhanced stability, crystallinity and unique rheological properties, realizing the preparation of different lignocellulose-based nanomaterials. Subsequently, based on the relationship between the properties of lignin in LCNF and the film, it was proposed to introduce the by-product LNPs with active groups into LCNF to successfully enhance the film properties. Its barrier and mechanical properties were significantly improved, the tensile strength and hardness were increased to 143.26 MPa and 623.45 MPa respectively, which obtained a new high-strength encapsulation barrier film. Hence, this work not only successfully achieved the full-component refining of lignocellulose-based nanomaterials, but also realized the value-added utilization of by-products, providing a new idea for the development and application of lignocellulose-based nanomaterials.
Collapse
Affiliation(s)
- Chen Jian
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wang Bin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Huang Xinkang
- Kaihua Paper Traditional Technology Research Center, Kaihua 324300, China
| | - Xu Jun
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zeng Jinsong
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gao Wenhua
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chen Kefu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Shao X, Xie Y, Chen A, Lan L, Zhao Q, Ma L, Chen Z, Long J, Chen W, Hu D. Sustainable lignocellulosic nanofibers-based films with sensitive humidity and pH response for UV-blocking food preservation. Int J Biol Macromol 2025; 309:143115. [PMID: 40222527 DOI: 10.1016/j.ijbiomac.2025.143115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
UV-induced photo-oxidation critically compromises food quality, necessitating advanced materials that simultaneously mitigate light degradation and enable real-time freshness monitoring. Here, the excellent UV-blocking films with sensitive humidity and pH response are developed by synergistically incorporating sodium ligninsulfonate-derived carbon quantum dots (L-CDs) via a simple microwave-assisted generation and light absorption of lignin from lignocellulosic nanofibers. The resulting films with hybrid structure can block 99.74 % (UV-C), 99.86 % (UV-B), and 87.90 % (UV-A) of radiation while maintaining 85.60 % visible light transmittance (600 nm), and has excellent mechanical strength (61.51 MPa). Under the protection of composite film, pork, strawberries and grapes all maintained longer freshness than unprotected controls. Profited from the protonation and deprotonation of L-CDs and the disconnection/reconstruction of hydrogen bonds, it shows sensitive humidity and pH response with changes in blue fluorescence. Furthermore, the conductivity of the composite film increases exponentially as the increase of humidity, showing excellent humidity response monitoring. As expected, the prepared composite film can detect changes in conductivity and resistance for monitoring the freshness of food. So, this work provides the development prospects for multi-functional composite films with UV-blocking and intelligent humidity & pH sensing for food preservation and intelligent monitoring.
Collapse
Affiliation(s)
- Xinyu Shao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yanhui Xie
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Anyang Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Longfa Lan
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qingbin Zhao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lin Ma
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Ziyan Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiehua Long
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wang Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Dongying Hu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Zhou J, Gao W, Jiang H, Xiang Z, Li J, Cao D, Zeng J, Wang B, Xu J. Sensitive and Stable Detection of Pesticide Residues Using Flexible 3D Nanocellulose-Based SERS Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8026-8039. [PMID: 40114362 DOI: 10.1021/acs.jafc.4c12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained attention as a sensitive technique for the detection of pesticide residues. However, constructing homogeneous, stable, and large-volume "hot spots" is a challenge. In this study, D-T-CNFs@Ag SERS substrates were fabricated by decorating a flexible dialdehyde TEMPO-oxidized cellulose nanofibril (D-T-CNF) film with silver nanoparticles (AgNPs). Carboxylate groups and aldehyde groups on cellulose nanofibrils were used as the growth sites for AgNPs and the main reducing agents for forming three-dimensional "hot spots", respectively. D-T-CNFs provided protection and immobilization for the AgNPs, allowing SERS substrates to withstand intense ultrasonic treatment, and had a shelf life of over 60 days. In addition, thiram and thiabendazole could be detected at a concentration as low as 10-9 M. The D-T-CNFs@Ag SERS substrate could be used to test thiram on the surface of apples, with a limit of detection (LOD) of 0.047 ng/cm2, realizing the integration of collection and detection.
Collapse
Affiliation(s)
- Junjie Zhou
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Hanbing Jiang
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Daxian Cao
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Ghahramani S, Hedjazi S, Izadyar S, Fischer S, Abdulkhani A. Influence of different pulping processes, cold caustic extraction, and bleaching as common post-treatments on properties of produced lignocellulose nanocrystals (LCNCs) from bagasse. Int J Biol Macromol 2025; 304:141448. [PMID: 40010466 DOI: 10.1016/j.ijbiomac.2025.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.
