1
|
Tang Z, Zhang C, Yin J, Fan B, He YC, Ma C. Valorization of rapeseed straw through the enhancement of cellulose accessibility, lignin removal and xylan elimination using an n-alkyltrimethylammonium bromide-based deep eutectic solvent. Int J Biol Macromol 2025; 301:140151. [PMID: 39848385 DOI: 10.1016/j.ijbiomac.2025.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
n-Alkyltrimethylammonium bromide (CnTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CnTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe3+ (1:4:0.0111, mol:mol:mol) (162.5 °C, 61.7 min), lignin (89.2 %) and xylan (77.9 %) were effectively eliminated, and the hydrophobicity of rapeseed straw substantially declined from 4.62 to 2.09 m2/g, acquiring the highest enzymatic saccharification efficiency of 92.5 %. The relationship of DES properties and enzymatic saccharification efficiency was explored. Additionally, hemicellulose in rapeseed straws could be efficiently transformed into furfural (3.75 g/L) and xylo-oligosaccharides (3.64 g/L). To clarify the structural and property changes brought by pretreatment, rapeseed straws were testified by FT-IR, SEM and CLSM and deeply discussed. The interaction between lignocellulose and TTAB/LCA/Fe3+ was elucidated by molecular dynamics simulations and quantum chemical calculations, explaining the effectual treatment performance and hemicellulose upgrading at the molecular level. Eventually, a potential pretreatment mechanism of TTAB/LCA/Fe3+ was proposed. This established TTAB/LCA/Fe3+ treatment holds great promise for valorization of biomass into biofuels and biobased chemicals.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Chaowei Zhang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Yin
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Cuiluan Ma
- Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Han J, Hamza F, Guo J, Sayed M, Pyo SH, Xu Y. Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products. Biotechnol Adv 2025; 79:108509. [PMID: 39732443 DOI: 10.1016/j.biotechadv.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
Collapse
Affiliation(s)
- Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Faqiha Hamza
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
3
|
He J, Zheng Y, Lan K, Huang C. Influence of biphasic phenoxyethanol-alkaline pretreatment on the correlation between inter-structure and enzymatic hydrolysis in bamboo residues. Int J Biol Macromol 2024; 282:136859. [PMID: 39490854 DOI: 10.1016/j.ijbiomac.2024.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The effective promotion of delignification (67.6 %) and xylan removal (44.8 %) from bamboo residues using a 2-phenoxyethanol/sodium hydroxide solution (P/A) system is demonstrated, while simultaneously enriching oligosaccharides contents of the pre-hydrolysate to 10.2 g/L. Increasing the P/A ratio from 0:1 to 4:1 improves the enzymatic digestibility of the substrates from 55.7 % to 70.1 % at 100 °C and from 73.8 % to 83.7 % at 120 °C. Furthermore, partial correlation analysis demonstrates that the physiochemical properties, including delignification, xylan removal, and crystallinity, show a significant positive correlation with enzymatic hydrolysis efficiency. Higher temperatures and P/A ratios during alkaline biphasic pretreatment promote the shrinkage of plant cells and delignification, with temperature being a particularly significant driver. These findings provide valuable insights into the alkaline and biphasic pretreatment of biomass and facilitate the optimization of the bio-refining system.
Collapse
Affiliation(s)
- Juan He
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yayue Zheng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Ahn MR, Wang S, Kim J, You SM, Jung CD, Seong H, Choi JH, Park S, Choi IG, Kim H. Catalyst-recirculating system in steam explosion pretreatment for producing high-yield of xylooligosaccharides from oat husk. Carbohydr Polym 2024; 342:122411. [PMID: 39048203 DOI: 10.1016/j.carbpol.2024.122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
We propose a closed-loop pretreatment process, wherein volatiles produced during steam explosion pretreatment were recovered and reintroduced as acid catalysts into the pretreatment system. The volatiles were separated through a drastic decompression process followed by a steam explosion process and recovered as a liquified catalyst (LFC) through a heat exchanger. The LFC effectively served as an acid catalyst for hemicellulose hydrolysis, significantly decreasing residence time from 90 min to 30 min to achieve 80 % conversion yield at 170 °C. Hydrolysates with high content of lower molecular weight oligomeric sugars were obtained using LFC, and were considered advantageous for application as prebiotics. These results are attributed to the complementary features of acetic acid and furfural contained within the LFC. Computational simulation using Aspen Plus was used to investigate the effects of recycling on LFC, and it demonstrated the feasibility of the catalyst-recirculating system. A validation study was conducted based on simulation results to predict the actual performance of the proposed pretreatment system. Based on these results, the recirculating system was predicted to improve the conversion yield and low-molecular weight oligomers yield by 1.5-fold and 1.6-fold, respectively.
