1
|
Sun X, Liu Q, Wu S. Effects of wheat cultivar, oligosaccharide, inulin, arabinoxylan and endoxylanase on the large- and small-strain rheological properties and microstructure of dietary fire enriched dough. Int J Biol Macromol 2025; 308:142443. [PMID: 40132707 DOI: 10.1016/j.ijbiomac.2025.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
To overcome the processing challenges and quality issues of high-fibre products, this research was conducted to investigate how the formulation, i.e., wheat cultivar, dietary fibre (DF) and endoxylanase, affected the rheological properties and microstructure of DF-enriched doughs. Doughs prepared from stronger wheat cultivars had a better tolerance to DF addition. A two-fold decrease in the gel strength of dough was observed with the DF addition from 0 to 12 %. This weakening effect on the dough was reversed due to the endoxylanase addition, i.e., an increase of 23-36 % for gel strength parameters. The endoxylanase-induced modification for dough microstructure was also seen as a more uniform distribution of gluten proteins, starch granules and gas cells. This work will provide the high-fibre food industry with an optimized formula that ensures the final products with a satisfactory overall quality and consumer acceptability.
Collapse
Affiliation(s)
- Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Qingyang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
2
|
Torbica AM, Vujasinović V, Miljić U, Radivojević G, Filipčev B, Miljić M, Radosavljević M. Successful Strategy in Creating Low-FODMAP Wholegrain Bread-Simple and Global. Foods 2025; 14:304. [PMID: 39856969 PMCID: PMC11764468 DOI: 10.3390/foods14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Fermentable oligo-, di-, and monosaccharides as well as polyols (FODMAPs) came into focus following recent clinical studies confirming that they worsen the symptoms of several gastrointestinal disorders suffered by 40% of the general population. Currently; only the low-FODMAP diet is a valuable strategy to help relieve IBS symptoms; however; it is only a temporary solution due to the nutritional deficiency caused by avoiding high-FODMAP foods. At the same time; bakery products are an important part of the human diet worldwide and the key contributors to the high intake of FODMAPs; especially in their wholegrain form. Previous research has shown that reducing FODMAPs content has negative effects on the structures of dough and bread; as well as on sensory quality. Our innovative low-FODMAP wholegrain bakery products provide a unique solution for achieving a high-dietary-fiber intake without compromising the sensory appeal. The novelty of our work is that these experiments were the first to be performed based on known but unexploited facts about the superiority of the baker's yeast enzymatic complex. A crucial reduction in FODMAP content (by more than 75%) was achieved via a simple alteration to the bread formulation (6% baker's yeast and the addition of baking powder) and key process parameter values (40 °C and 60 min dough fermentation time) in conventional breadmaking technology.
Collapse
Affiliation(s)
- Aleksandra M. Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Uroš Miljić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Milorad Miljić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| |
Collapse
|
3
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
4
|
Dragičević V, Simić M, Kandić Raftery V, Vukadinović J, Dodevska M, Đurović S, Brankov M. Screening of Nutritionally Important Components in Standard and Ancient Cereals. Foods 2024; 13:4116. [PMID: 39767058 PMCID: PMC11675112 DOI: 10.3390/foods13244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.10-15.00%), as well as prebiotic fiber (β-glucan and arabinoxylan, ranging 0.11-4.59% and 0.51-6.47%, respectively), essential elements, and various antioxidants. Ancient grains can be considered as a source of highly available essential elements. Special attention should be given to the Cimmyt spelt 1, which is high in yellow pigment (5.01 μg·g-1) and has a capacity to reduce DPPH radicals (186.2 µmol TE·g-1), particularly Zn (70.25 mg·kg-1). The presence of phenolics, dihydro-p-coumaric acid, naringin, quercetin, epicatechin in grains of oats (Sopot), as well as catechin in barley grains (Apolon and Osvit) underline their unique chemical profile, making them a desirable genetic pool for breeding genotypes. This research provides a comprehensive assessment of different nutritional aspects of various cereals (some of which are commonly used, while the others are rarely used in diet), indicating their importance as nutraceuticals. It also provides a genetic background that could be translated the genotypes with even more profound effects on human health.