Collapse
Affiliation(s)
- Saleh Ghahramani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Sahab Hedjazi
- Department of Paper Sciences and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Soheila Izadyar
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Steffen Fischer
- Institute of Wood and Plant Chemistry, Technical University of Dresden, Tharandt, Dresden, Germany
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
6
|
Zhang H, Wang Y, Peng H, He B, Li Y, Wang H, Hu Z, Yu H, Wang Y, Zhou M, Peng L, Wang M. Distinct lignocelluloses of plant evolution are optimally selective for complete biomass saccharification and upgrading Cd 2+/Pb 2+ and dye adsorption via desired biosorbent assembly. BIORESOURCE TECHNOLOGY 2025; 417:131856. [PMID: 39581481 DOI: 10.1016/j.biortech.2024.131856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
In this study, 15 plant species representing plant evolution were selected, and distinct lignocellulose compositions for largely varied biomass enzymatic saccharification were detected. By comparison, the acid-pretreated lignocellulose of rice mutant was of the highest Congo-red adsorption (298 mg/g) accounting for cellulose accessibility, leading to complete cellulose hydrolysis and high bioethanol production. By conducting oxidative-catalysis with the acid-pretreated lignocellulose of moss plant, the optimal biosorbent was generated with maximum Cd/Pb adsorption (54/118 mg/g), mainly due to half-reduced cellulose polymerization degree and raised functional groups accountable for multiple physical and chemical interactions. Furthermore, the acid-pretreated lignocellulose of eucalyptus was of large and small pores for much higher adsorption capacities with direct-yellow and direct-blue than those of the previously-reported. Therefore, this study raises a mechanism model about how distinct lignocelluloses of plant evolution are selective for complete biomass saccharification and optimal biosorbents assembly, providing insights into lignocellulose biosynthesis and biomass conversion.
Collapse
Affiliation(s)
- Huiyi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongtai Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boyang He
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Houji Laboratory of Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
7
|
Liza AA, Wang S, Zhu Y, Wu H, Guo L, Qi Y, Zhang F, Song J, Ren H, Guo J. Ultraviolet (UV) assisted fabrication and characterization of lignin containing cellulose nanofibrils (LCNFs) from wood residues. Int J Biol Macromol 2024; 283:137973. [PMID: 39581419 DOI: 10.1016/j.ijbiomac.2024.137973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the synergistic mechanism of lignin chromophore modifications via UV treatment and to analyze the effects of mechanical treatments on LCNF properties for future uses. The procedure involved two steps: first, lignin's chromophore modification via UV illumination, and then the ball milling process was proceeded for 1 h, followed by high-intensity ultrasonic for 15-135 min. Characterization included preserved lignin content percentage, FTIR, UV-vis NMR, and color analysis for UV-modified samples, and to access the influence of mechanical treatment on LCNF samples further yield, zeta potential analysis, XRD, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy were performed. LCNFs S-120 demonstrated a zeta potential of -21.7 mV, indicating enhanced stability compared to the S-135 sample (-10.95 mV). The S-120 sample also showed the highest yield (74.02 %) and TGA at 391 °C. In XRD analysis, the S-120 sample demonstrated the highest CrI 64.3 %, than the S-15 sample (48.2 %). Preserved lignin in the LCNFs led to a slight reduction in crystallinity across all samples but improved thermal stability for all the prepared LCNFs samples. The UV and ultrasonication improved the homogeneity and durability of the LCNF samples, enabling a process that may be used to industries.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shihao Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hao Wu
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yungeng Qi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Liaoning Key Lab of Lignocellulose Chemistry and Bio Materials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257000, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials and College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
8
|
Puss KK, Paaver P, Loog M, Salmar S. Ultrasound effect on a biorefinery lignin-cellulose mixture. ULTRASONICS SONOCHEMISTRY 2024; 111:107071. [PMID: 39303645 PMCID: PMC11440299 DOI: 10.1016/j.ultsonch.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Forest biorefineries provide multiple new avenues for applied research. The main concept lies in the malleability of the processes and their stepwise organization. The core element of the biorefinery concept addressed in the present study is the pretreatment step; here, wood biomass is converted into free hemicellulosic sugars, lignin and cellulose. In traditional approaches, the pretreatment step is a starting point for isolating and separating lignin or cellulose through different processes. In this study, instead of performing any separation, a lignin-cellulose mixture was used as its own material, and the effects of ultrasound treatment with a probe system at 20 kHz, with various amplitude, sonication time and dry matter content were investigated with the aim of assessing the formation of a nanocellulose structure with a high lignin content (>30 %) and investigating the stability of the lignin-cellulose mixture under aqueous conditions. We demonstrated the importance of dry matter content for the specific particle size and water retention values for this mixture. US treatment of lignin-cellulose mixtures <4 % dry matter formed a gel-like material, with low particle size (90 % below 30 μm and smallest at nanoscale). Low dry matter loading led to better US transfer and higher conversion of cellulose to <100 nm nanoparticles. Our study can serve as a baseline for future developments in the field of stable emulsions, filtering materials or inputs for material synthesis.
Collapse
Affiliation(s)
- Kait Kaarel Puss
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia; Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia.
| | - Peeter Paaver
- University of Tartu, Institute of Ecology and Earth Sciences, Ravila 14a, Tartu, Estonia
| | - Mart Loog
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia
| | - Siim Salmar
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| |
Collapse
|
9
|
Zhou J, Gao W, Wu J, Xiang Z, Zeng J, Wang B, Xu J. Fabrication of high performance 2D flexible SERS substrate based on cellulose nanofibrils and its application for pesticide residue detection. Int J Biol Macromol 2024; 282:137115. [PMID: 39500433 DOI: 10.1016/j.ijbiomac.2024.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10-8 M and 9.63 × 10-8 M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm-1 showed a good linear relationship with the analyte concentrations (0.96 ng/cm2-9600 ng/cm2). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.