Collapse
Affiliation(s)
- Myeong Rok Ahn
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Song Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonghwa Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Hyolin Seong
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - June-Ho Choi
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Sunkyu Park
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea.
| |
Collapse
|
5
|
Chinbat O, Erdenetsog P, Tuvshintur B, Gantumur A, Burenjargal M, Chimeddorj B, Janlav M. In vitro and in vivo investigation of the biological action of xylooligosaccharides derived from industrial waste. Food Sci Nutr 2024; 12:7877-7884. [PMID: 39479607 PMCID: PMC11521651 DOI: 10.1002/fsn3.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Xylooligosaccharides (XOS) are prebiotics of significant biological value that can be obtained through cost-effective purification of agricultural waste. The present research featured in vitro and in vivo investigation of prebiotic effects of xylooligosaccharides derived from wheat bran powder and brewer's spent grain. Prebiotic activity of Lactobacillus. fermentum, Lactobacillus. casei, and Bifidobacterium spp. was investigated in vitro using standard selective media. 16S rRNA quantitative PCR used for in vitro and in vivo investigation quantified relative abundance of Bifidobacterium spp., Lactobacillus spp., and Akkermansia. muciniphila in samples of fecal matter, cecal content, and intestinal tissue. Research revealed a favorable association between XOS concentration and both bacterial count and diameter of resultant colonies. The standard strain of L. casei showed no noticeable effect on growth rate. Bifidobacterium spp. proliferation in intestinal tissue was validated via in vivo tests using XOS obtained from wheat bran powder and brewer's spent grain. Findings indicated increased prevalence of the A. muciniphila species and the presence of XOS showed a protective function in preserving the structural integrity of intestinal mucus secretions. The presence of XOS in food indicated direct association with proliferation of Bifidobacterium spp. and A. muciniphila spp. Study results suggest that XOS extracted through enzymatic hydrolysis in Mongolian food industry by-products such as wheat bran products and brewer's spent grain exhibit prebiotic properties that justify XOS manufacture on a large scale and incorporation of XOS as nutritional enhancement in food products and pharmaceuticals.
Collapse
Affiliation(s)
- Odgerel Chinbat
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Purevdulam Erdenetsog
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Buyankhuu Tuvshintur
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Anuujin Gantumur
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhjargal Burenjargal
- Department of Chemistry, School of Arts and SciencesNational University of MongoliaUlaanbaatarMongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhtsetseg Janlav
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| |
Collapse
|
6
|
Zhou Y, Tang S, Lv Y, Zhang D, Huang X, Chen Y, Lai C, Yong Q. The prebiotic impacts of galactose side-chain of tamarind xyloglucan oligosaccharides on gut microbiota. Heliyon 2024; 10:e37864. [PMID: 39323792 PMCID: PMC11422031 DOI: 10.1016/j.heliyon.2024.e37864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
To explore the impacts of galactose side-chain on the prebiotic activity of xyloglucan oligosaccharides (XGOS), XGOS and de-galactosylated XGOS (DG-XGOS) were prepared from tamarind using an enzymatic method. The differences in structural features of XGOS and DG-XGOS were systematically analyzed. Their in vitro fermentation characteristics of human fecal microbiota were explored. These results indicated that both XGOS and DG-XGOS promoted short-chain fatty acids (SCFAs) production, decreased pH, and changed the microbiota composition of the fermentation broth. Comparatively, DG-XGOS was more effective than XGOS in producing SCFAs, inhibiting the phylum Proteobacteria prevalence, and promoting the phyla Bacteroidetes and Actinobacteria prevalence. In summary, the xyloglucan degradation products exert potential prebiotic activity. Removing the galactose side-chains further enhances oligosaccharide utilization by fecal microbiota, offering a valuable approach to improve the biological efficacy of oligosaccharides.