Collapse
Affiliation(s)
- Vesna Dragičević
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Milena Simić
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Vesna Kandić Raftery
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Jelena Vukadinović
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| | - Margarita Dodevska
- Institute of Public Health of Serbia “Dr. Milan Jovanović Batut”, Dr Subotića Starijeg 5, 11000 Belgrade, Serbia;
| | - Sanja Đurović
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia;
| | - Milan Brankov
- Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Zemun Polje, Serbia; (M.S.); (V.K.R.); (J.V.); (M.B.)
| |
Collapse
|
5
|
Cacak-Pietrzak G, Grabarczyk J, Szafrańska A, Krajewska A, Dziki D. Cereal Coffee as a Functional Additive in Wheat Bread: Impact on Dough and Bread Properties. Foods 2024; 13:3991. [PMID: 39766934 PMCID: PMC11675443 DOI: 10.3390/foods13243991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The chemical composition and quality attributes of wheat bread enriched with cereal coffee were analyzed, with additive incorporated as a partial replacement for wheat flour at levels of 2%, 4%, 6%, 8%, and 10%. The rheological properties of the bread dough, consisting of wheat flour and cereal coffee blends, were evaluated using farinograph and extensograph analyses. Results indicated that the addition of cereal coffee decreased flour water absorption, extended dough stability, and increased dough softening. Dough containing cereal coffee showed greater resistance to stretching and reduced extensibility. However, the incorporation of cereal coffee led to a reduction in bread volume and an increase in crumb hardness and density, especially when the substitution level exceeded 6%. In terms of nutritional composition, the levels of dietary fiber, ash, fat, and total polyphenols increased with higher cereal coffee content, while crumb brightness decreased, and yellowness and redness intensified. Overall, the study suggests that cereal coffee can function as a valuable ingredient in bread; however, substitution levels should ideally be kept below 8% to preserve acceptable sensory qualities.
Collapse
Affiliation(s)
- Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Justyna Grabarczyk
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland; (J.G.); (A.S.)
| | - Anna Szafrańska
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland; (J.G.); (A.S.)
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
6
|
Feng C, He C, Li Y, Zheng Y, Yang B, Zhuang Y. Influences of superfine-grinding and mix enzymolysis alone or combined with hydroxypropylation or acetylation on the hypolipidemic and hypoglycemic properties of coconut endosperm residue fiber. J Food Sci 2024; 89:8342-8356. [PMID: 39455260 DOI: 10.1111/1750-3841.17423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024]
Abstract
Coconut endosperm residue is an abundant and low-cost resource of dietary fiber, but the low soluble fiber content limits its functional properties and applications in the food industry. To improve the hypolipidemic and hypoglycemic properties, coconut endosperm residue fiber (CERF) was modified by superfine-grinding and mix enzymatic hydrolysis alone, or combined with acetylation or hydroxypropylation. The effects of these modifications on the structure and functional properties were studied using scanning electron microscopy, Fourier-transformed infrared spectroscopy, and in vitro tests. After these modifications, the microstructure of CERF became more porous, and its soluble fiber content, surface area, water adsorption, and expansion capacities were all improved (p < 0.05). Moreover, superfine-grinding and mix enzymolysis combined with acetylation treated CERF showed the highest surface hydrophobicity (48.96) and cholesterol and cholate adsorption abilities (33.72 and 42.04 mg∙g‒1). Superfine-grinding-, mix enzymolysis-, and hydroxypropylation-treated CERF exhibited the highest viscosity (17.84 cP), glucose adsorption capacity (29.61 µmol∙g‒1), and glucose diffusion inhibition activity (73.96%), and water-expansion ability (8.60 mL∙g‒1). Additionally, superfine-grinding and mix enzymatic hydrolyzed CERF had the highest α-amylase inhibiting activity (42.76%). Therefore, superfine-grinding and mix enzymolysis alone or combined with hydroxypropylation were better choices to improve hypoglycemic properties of CERF; meanwhile, superfine-grinding and mix enzymolysis combined with acetylation can effectively improve its hypolipidemic properties. PRACTICAL APPLICATION: This study offered three composite modification methods to improve the soluble fiber content and in vitro hypolipidemic and hypoglycemic properties of coconut endosperm residue fiber. These modification methods were practicable and low-cost. Moreover, it provides good choices to improve the functional properties and applications of other dietary fibers in the food industry.