Collapse
Affiliation(s)
- Junjie Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinglin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
11
|
Chen H, Lin C, Wu Y, Wang B, Kui M, Xu J, Ma H, Li J, Zeng J, Gao W, Chen K. Protective effects of degraded Bletilla striata polysaccharides against UVB-induced oxidative stress in skin. Int J Biol Macromol 2024; 277:134462. [PMID: 39098666 DOI: 10.1016/j.ijbiomac.2024.134462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The Bletilla striata polysaccharides (BSP) extracted through alkali-assisted method exhibit significant antioxidant activity, but its bioaccessibility was inadequate due to its tightly filamentous reticulation structure and high molecular weight. The anti-photoaging and anti-melanogenesis effects of degraded BSP (DBSPs) against UVB-induced oxidative stress on the skin were investigated. The molecular weights of the DBSPs were reduced to 153.94 kDa, 66.96 kDa, and 15.54 kDa from an initial value of 298.82 kDa. The degradation treatment altered the branched chain structure of the DBSPs, while the backbone structure, triple-helix structure, and crystallinity remained. DBSPs with a lower molecular weight exhibit better in vitro antioxidant activity. DBSPs did not show cytotoxicity to HSF cells but inhibited B16F10 cell proliferation. The addition of DBSPs protected HSF and B16F10 cells from oxidative stress and reduced ROS levels, B16F10 melanin content, and B16F10 tyrosinase activity after UVB damage, but DBSP-10 particles were slightly less effective due to aggregation. In contrast, DBSP-5 demonstrated effectiveness in reducing MDA levels in cells stressed by oxidative stress, increased total antioxidant capacity, and inhibited melanogenesis in B16F10, suggesting that DBSP-5 has potential as a topical therapeutic agent for the treatment of skin diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Changhui Lin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China.
| | - Minghong Kui
- Guangdong Guanhao High-tech Co., Ltd, No. 313 Donghai Avenue, Donghai Island, Zhanjiang 524072, PR China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Hongsheng Ma
- Guangdong Guanhao New Material R & D Co., Ltd, Xiangjiang Financial Business Center, Nansha District, Guangzhou 511457, PR China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| |
Collapse
|
12
|
Zhao X, Wang W, Cheng J, Xia Y, Duan C, Zhong R, Zhao X, Li X, Ni Y. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring. Food Chem 2024; 453:139673. [PMID: 38772308 DOI: 10.1016/j.foodchem.2024.139673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.
Collapse
Affiliation(s)
- Xingjin Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Wenliang Wang
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jinbao Cheng
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuanyuan Xia
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Duan
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ruofan Zhong
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinyu Zhao
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinping Li
- College of Bioresources Chemical & Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
13
|
Ouyang C, Zhang H, Zhu Y, Zhao J, Ren H, Zhai H. Lignin-containing cellulose nanocrystals enhanced electrospun polylactic acid-based nanofibrous mats: Strengthen and toughen. Int J Biol Macromol 2024; 280:135617. [PMID: 39278433 DOI: 10.1016/j.ijbiomac.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous mats prepared by electrospinning serve as suitable packaging materials. However, their practical applications are limited by their weak mechanical properties, poor thermal stability, and high cost. In this study, green and low-cost lignin-containing cellulose nanocrystals (LCNCs) with different lignin contents were developed and employed as reinforced materials to synergistically enhance the thermal, mechanical, and hydrophobic properties of PLA electrospun nanofibrous mats. The presence of moderate lignin improved the interfacial compatibility between the LCNCs and PLA, resulting in excellent mechanical properties of the nanofibrous mats. Compared to pure PLA mats, the tensile strength of the composites reached up to 21.0 MPa, representing a 6.6-fold increase. Its toughness was synchronously enhanced by 16 times, reaching a maximum of 3.6 MJ/m3. The maximum decomposition temperature of PLA/LCNCs electrospun nanofibrous mats increased from 339 °C to 365 °C. Furthermore, the increase in lignin in the LCNCs positively contributed to improving the hydrophobicity of the PLA/LCNCs electrospun nanofibrous mats. This bio-based strategy of LCNCs employed in the enhancement of fully bio-based PLA nanofibrous mats offers a viable approach for the advancement of packaging films.
Collapse
Affiliation(s)
- Chen Ouyang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON M5S 3E5, Canada
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Zhang L, Li X, Xu X, Song L, Bi A, Wu C, Ma Y, Du M. Semisolid medium internal phase emulsions stabilized by dendritic-like mushroom cellulose nanofibrils: Concentration effect and stabilization mechanism. Food Chem 2024; 436:137693. [PMID: 37832422 DOI: 10.1016/j.foodchem.2023.137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Emulsions with reduced fat and natural stabilizers are currently prevalent. Herein, semisolid emulsions with an oil phase of 50 % were successfully prepared using cellulose nanofibrils from mushroom stipes as stabilizers. Cellulose nanofibrils obtained by high-pressure homogenization were dendritic-like and possessed a contact angle of 70.50 ± 0.41°. The rheological properties and stability of emulsions increased significantly as nanocellulose concentrations increased from 5 to 20 mg/mL, while nanocellulose at 25-30 mg/mL significantly reduced the storage stability and anti-lipid oxidation ability of emulsions. The microstructure of semisolid emulsions demonstrated that nanocellulose fibers at 20 mg/mL could stabilize emulsions by forming compact interfacial films around droplets and creating intensive bridging networks between neighboring droplets, while nanofibers at concentrations over 20 mg/mL easily clustered in the aqueous phase, making the droplets more susceptible to aggregation and demulsification. The results demonstrate that cellulose nanofibrils from mushroom byproducts have the potential to stabilize semisolid food-grade emulsions.