Collapse
Affiliation(s)
- Yubo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shuo Tang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Ying Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, PR China
| | - Xiaode Huang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Yanan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
7
|
Zhou S, Zhou X, Hua X, Yong Q, Liu D, Xu Y. Advances and prospection in preparations, bio-actives and applications of functional xylo-oligosaccharide. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 60:103297. [DOI: 10.1016/j.bcab.2024.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhai Y, Zhang L, Yao S, Zhou X, Jiang K. Green Process for Producing Xylooligosaccharides by Using Sequential Auto-hydrolysis and Xylanase Hydrolysis. Appl Biochem Biotechnol 2024; 196:5317-5333. [PMID: 38157156 DOI: 10.1007/s12010-023-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.
Collapse
Affiliation(s)
- Yujie Zhai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
9
|
Lin J, Wen P, Ying W, Yu J, Zhang J. Comparison of lactic and propionic acid hydrolysis for production of xylo-oligosaccharides and ethanol from polysaccharides in Toona sinensis branch. Int J Biol Macromol 2024; 270:132339. [PMID: 38754663 DOI: 10.1016/j.ijbiomac.2024.132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Xylan-type hemicellulose hydrolysis by an organic acid solution for the production of xylo-oligosaccharides (XOS) is efficient and eco-friendly, but the effects of different organic acids on XOS production from Toona sinensis branch (TB) biomass is limited. In this work, under the conditions of 170 °C for 60 min, 33.1 % and 38.7 % XOS yields were obtained from polysaccharides present in TB by 2 % lactic acid (LA) and 6 % propionic acid (PA), respectively. Then 77 % of the lignin was removed by hydrogen peroxide-acetic acid pretreatment system, and 39.5 % and 44.7 % XOS yield were obtained from polysaccharides in delignification TB by 2 % LA and 6 % PA, respectively. It was found that PA hydrolysis, especially from delignified TB, resulted in higher XOS yield and purity compared to LA hydrolysis. Moreover, the content of byproducts (xylose, hydroxymethyl-furfural and furfural) in PA hydrolysate was lower. Following the hydrolysis process, the simultaneous saccharification and fermentation of the TB solid residue achieved an ethanol yield of 71.5 %. This work proposed an integrated process to preferentially convert the TB hemicellulose into valuable XOS and then convert the cellulose into ethanol. This process had the advantages of eliminating the need for isolation and purification of xylan, and the potential to obtain multiple products from the same raw material.
Collapse
Affiliation(s)
- Jiayi Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
10
|
Xin D, Yin H, Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 401:130719. [PMID: 38642662 DOI: 10.1016/j.biortech.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Currently, the production of manno-oligosaccharides (MOS) from guar gum faces challenges of low oligosaccharide enzymatic hydrolysis yield and complicated steps in separation and purification. In this work, a potential strategy to address these issues was explored. By combining citric acid pretreatment (300 mM, 130 °C, 1 h) with β-mannanase hydrolysis, an impressive MOS yield of 61.8 % from guar gum (10 %, w/v) was achieved. The key success lay in the optimizing conditions that completely degraded other galactomannans into monosaccharides, which could be easily removable through Saccharomyces cerevisiae fermentation (without additional nutrients). Following ion exchange chromatography for desalination, and concluding with spray drying, 4.57 g of solid MOS with a purity of 90 % was obtained from 10 g of guar gum. This method offers a streamlined and effective pathway for obtaining high-yield and high-purity MOS from guar gum by combining citric acid pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China.