Collapse
Affiliation(s)
- Chen Feng
- Food Science College of Shanxi Normal University, Taiyuan, China
| | - Chenlong He
- Food Science College of Shanxi Normal University, Taiyuan, China
| | - Yan Li
- Food Science College of Shanxi Normal University, Taiyuan, China
| | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan, China
| | - Bao Yang
- Drug Testing Technology Institute of Shanxi Inspection and Testing Center, Taiyuan, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Verbeke C, Debonne E, Versele S, Van Bockstaele F, Eeckhout M. Technological Evaluation of Fiber Effects in Wheat-Based Dough and Bread. Foods 2024; 13:2582. [PMID: 39200509 PMCID: PMC11353414 DOI: 10.3390/foods13162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Dietary fiber incorporation in bread offers potential health benefits but poses challenges due to its impact on dough rheology and bread quality. This study evaluated the effects of pea, cocoa, and apple fiber on wheat-based dough and bread properties using rheological methods (farinograph, alveograph, pasting, and proofing) and baking trials. Substituting flour with fiber at 1%, 5%, or 10% increased water absorption and affected dough development, stability, and extensibility, particularly at high fiber concentrations. Pasting properties showed varying gelatinization behaviors influenced by fiber type and concentration. Principal component analysis (PCA) highlighted the clustering of dough and bread characteristics based on fiber concentration and type. At low fiber concentrations (up to 5% of flour replacement), negative effects were minimal, suggesting no need for comprehensive compositional analysis. However, high fiber concentrations (10%) introduced significant variability and complexity in dough properties. New farinographic parameters (FU4, FU6, FU8, FU10, and FU12) improved the explanatory power of PCA, enhancing the understanding of fiber-rich dough dynamics. The significant alterations in moisture content and texture underscore the intricate relationship between type of fiber, concentration, and dough functionality. Optimizing rheological parameters for fiber-enriched flour is crucial for adapting the bread-making process to produce high-quality bread with desired characteristics and enhanced nutritional benefits.
Collapse
Affiliation(s)
- Celeste Verbeke
- Safety and Health, Research Unit Cereal and Feed Technology, Department of Food Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.)
| | - Els Debonne
- Safety and Health, Research Unit Cereal and Feed Technology, Department of Food Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.)
| | - Stien Versele
- Safety and Health, Research Unit Cereal and Feed Technology, Department of Food Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.)
| | - Filip Van Bockstaele
- Safety and Health, Food Structure and Function Research Group, Department of Food Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Mia Eeckhout
- Safety and Health, Research Unit Cereal and Feed Technology, Department of Food Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.)
| |
Collapse
|
8
|
Xu B, Zhang A, Zheng Y, Wang H, Zheng X, Jin Z, Liu D, Wang N, Kan Y. Influences of superfine-grinding and enzymolysis separately assisted with carboxymethylation and acetylation on the in vitro hypoglycemic and antioxidant activities of oil palm kernel expeller fibre. Food Chem 2024; 449:139192. [PMID: 38583404 DOI: 10.1016/j.foodchem.2024.139192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 μmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).
Collapse
Affiliation(s)
- Bufan Xu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China; School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Anyu Zhang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China.