Collapse
Affiliation(s)
- Ling Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Anqi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunjiao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Huang H, Zheng C, Huang C, Wang S. Dissolution behavior of ionic liquids for different ratios of lignin and cellulose in the preparation of nanocellulose/lignin blends. J Colloid Interface Sci 2024; 657:767-777. [PMID: 38081111 DOI: 10.1016/j.jcis.2023.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Lignin is regarded as a potential solution for boosting the strength of cellulose-based products. However, the mechanism of co-solubilization for lignin and cellulose has not been investigated. In this study, the effect of lignin content on the interaction between lignin and nanocellulose during lignin/cellulose co-dissolution was examined. The results revealed that lignin binds to nanocellulose throughout the dissolution process to limit the degradation of cellulose and to prepare nanocellulose/lignin composites. Moreover, the S units in lignin were more likely to interact with cellulose during the dissolution process, whereas the G units were more likely to condense. However, when the lignin content exceeded 30 wt%, the excess lignin created a severe condensation reaction, which led to a decrease in the lignin content bound to cellulose, resulting in an unequal dissolution of cellulose. Thus, a small amount of lignin attached to cellulose during the co-dissolution of lignin and cellulose inhibits cellulose degradation and can be utilized to create nanocellulose/lignin to extend the potential applications of nanocellulosic materials.
Collapse
Affiliation(s)
- Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chaojian Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| |
Collapse
|
16
|
Techawinyutham L, Techawinyutham W, Rangappa SM, Siengchin S. Lignocellulose based biofiller reinforced biopolymer composites from fruit peel wastes as natural pigment. Int J Biol Macromol 2024; 257:128767. [PMID: 38091681 DOI: 10.1016/j.ijbiomac.2023.128767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
In this study, the utilization of mangosteen and durian peel wastes as bio-filler and natural pigment in biopolymer of polybutyrate adipate terephthalate (PBAT) were examined. The related research work of hybridization of both mangosteen and durian peels reinforced in biopolymer as cellulose-based bio fillers and natural pigment is rarely studied. The content variation of mangosteen powder and durian powder ranged from 0 to 30 wt% with an increment of 10. The influence of mangosteen and durian powders reinforced in PBAT on color change, morphological, chemical composition, mechanical, thermal, and rheological properties were determined. Mangosteen peel and durian peel provided dark appearance for the green composites without pre-burn of these fruit peels. It can be concluded that mangosteen peel and durian peel can be used as bio pigment and natural reinforcement material in biopolymer matrix which can reduce massive waste of mangosteen and durian peel and add value to these wastes. These black biopolymer composites can be used in applications of eco-friendly food packaging and medicine zipper packaging. The overall mechanical properties, thermal stability, and dark color of mangosteen/PBAT composites were greater than those of durian/PBAT composites. However, durian/PBAT composites presented greater thermal and rheological properties than mangosteen/PBAT composites.
Collapse
Affiliation(s)
- Laongdaw Techawinyutham
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand.
| | - Wiroj Techawinyutham
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
17
|
Diaz-Baca JA, Fatehi P. Production and characterization of starch-lignin based materials: A review. Biotechnol Adv 2024; 70:108281. [PMID: 37956796 DOI: 10.1016/j.biotechadv.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
18
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
19
|
Najahi A, Tarrés Q, Delgado-Aguilar M, Putaux JL, Boufi S. High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid. Biomacromolecules 2023; 24:3872-3886. [PMID: 37523756 PMCID: PMC10428168 DOI: 10.1021/acs.biomac.3c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/16/2023] [Indexed: 08/02/2023]
Abstract
Lignin-containing cellulose nanofibrils (LCNFs) have attracted great attention because the presence of lignin brought additional merits to cellulose nanofibrils including hydrophobicity, ultraviolet (UV)-shielding capacity, and reduced water sensitivity. In the present work, LCNFs with lignin content up to 21 wt % were prepared with a high yield exceeding 70 wt %, from neat date palm waste, by a hydrothermal treatment (HTT) at 120-150 °C in the presence of 20-30 wt % maleic acid, followed by high-pressure homogenization. The chemical composition, degree of polymerization, morphology, and colloidal and rheological properties of the LCNFs were investigated to understand how the HTT in the presence of MA affected the properties of the resulting LCNFs. Nanopapers prepared from the LCNF suspensions exhibited mechanical properties lower than those from lignin-free CNF-based nanopapers, yet with decreased hydrophilicity. A mechanism explaining how the HTT in the presence of MA facilitated the disintegration of the biomass into nanoscale material was proposed. Overall, the present work demonstrated a feasible and scalable approach for the sustainable production of LCNF suspensions from neat agricultural residues, with a high yield and a high lignin content, without any need to perform a preliminary partial delignification.
Collapse
Affiliation(s)
- Amira Najahi
- University of
Sfax, LMSE, Faculty of Science, BP 802, 3018 Sfax, Tunisia
| | - Quim Tarrés
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
| | - Jean-Luc Putaux
- Univ.
Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Sami Boufi
- University of
Sfax, LMSE, Faculty of Science, BP 802, 3018 Sfax, Tunisia
| |
Collapse
|
20
|
Wan L, Liu K, Kirillov AM, Fang R, Yang L. Fabrication of Cellulose Filters Incorporating Metal-Organic Frameworks for Efficient Nicotine Adsorption from Cigarette Smoke. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5364-5374. [PMID: 37011410 DOI: 10.1021/acs.langmuir.2c03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To prevent negative effects of smoking, there is constant research on the development of various types of sustainable filter materials, capable of removing toxic compounds present in cigarette smoke. Because of the extraordinary porosity and adsorption properties, metal-organic frameworks (MOFs) represent promising adsorbents for volatile toxic molecules such as nicotine. This study reports new hybrid materials wherein six types of common MOFs of different porosity and particle size are incorporated into sustainable cellulose fiber from bamboo pulp, resulting in a series of cellulose filter samples abbreviated as MOF@CF. The obtained hybrid cellulose filters were fully characterized and investigated in nicotine adsorption from cigarette smoke, using a specially designed experimental setup. The results revealed that the UiO-66@CF material features the best mechanical performance, facile recyclability, and excellent nicotine adsorption efficiency that attains 90% with relative standard deviations lower than 8.80%. This phenomenon may be caused by the large pore size, open metal sites, and high loading of UiO-66 in cellulose filters. Additionally, the high adsorption capacity showed almost 85% removal of nicotine after the third adsorption cycle. The DFT calculation methods allowed further investigation of the nicotine adsorption mechanism, showing that the energy difference between HOMO and LUMO for UiO-66 was the closest to that of nicotine, which further proves the adsorption ability of nicotine by this material. Owing to the flexibility, recyclability, and excellent adsorption performance, the prepared hybrid MOF@CF materials may find prospective applications in nicotine adsorption from cigarette smoke.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Kunyang Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Duan C, Wang B, Li J, Xu J, Zeng J, Ying G, Chen K. Multidimensional dynamic regulation of cellulose coloration for digital recognition and humidity response. Int J Biol Macromol 2023; 234:123597. [PMID: 36796560 DOI: 10.1016/j.ijbiomac.2023.123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Structural color is an eye-catching phenomenon in nature, which originates from the synergistic effect of cholesteric structure inside living organisms and light. However, biomimetic design and green construction of dynamically tunable structural color materials have been a great challenge in the field of photonic manufacturing. In this work, the new ability of L-lactic acid (LLA) to multi-dimensionally modulate the cholesteric structures constructed from cellulose nanocrystals (CNC) is revealed for the first time. By studying the molecular-scale hydrogen bonding mechanism, a novel strategy that electrostatic repulsion and hydrogen bonding forces jointly drive the uniform arrangement of cholesteric structures is proposed. Due to the flexible tunability and uniform alignment of the CNC cholesteric structure, different encoded messages were developed in the CNC/LLA (CL) pattern. Under different viewing conditions, the recognition information of different digits will continue to reversibly and rapidly switch until the cholesteric structure is destroyed. In addition, the LLA molecules facilitated the more sensitive response of the CL film to the humidity environment, making it exhibit reversible and tunable structural colors under different humidity. These excellent properties provide more possibilities for the application of CL materials in the fields of multi-dimensional display, anti-counterfeiting encryption, and environmental monitoring.
Collapse
Affiliation(s)
- Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 51006, China
| |
Collapse
|
22
|
Dong J, Zeng J, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Carbohydr Polym 2023; 311:120753. [PMID: 37028856 DOI: 10.1016/j.carbpol.2023.120753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Lignin-containing cellulose nanopapers are emerging multifunctional materials in the fields of coatings, films, and packaging. However, the forming mechanism and properties of nanopapers with various lignin content have not been thoroughly studied. In this work, a mechanically strong nanopaper was fabricated based on lignin-containing cellulose micro- and nano-hybrid fibrils (LCNFs). The influence of lignin content and fibrils morphology on the formation process of nanopapers was investigated to understand the strengthening mechanism of nanopapers. LCNFs with high lignin content provided nanopapers with intertwined micro- and nano-hybrid fibrils layers with small layer spacing, while LCNFs with low lignin content offered nanopapers interlaced nanofibrils layers with large layer spacing. Although lignin was expected to interfere with hydrogen bonds between fibrils, the uniformly distributed lignin contributed to the stress transfer between fibrils. Due to the good coordination between microfibrils, nanofibrils and lignin (as network skeleton, filler and natural binder, respectively), the well-designed LCNFs nanopapers with lignin content of 14.5 % showed excellent mechanical properties, including tensile strength (183.8 MPa), Young's modulus (5.6 GPa) and elongation (9.2 %). This work deeply reveals the relationship between lignin content, morphology and strengthening mechanism of nanopapers, and providing theoretical guidance for employing LCNFs as structural and reinforcing materials to design robust composites.