| | - Hui Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Xinyu Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Ziqing Jin
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Danhong Liu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Nan Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yu Kan
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| |
Collapse
|
9
|
Sempio R, Segura Godoy C, Nyhan L, Sahin AW, Zannini E, Walter J, Arendt EK. Closing the Fibre Gap-The Impact of Combination of Soluble and Insoluble Dietary Fibre on Bread Quality and Health Benefits. Foods 2024; 13:1980. [PMID: 38998486 PMCID: PMC11241219 DOI: 10.3390/foods13131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Dietary fibre (DF) is important for overall health and disease prevention. However, the intake of DF in Westernised countries is below the recommended level, largely due to the excessive consumption of low-fibre foods. Fortifying staple foods, such as bread, with dietary fibre ingredients is one approach to closing the fibre gap in our diet. However, incorporating purified and chemically modified fibre ingredients into food is challenging. This study unveils interactions between soluble-fermentable (arabinoxylan), insoluble-fermentable (resistant starch type IV) and insoluble-unfermentable (cellulose) fibre ingredients and their impact on bread quality using Response Surface Methodology. This resulted in an optimised mixture of these fibre ingredients that can coexist within a bread matrix while maintaining quality characteristics comparable to white wheat bread. The partial replacement of flour with fibre ingredients led to an interference with the gluten network causing a reduction in gluten strength by 12.4% and prolonged gluten network development time by 24.4% compared to the control (no fibre addition). However, the CO2 retention coefficient during dough fermentation was not affected by fibre ingredient inclusion. The fibre content of the white bread was increased by 128%, with only a marginal negative impact on bread quality. Additionally, the fibre-fortified bread showed a lower release of reducing sugars during in vitro starch digestion. This study illustrates the synergy of different types of fibre ingredients in a bread system to advance in closing the fibre gap.
Collapse
Affiliation(s)
- Rebecca Sempio
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Celia Segura Godoy
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Jens Walter
- School of Microbiology, Department of Medicine, University College Cork, T12 Y337 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| |
Collapse
|
10
|
Temkov M, Rocha JM, Rannou C, Ducasse M, Prost C. Influence of baking time and formulation of part-baked wheat sourdough bread on the physical characteristics, sensory quality, glycaemic index and appetite sensations. Front Nutr 2024; 11:1370086. [PMID: 38887499 PMCID: PMC11180745 DOI: 10.3389/fnut.2024.1370086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Raw materials and process parameters in bread production can modulate the glycemic index, which on itself has been linked with provision of better hunger satisfaction and maintaining better satiation. The objective of this research was to investigate if using unrefined wheat flour or the addition of intact cereals in formulation or alternating the baking time would have an effect on physical characteristics, sensory quality, glycaemic index and appetite sensations in wheat sourdough bread. In the study, three types of commercial part-baked frozen sourdough bread, baked to the final baking for two different times (long and short baking time) were used. A randomized controlled crossover trial was performed with 10 healthy adults who consumed sufficient quantity of bread to ingest 50 g available carbohydrates. Participants self-reported appetite sensations (desire to eat, hunger, fullness, satisfaction, appetite) on a 10 cm visual analog scale (VAS) scale in a course of 180 min. In addition, bread products were subjected to overall acceptability and different sensory attributes were examined on JAR "just about right" scale. Different bread formulations (refined flour, unrefined wheat flour, cereal flour or intact cereals) and different length of baking time significantly influenced (p < 0.005) physical, textural and sensory features of products. The alternation of aforementioned parameters decreased the glycemic index, but not significantly (p > 0.005). No correlation was found between lower GI, satiety and satiation. Liking score and incremental area under the curve (iAUC) of satiety and satiation were calculated as highest in sourdough bread with added cereals.
Collapse
Affiliation(s)
- Mishela Temkov
- Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - João Miguel Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal
| | - Cécile Rannou
- ONIRIS, VETAGROBIO, UMR GEPEA CNRS 6144, Nantes, France
| | | | - Carole Prost
- ONIRIS, VETAGROBIO, UMR GEPEA CNRS 6144, Nantes, France
| |
Collapse
|
11
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Radosavljević M, Belović M, Cvetanović Kljakić A, Torbica A. Production, modification and degradation of fructans and fructooligosacharides by enzymes originated from plants. Int J Biol Macromol 2024; 269:131668. [PMID: 38649077 DOI: 10.1016/j.ijbiomac.2024.131668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Non-starch polysaccharides exhibit numerous beneficial health effects but compounds belonging to FODMAP (Fermentable Oligo- Di- and Monosaccharides and Polyols) has been recently connected to several gastrointestinal disorders. This review presents integrated literature data on the occurrence and types of fructans and fructooligosaccharids (classified as FODMAPs) as well as their degrading enzymes present in plants. Plants from the family Asteraceae and many monocotyledones, including families Poaceae and Liliaceae, are the most abundant sources of both fructans and fructan-degrading enzymes. So far, vast majority of publications concerning the application of these specific plants in production of bakery products is related to increase of dietary fibre content in these products. However, there is limited research on their effect on FODMAP content and fibre balance. The authors emphasize the possibility of application of enzyme rich plant extract in food production casting light on the new scientific approach to fibre modification.
Collapse
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Miona Belović
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | | | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| |
Collapse
|
13
|
Tu J, Cai X, Wang Y, Ye X, Yu M, Yang S, Yu R, Huang P. Associations of diet with infectious diseases in UK Biobank. J Biomed Res 2024; 38:1-15. [PMID: 38807412 PMCID: PMC11629163 DOI: 10.7555/jbr.37.20230319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
This research aims to utilize multivariate logistic regression to explore associations between the frequency of 13 food groups intake (or four diet groups) and infectious diseases. 487849 participants from the UK Biobank were enrolled, and 75209 participants were diagnosed with infectious diseases. Participants reporting the highest intake frequency of processed meat [odds ratio ( OR) = 1.0964; 95% CI: 1.0622-1.1318] and red meat ( OR = 1.0895; 95% CI: 1.0563-1.1239) had a higher risk of infectious diseases compared to those with the lowest intake frequency. Consuming fish 2.0-2.9 times ( OR = 0.8221; 95% CI: 0.7955-0.8496), cheese ≥5.0 times ( OR = 0.8822; 95% CI: 0.8559-0.9092), fruit 3.0-3.9 servings ( OR = 0.8867; 95% CI: 0.8661-0.9078), and vegetables 2.0-2.9 servings ( OR = 0.9372; 95% CI: 0.9189-0.9559) per week were associated with a lower risk of infection. Low meat-eaters ( OR = 0.9404; 95% CI: 0.9243-0.9567), fish-eaters ( OR = 0.8391; 95% CI: 0.7887-0.8919), and vegetarians ( OR = 0.9154; 95% CI: 0.8561-0.9778) had a lower risk of infectious diseases compared to regular meat-eaters. Mediation analysis was performed, revealing glycosylated hemoglobin, white blood cell counts, and body mass index were mediators in the relationships between diet groups and infectious diseases. This study suggested that intake frequency of food groups is a factor in infectious diseases and fish-eaters have a lower risk of infection.
Collapse
Affiliation(s)
- Junlan Tu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuehong Cai
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, Jiangsu 212400, China
| | - Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meijie Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rongbin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
14
|
Tu J, Wang Y, Ye X, Wang Y, Zou Y, Jia L, Yang S, Yu R, Liu W, Huang P. Gut microbial features may influence antiviral IgG levels after vaccination against viral respiratory infectious diseases: the evidence from two-sample bidirectional mendelian randomization. BMC Infect Dis 2024; 24:431. [PMID: 38654203 PMCID: PMC11036767 DOI: 10.1186/s12879-024-09189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Vaccination is effective in preventing viral respiratory infectious diseases through protective antibodies and the gut microbiome has been proven to regulate human immunity. This study explores the causal correlations between gut microbial features and serum-specific antiviral immunoglobulin G (IgG) levels. METHODS We conduct a two-sample bidirectional Mendelian randomization (MR) analysis using genome-wide association study (GWAS) summary data to explore the causal relationships between 412 gut microbial features and four antiviral IgG (for influenza A, measles, rubella, and mumps) levels. To make the results more reliable, we used four robust methods and performed comprehensive sensitivity analyses. RESULTS The MR analyses revealed 26, 13, 20, and 18 causal associations of the gut microbial features influencing four IgG levels separately. Interestingly, ten microbial features, like genus Collinsella, species Bifidobacterium longum, and the biosynthesis of L-alanine have shown the capacity to regulate multiple IgG levels with consistent direction (rise or fall). The reverse MR analysis suggested several potential causal associations of IgG levels affecting microbial features. CONCLUSIONS The human immune response against viral respiratory infectious diseases could be modulated by changing the abundance of gut microbes, which provided new approaches for the intervention of viral respiratory infections.