Collapse
Affiliation(s)
- Jiran Dong
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
23
|
Lu H, Zhang L, Yan M, Ye J, Wang K, Jiang J. Green production of lignocellulose nanofibrils by FeCl3-catalyzed ethanol treatment. Int J Biol Macromol 2022; 224:181-187. [DOI: 10.1016/j.ijbiomac.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
24
|
Yuan T, Zeng J, Guo D, Sun Q, Wang B, Sha L, Chen K. Multiphasic lignocellulose-based suspension for oil-water interfacial stabilization: Synergistic adsorption and phase behavior. Int J Biol Macromol 2022; 224:1142-1151. [DOI: 10.1016/j.ijbiomac.2022.10.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
25
|
Hou F, Yang S, Ma X, Gong Z, Wang Y, Wang W. Characterization of Physicochemical Properties of Oil-in-Water Emulsions Stabilized by Tremella fuciformis Polysaccharides. Foods 2022; 11:foods11193020. [PMID: 36230096 PMCID: PMC9563765 DOI: 10.3390/foods11193020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, emulsions stabilized by Tremella fuciformis polysaccharides (TFP) were prepared and the physiochemical properties were assessed. Results showed that the TFP emulsions illustrated the highest emulsifying activity (EAI) and emulsifying stability (ESI) when the concentration of TFP and oil were 0.8% and 10% (wt%). The higher pH value was in favor of the emulsifying properties, while the addition of NaCl impaired the stability, and the greater the concentration, the lower the EAI and ESI. Besides, the emulsifying and rheological properties and stability analysis were evaluated in comparison with gum arabic, pectin, and carboxymethyl cellulose emulsions. It was discovered that TFP illustrated better storage and freeze-thaw stability, which was proved by the result of zeta-potential and particle size. The rheological measurement revealed that all the emulsions behaved as pseudoplastic fluids, while TFP displayed a higher viscosity. Meanwhile, TFP emulsions tended to form a more stable network structure according to the analysis of the parameters obtained from the Herschel–Bulkley model. FTIR spectra suggested that the O-H bond could be destructed without the formation of new covalent bonds during the emulsion preparation. Therefore, this study would be of great importance for the research of emulsions stabilized by TFP as a natural food emulsifier.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuhui Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaobin Ma
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Zhiqing Gong
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
26
|
Nader S, Brosse N, Daas T, Mauret E. Lignin containing micro and nano-fibrillated cellulose obtained by steam explosion: Comparative study between different processes. Carbohydr Polym 2022; 290:119460. [DOI: 10.1016/j.carbpol.2022.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
|
27
|
Li R, Huang D, Chen S, Lei L, Chen Y, Tao J, Zhou W, Wang G. From residue to resource: new insights into the synthesis of functionalized lignin micro/nanospheres by self-assembly technology for waste resource utilization. NANOSCALE 2022; 14:10299-10320. [PMID: 35834293 DOI: 10.1039/d2nr01350a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the most abundant biopolymers in the biosphere, lignin is a renewable aromatic compound that represents an untapped opportunity to create new biological products. However, the complex interlacing structures of cellulose, hemicellulose and lignin, as well as the unique properties of lignin, limit the utilization of value-added lignin. Lignin-based nanomaterials open the door for lignin applications in environmental pollutant remediation, biofuel production, biomedicine, and other fields. Herein, we present various factors influencing the formation of micro-nanospheres by self-assembly techniques through a review of previous literature, and emphasize the simple and green synthesis of lignin micro/nanospheres (LMNPs) under non-modified conditions. More importantly, we discuss the mechanism of the formation of nanospheres. Considering the heterogeneity of lignin and the polarity of different solvents, we propose that self-assembly techniques should focus more on the influence brought by lignin itself or the solvent, so that the external conditions can be controlled to prepare LMNPs, which can be used in specific fields. A brief overview of the contribution of lignin-based nanomaterials in various fields is also presented. This review could provide insight for the development of lignin-based nanomaterials.
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
28
|
Botta L, Titone V, Teresi R, Scarlata MC, Lo Re G, La Mantia FP, Lopresti F. Biocomposite PBAT/lignin blown films with enhanced photo-stability. Int J Biol Macromol 2022; 217:161-170. [PMID: 35820487 DOI: 10.1016/j.ijbiomac.2022.07.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
Lignin can be obtained as a byproduct during cellulose-rich pulp fibers production and it is habitually treated as waste or intended for low-value destinations. However, due to UV absorption and mechanical properties, lignin can contribute to the fabrication of biodegradable blown films with superior performances. In this study, it was established the suitability of lignin for manufacturing biocomposite PBAT blown films with higher stiffness and photo-oxidation resistance. The effect of the filler concentration on the melt rheological behavior in non-isothermal elongational flow was investigated. The results allowed us to choose the correct filler concentration for producing films through a film blowing operation. The PBAT/lignin blown film composites displayed an increase of the elastic modulus if compared to neat PBAT films without affecting their elongation at break. Furthermore, the filler delayed the photo-oxidative degradation of PBAT hence potentially allowing open-air applications.