Collapse
Affiliation(s)
- Junlan Tu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Yidi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Yixin Zou
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Linna Jia
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China
| | - Rongbin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China.
| | - Wei Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China.
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, 100071, Beijing, China.
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
15
|
Belović M, Torbica A, Vujasinović V, Radivojević G, Perović L, Bokić J. Technological properties, shelf life and consumers' acceptance of high-fibre cookies prepared with juice processing by-products. FOOD SCI TECHNOL INT 2024:10820132241240329. [PMID: 38509828 DOI: 10.1177/10820132241240329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High dietary fibre cookies were manufactured from non-wheat (triticale, spelt and rye) flours with apple, beetroot and pumpkin pomace powders added as natural colourants. Cookies were characterized by nutritional composition, colour, texture and sensory profile and subjected to a 2-month shelf-life study. Additionally, an acceptability study was done to determine consumers' acceptance of cookies. Cookies prepared from rye flour and pumpkin pomace, as well as cookies prepared from spelt flour and beetroot pomace, can be labelled as 'high fibre' (dietary fibre content of 8.90% and 7.09%, respectively), while cookies prepared from triticale flour and apple pomace can be labelled as a 'source of fibre' (dietary fibre content of 4.50%). No obvious trend in the colour of cookies was observed after storage at room temperature and 40 °C, indicating the stability of natural colourants. Hardness decrease was observed in all samples after storage; however, the acceptability study showed that consumers prefer softer cookies. Sensory analysis showed that there were no signs of rancidity in samples after storage. Although triticale flour and apple pomace sample received the highest liking scores for appearance, odour and taste, all samples had liking ratings higher than 4 (indifferent) and can be further modified to satisfy consumers' demands.
Collapse
Affiliation(s)
- Miona Belović
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Lidija Perović
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Bokić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
Zhao Y, Xu J, Zheng Y, Li Q, Huang Y, Zong M, Guo W. Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber. Molecules 2024; 29:478. [PMID: 38257389 PMCID: PMC10819664 DOI: 10.3390/molecules29020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Jujube residue is an abundant and low-cost dietary fiber resource, but its relatively lower hydration and functional properties limit its utilization as an ingredient of functional food. Thus, cellulase and hemicellulase hydrolysis, enzymatic hydrolysis assisted by phosphate grafting (EPG), and enzymatic hydrolysis assisted by acrylate grafting (EAG) were used to improve the functional properties of jujube residue dietary fiber (JRDF) in this study. The results evidenced that these modifications all increased the porosity of the microstructure of JRDF and increased the soluble fiber content, surface area, and hydration properties, but reduced its brightness (p < 0.05). Moreover, JRDF modified by enzymolysis combined with acrylate grafting offered the highest extractable polyphenol content, oil, sodium cholate, and nitrite ion sorption abilities. Meanwhile, JRDF modified via enzymolysis assisted by phosphate grafting showed the highest soluble fiber content (23.53 g∙100 g-1), water-retention ability (12.84 g∙g-1), viscosity (9.37 cP), water-swelling volume (10.80 mL∙g-1), and sorption ability of copper (II) and lead (II) ions. Alternatively, JRDF modified with cellulase hydrolysis alone exhibited the highest glucose adsorption capacity (21.9 g∙100 g-1) at pH 7.0. These results indicate that EPG is an effective way to improve the hypolipidemic effects of JRDF, while EAG is a good choice to enhance its hydration and hypoglycemic properties.
Collapse
Affiliation(s)
| | - Jianguo Xu
- Food Science College, Shanxi Normal University, Taiyuan 030619, China; (Y.Z.); (Q.L.); (Y.H.); (M.Z.); (W.G.)
| | - Yajun Zheng
- Food Science College, Shanxi Normal University, Taiyuan 030619, China; (Y.Z.); (Q.L.); (Y.H.); (M.Z.); (W.G.)
| | | | | | | | | |
Collapse
|
17
|
Wang W, Fan Z, Yan Q, Pan T, Luo J, Wei Y, Li B, Fang Z, Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024; 16:2416915. [PMID: 39418223 PMCID: PMC11487953 DOI: 10.1080/19490976.2024.2416915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Correa ADC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym 2024; 323:121396. [PMID: 37940290 DOI: 10.1016/j.carbpol.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Fructooligosaccharides (FOS) and inulin are the most used fructans in food manufacturing, including bakery, dairy, meat products and beverages. In this context, this review investigated the recent findings concerning health claims associated with a diet supplemented with fructans according to human trial results. Fructans have been applied in different food classes due to their proven benefits to human health. Human clinical trials have revealed several effects of fructans supplementation on health such as improved glycemic control, growth of beneficial gut bacteria, weight management, positive influence on immune function, and others. These dietary fibers have a wide range of compounds with different molecular sizes, implying a great variety of technological properties depending on the food application of interest. Inulin has been mainly applied as a fat substitute and prebiotic ingredient. In general, inulin reduces the energy content and improves the structure, viscosity, emulsion, and water retention parameters of food products. Meanwhile, FOS have been more successful when used as a sucrose substitute and prebiotic ingredient. However, overall, FOS and inulin are promising alternatives for the development of structured systems dedicated to increase the functionality of foods and beverages besides reducing fat in bakery, dairy, and meat products.
Collapse
Affiliation(s)
- Aline de Carvalho Correa
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina Savioli Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
19
|
Torbica A, Vujasinović V, Radosavljević M, Radivojević G, Milovanović I. FODMAPs-Unknowns for Consumers: First Survey in Serbia. Nutrients 2023; 15:4693. [PMID: 37960346 PMCID: PMC10648408 DOI: 10.3390/nu15214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
According to unofficial data, every fifth person in Serbia suffers from some form of irritable bowel syndrome (IBS). Compounds classified as FODMAPs (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) are newly found potential triggers of IBS and a number of associated gastrointestinal disorders. Cereals, predominantly in their wholegrain form, represent the key contributors to the high contents of FODMAPs in wholegrain (high-fiber) bakery products. The current work was structured in a way to systematically evaluate the consumer's knowledge and preferences toward wholegrain and low-FODMAP bakery products. The questionnaire was filled out by 725 respondents, aged from 18 to 86 years. They were informed about the aim of the research and management of anonymous data. The present study is the first detailed survey in this region of Europe, aiming to improve the familiarity with and attitude toward FODMAPs and a low-FODMAP diet by analyzing the different dietary habits regarding wholegrain-cereal-based products among consumers of various ages, genders, places of residence, and education. The results suggest that the respondents are, to some degree, aware of the health benefits of consuming foods with high fiber content while indicating a low level of knowledge about FODMAP compounds and connected topics. Education about contemporary scientific findings and the potentially harmful effects of consuming FODMAP compounds for a population with gastrointestinal disorders and diseases will be imperative in the future.
Collapse
Affiliation(s)
- Aleksandra Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Ilija Milovanović
- Faculty of Philosophy, University of Novi Sad, Dr Zorana Đinđića 2, 21102 Novi Sad, Serbia;
| |
Collapse
|
20
|
Homyuen A, Vanitjinda G, Yingkamhaeng N, Sukyai P. Microcrystalline Cellulose Isolation and Impregnation with Sappan Wood Extracts as Antioxidant Dietary Fiber for Bread Preparation. ACS OMEGA 2023; 8:31100-31111. [PMID: 37663459 PMCID: PMC10468960 DOI: 10.1021/acsomega.3c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Microcrystalline cellulose (MCC) has gained considerable attention as a functional ingredient in bread making. This work demonstrates the isolation of MCC from sugar cane bagasse (SCB) for preparing bread. The effect of MCC on bread attributes and antioxidant activity by impregnation with sappan wood extract (SAP) was evaluated. The highest crystallinity index and suitable size of MCC were achieved at 85 °C under 90 min hydrolysis condition. Increasing MCC/SAP levels in bread showed a significant increase in bread color with decreases in the specific volume and baking loss. There was a positive correlation between bread texture and the MCC/SAP level. The addition of MCC/SAP interfered with the bread hardness. Low MCC/SAP levels have no effect on springiness and cohesiveness; however, 4% MCC/SAP has significantly decreased these attributes, with the highest antioxidant activity and phenolic content. Therefore, MCC can be functionalized with SAP as an antioxidant fiber additive for health benefits in bakery products.