Collapse
Affiliation(s)
- Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo Titone
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; Irritec S.p.A., Via Industriale sn, 98070 Rocca di Caprileone, Italy
| | - Rosalia Teresi
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maria Costanza Scarlata
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Francesco Paolo La Mantia
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Francesco Lopresti
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
29
|
Polez RT, Morits M, Jonkergouw C, Phiri J, Valle-Delgado JJ, Linder MB, Maloney T, Rojas OJ, Österberg M. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Int J Biol Macromol 2022; 215:691-704. [PMID: 35777518 DOI: 10.1016/j.ijbiomac.2022.06.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
Abstract
Producing hydrogels capable of mimicking the biomechanics of soft tissue remains a challenge. We explore the potential of plant-based hydrogels as polysaccharide tragacanth gum and antioxidant lignin nanoparticles in bioactive multicomponent hydrogels for tissue engineering. These natural components are combined with TEMPO-oxidized cellulose nanofibrils, a material with known shear thinning behavior. Hydrogels presented tragacanth gum (TG) concentration-dependent rheological properties suitable for extrusion 3D printing. TG enhanced the swelling capacity up to 645 % and the degradation rate up to 1.3 %/day for hydrogels containing 75 % of TG. Young's moduli of the hydrogels varied from 5.0 to 11.6 kPa and were comparable to soft tissues like skin and muscle. In vitro cell viability assays revealed that the scaffolds were non-toxic and promoted proliferation of hepatocellular carcinoma HepG2 cells. Therefore, the plant-based hydrogels designed in this work have a significant potential for tissue engineering.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Josphat Phiri
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Thaddeus Maloney
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
30
|
Fu H, Wang B, Li J, Xu J, Li J, Zeng J, Gao W, Chen K. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe 3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. MATERIALS HORIZONS 2022; 9:1412-1421. [PMID: 35322839 DOI: 10.1039/d2mh00028h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conductive hydrogels have emerged as promising material candidates for multifunctional strain sensors, attributed to their similarity to biological tissues, good wearability, and high accuracy of information acquisition. However, it is difficult to simultaneously manufacture conductive hydrogel-based multifunctional strain sensors with the synergistic properties of reliable healability for long-term usage and environmental degradability/recyclability for decreasing the electronic waste. This work reports a facile strategy to engineer a self-healing, recyclable and conductive strain sensor by virtue of molecular-level multi-dynamic interactions (MMDIs) including Schiff base complexes, hydrogen bonds, and coordination bonds, which were fabricated using a dialdehyde TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized nanofibrillated cellulose (DATNFC) pre-reinforced gelatin nanocomposite hydrogel (gelatin/DATNFC hydrogel, GDH) followed by dipping in an Fe3+ aqueous solution. The MMDI strategy allows synchronous regulation of both bulk and interfacial interactions to obtain exciting properties that outperform those of conventional hydrogels, including extraordinary compressive stress (1310 kPa), intriguing self-healing abilities, and remarkable electrical conductivity. With these outstanding merits, the as-prepared gelatin/DATNFC/Fe3+ hydrogel (GDIH) is developed to be a multifunctional strain sensor with appealing strain sensitivity (GF = 2.24 under 6% strain) and compressive sensitivity (S = 1.14 kPa-1 under 15 kPa), which can be utilized to manufacture electronic skin and accurately discern subtle bodily motions, handwriting and personal signatures. Notably, this GDIH-based sensor also exhibited reliable self-healing properties for long-term usage, environmental degradability and complete recyclability for decreasing the electronic waste. In consideration of the extremely facile preparation process, biocompatibility, satisfactory functionalities, remarkable self-healing properties and recyclability, the emergence of the GDIH-based sensor is believed to propose a new strategy for the development of sustainable-multifunctional strain sensors and healthcare monitoring.
Collapse
Affiliation(s)
- Haocheng Fu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
31
|
Fu D, Wang R, Wang Y, Sun Q, Cheng C, Guo X, Yang R. An easily processable silver nanowires-dual-cellulose conductive paper for versatile flexible pressure sensors. Carbohydr Polym 2022; 283:119135. [DOI: 10.1016/j.carbpol.2022.119135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
|
32
|
Hu F, Zeng J, Li J, Wang B, Cheng Z, Wang T, Chen K. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14640-14653. [PMID: 35290013 DOI: 10.1021/acsami.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Chen Y, Zhang H, Feng X, Ma L, Zhang Y, Dai H. Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers. Food Res Int 2021; 150:110738. [PMID: 34865757 DOI: 10.1016/j.foodres.2021.110738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
In this study, the pineapple peel treated with different degrees of delignification was used to isolate lignocellulose nanocrystals (LCNC) by sulfuric acid hydrolysis. Controlling delignification treatments can adjust the morphology and structure of pineapple peel and the retention of lignin, thereby achieving the regulation of the properties of LCNC, such as morphology, crystallinity, hydrophobicity and rheological properties. The results of atomic force microscope (AFM), confocal laser scanning microscopy (CLSM), UV/visible (UV-Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the presence of lignin in LCNC, showing a rod-like structure with the distribution of lignin. Regulating delignification of pineapple peel can adjust the average length (310 ∼ 460 nm), diameter (19 ∼ 38 nm), crystallinity (61% ∼ 71%) and hydrophobicity (contact angle 84° ∼ 60°) of the obtained LCNC by acid hydrolysis, and influence the performance of its stabilized Pickering emulsions. This work confirms that the properties of LCNC can be controlled through adjusting delignification degree, possessing great significance for the high value utilization of lignocellulosic agricultural waste.