Collapse
Affiliation(s)
- Athitaya Homyuen
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Gawisara Vanitjinda
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Naiyasit Yingkamhaeng
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
21
|
Coţovanu I, Mironeasa C, Mironeasa S. Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040698. [PMID: 36840046 PMCID: PMC9964393 DOI: 10.3390/plants12040698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 05/13/2023]
Abstract
One of the food industry's challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour (QF) of large, medium and small particle sizes at typical doses previously established based on an optimization process, and to evaluate the optimal bread from a physical, textural, nutritional, and sensorial point of view. The results showed a decrease in the Falling number index, water absorption, dough stability, speed of protein weakening, dough extensibility, and creep-recovery compliances for optimal wheat-quinoa composite samples with large and medium particle sizes; meanwhile, for the samples with small particle sizes an opposite trend was recorded, with the exception of dough extensibility. Dough fermentation parameters and bread volume rose for all optimal formulations, while firmness decreased compared to wheat bread. All optimal bread samples presented an improved nutritional profile depending on the particle size. The protein content was up to 19% higher, ash up to 13.8%, and lipids up to fifteen times higher. A noticeable enrichment in minerals (mainly K, Mg, Na, Zn, up to 2.3 times) and essential amino acids (with 13.53%) was also obtained for all optimal breads. From an acceptability point of view, the highest score (8.70) was recorded for the optimal bread with a QF of medium particle size. These findings offer processors new information which will be useful for diversifying bakery products with an enhanced nutritional profile.
Collapse
Affiliation(s)
- Ionica Coţovanu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Correspondence: (I.C.); (S.M.); Tel.: +40-740-816-370 (I.C.); +40-741-985-648 (S.M.)
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Correspondence: (I.C.); (S.M.); Tel.: +40-740-816-370 (I.C.); +40-741-985-648 (S.M.)
| |
Collapse
|
22
|
Reidzane S, Gramatina I, Galoburda R, Komasilovs V, Zacepins A, Bljahhina A, Kince T, Traksmaa A, Klava D. Composition of Polysaccharides in Hull-Less Barley Sourdough Bread and Their Impact on Physical Properties of Bread. Foods 2022; 12:foods12010155. [PMID: 36613370 PMCID: PMC9818821 DOI: 10.3390/foods12010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The complex of polysaccharides of the grain transforms during processing and modifies the physical and chemical characteristics of bread. The aim of the research was to characterize the changes of glucans, mannans and fructans in hull-less barley and wholegrain wheat breads fermented with spontaneous hull-less barley sourdough, germinated hull-less barley sourdough and yeast, as well as to analyze the impact of polysaccharides on the physical parameters of bread. By using the barley sourdoughs for wholegrain wheat bread dough fermentation, the specific volume and porosity was reduced; the hardness was not significantly increased, but the content of β-glucans was doubled. Principal component analysis indicates a higher content of β-glucans and a lower content of starch, total glucans, fructans and mannans for hull-less barley breads, but wholegrain wheat breads fermented with sourdoughs have a higher amount of starch, total glucans, fructans and mannans, and a lower content of β-glucans. The composition of polysaccharides was affected by the type of flour and fermentation method used.
Collapse
Affiliation(s)
- Sanita Reidzane
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
- Correspondence:
| | - Ilze Gramatina
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Ruta Galoburda
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Komasilovs
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Aleksejs Zacepins
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Anastassia Bljahhina
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tatjana Kince
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Anna Traksmaa
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Dace Klava
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
23
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|