Collapse
Affiliation(s)
- Yuan Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Bao Y, Xue H, Yue Y, Wang X, Yu H, Piao C. Preparation and Characterization of Pickering Emulsions with Modified Okara Insoluble Dietary Fiber. Foods 2021; 10:2982. [PMID: 34945533 PMCID: PMC8700857 DOI: 10.3390/foods10122982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
Modified okara insoluble dietary fiber (OIDF) has attracted great interest as a promising Pickering emulsifier. At present, the modification methods are mainly physicochemical methods, and the research on microbial modified OIDF as stabilizer is not clear. In this work, modified OIDF was prepared by yeast Kluyveromyces marxianus fermentation. The potential of modified OIDF as a Pickering emulsifier and the formation and stability of OIDF-Pickering emulsions stabilized by modified OIDF were characterized, respectively. The results showed that the specific surface area, hydrophilicity, and electronegativity of the modified OIDF were all enhanced compared with the unmodified OIDF. The existence of the network structure between droplets is the key to maintain the stability of the emulsions, as indicated by Croy-Scanning Electron Microscope (Croy-SEM) and rheological properties measurements. The stability of OIDF-Pickering emulsions was evaluated in terms of storage time, centrifugal force, pH value, and ionic strength (NaCl). Moreover, the OIDF-Pickering emulsions stabilized by modified OIDF showed better stability. These results will contribute to the development of efficient OIDF-based emulsifiers, expand the application of emulsions in more fields, and will greatly improve the high-value utilization of okara by-products.
Collapse
Affiliation(s)
- Yue Bao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
| | - Hanyu Xue
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
| | - Yang Yue
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.X.); (Y.Y.); (X.W.); (H.Y.)
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
35
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
36
|
Serra-Parareda F, Tarrés Q, Mutjé P, Balea A, Campano C, Sánchez-Salvador JL, Negro C, Delgado-Aguilar M. Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. Int J Biol Macromol 2021; 187:789-799. [PMID: 34352317 DOI: 10.1016/j.ijbiomac.2021.07.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
The transition of nanocellulose production from laboratory to industrial scale requires robust monitoring systems that keeps a quality control along the production chain. The present work aims at providing a deeper insight on the main factors affecting the rheological behavior of (ligno)cellulose micro/nanofibers (LCMNFs) and cellulose micro/nanofibers (CMNFs) and how they could correlate with their characteristics. To this end, 20 types of LCMNFs and CMNFs were produced combining mechanical refining and high-pressure homogenization from different raw materials. Aspect ratio and bending capacity of the fibrils played a key role on increasing the viscosity of the suspensions by instigating the formation of entangled structures. Surface charge, reflected by the cationic demand, played opposing effects on the viscosity by reducing the fibrils' contact due to repulsive forces. The suspensions also showed increasing shear-thinning behavior with fibrillation degree, which was attributed to increased surface charge and higher water retention capacity, enabling the fibrils to slide past each other more easily when subjected to flow conditions. The present work elucidates the existing relationships between LCMNF/CMNF properties and their rheological behavior, considering fibrillation intensity and the initial raw material characteristics, in view of the potential of rheological measurements as an industrial scalable characterization technology.
Collapse
Affiliation(s)
- Ferran Serra-Parareda
- LEPAMAP-PRODIS Research group, University of Girona, C/ Maria Aurèlia Capmany, 61 - 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS Research group, University of Girona, C/ Maria Aurèlia Capmany, 61 - 17003 Girona, Spain; Chair on Sustainable Industrial Processes, University of Girona, Maria Aurèlia Capmany, 6, 17003 Girona, Spain
| | - Pere Mutjé
- LEPAMAP-PRODIS Research group, University of Girona, C/ Maria Aurèlia Capmany, 61 - 17003 Girona, Spain; Chair on Sustainable Industrial Processes, University of Girona, Maria Aurèlia Capmany, 6, 17003 Girona, Spain
| | - Ana Balea
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Cristina Campano
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Jose Luis Sánchez-Salvador
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Carlos Negro
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research group, University of Girona, C/ Maria Aurèlia Capmany, 61 - 17003 Girona, Spain.
| |
Collapse
|
37
|
Pickering emulsion stabilized by cellulosic fibers: Morphological properties-interfacial stabilization-rheological behavior relationships. Carbohydr Polym 2021; 269:118339. [PMID: 34294348 DOI: 10.1016/j.carbpol.2021.118339] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
This work aimed to study the stabilization mechanism induced by different morphologies of cellulosic fiber in O/W emulsion. Three types of cellulosic fibers were named squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. Squashed cellulose acted as barriers between the droplets to stabilize emulsion via depletion flocculation, whereas incompletely nanofibrillated and completely nanofibrillated cellulose formed covering layer via interfacial adsorption and connected adjacent droplets to create the droplet-fiber network structure via bridging flocculation. Differently, completely nanofibrillated cellulose formed the denser covering layer leading to a more stability of droplet. Importantly, it had the higher capacity of bridging flocculation, which can tightly connect the adjacent droplets to form a stronger droplet-fiber 3D network structure. Consequently, in rheological analysis including creep compliance, and dynamic modulus, the corresponding emulsions showed excellent anti-deformation ability and dynamic stability. This study provides practical guidance on the productions of foodstuff and cosmetic.
Collapse
|