| |
Collapse
|
11
|
Zhang L, Qiu Y, Lei F, Li P, Jiang J. Efficient co-production of xylo-oligosaccharides and fermentable sugars from sugarcane bagasse by glutamic acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 387:129704. [PMID: 37604258 DOI: 10.1016/j.biortech.2023.129704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
In the production of xylo-oligosaccharides (XOS) by organic acid pretreatment, it is often difficult to isolate organic acids from XOS. Here, an acidic amino acid, glutamic acid (GA), was used to pretreat sugarcane bagasse (SCB) to prepare XOS and fermentable sugars. The effects of GA concentration, hydrolysis temperature, and pretreatment time on the yield and polymerization distribution of XOS were investigated. After hydrolysis by 0.2 M GA at 140 °C for 30 min, the maximum yield of X2-5 was 53.3%, and the concentrations of xylose and furfural were 1.8 g/L and 0.1 g/L, respectively. Meanwhile, GA increased the pore size and porosity of SCB as well as the number of functional groups of amino acid residues, which improved the enzymatic efficiency and the maximum yield of glucose was 95.3%. Thus, GA pretreatment provides a more economical, environmentally friendly and sustainable method for the co-production of XOS and glucose from SCB.
Collapse
Affiliation(s)
- Leping Zhang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yuejie Qiu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Deng J, Yun J, Gu Y, Yan B, Yin B, Huang C. Evaluating the In Vitro and In Vivo Prebiotic Effects of Different Xylo-Oligosaccharides Obtained from Bamboo Shoots by Hydrothermal Pretreatment Combined with Endo-Xylanase Hydrolysis. Int J Mol Sci 2023; 24:13422. [PMID: 37686227 PMCID: PMC10488140 DOI: 10.3390/ijms241713422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Xylo-oligosaccharides (XOS) enriched with high fractions of X2-X3 are regarded as an effective prebiotic for regulating the intestinal microflora. In this study, the original XOS solution was obtained from bamboo shoots through hydrothermal pretreatment under optimized conditions. Subsequently, enzymatic hydrolysis with endo-xylanase was performed on the original XOS solution to enhance the abundance of the X2-X3 fractions. The results demonstrated that hydrothermal pretreatment yielded 21.24% of XOS in the hydrolysate solution, and subsequent enzymatic hydrolysis significantly increased the proportion of the X2-X3 fractions from 38.87% to 68.21%. Moreover, the XOS solutions with higher amounts of X2-X3 fractions exhibited superior performance in promoting the growth of probiotics such as Bifidobacterium adolescentis and Lactobacillus acidophilus in vitro, leading to increased production of short-chain fatty acids. In the in vivo colitis mouse model, XOS solutions with higher contents of X2-X3 fractions demonstrated enhanced efficacy against intestinal inflammation. Compared with the colitis mice (model group), the XOS solution with higher X2-X3 fractions (S1 group) could significantly increase the number of Streptomyces in the intestinal microflora, while the original XOS solution (S2 group) could significantly increase the number of Bacteroides in the intestinal microflora of colitis mice. In addition, the abundances of Alcaligenes and Pasteurella in the intestinal microflora of the S1 and S2 groups were much lower than in the model group. This effect was attributed to the ability of these XOS solutions to enhance species diversity, reversing the imbalance and disorder within the intestinal microflora. Overall, this work highlights the outstanding potential of XOS enriched with high contents of X2-X3 fractions as a regulator of the intestinal microbiota and as an anti-colitis agent.
Collapse
Affiliation(s)
- Junping Deng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Yang Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| |
Collapse
|
13
|
Dong CD, Tsai ML, Nargotra P, Kour B, Chen CW, Sun PP, Sharma V. Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 2023; 9:e18316. [PMID: 37519746 PMCID: PMC10372396 DOI: 10.1016/j.heliyon.2023.e18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- School of Biotechnology, University of Jammu, India
| |
Collapse
|
14
|
Santana MB, Soares LB, Zanella E, Fellipe da Silva M, Stambuk BU, Goldbeck R, Ambrosi A, Zielinski A, Poletto P, Ienczak JL. Hydrothermal pretreatment for the production of prebiotic oligosaccharides from tobacco stem. BIORESOURCE TECHNOLOGY 2023; 382:129169. [PMID: 37187330 DOI: 10.1016/j.biortech.2023.129169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Tobacco stem is an abundant and inexpensive renewable source to produce prebiotics by circular economy. In this study, hydrothermal pretreatments were evaluated on the release of xylooligosaccharides (XOS) and cello-oligosaccharides (COS) from the tobacco stem by a central composite rotational design associated with response surface methodology to evaluate the effects of temperature (161.72 to 218.3 °C) and solid load (SL) (2.93 to 17.07%). XOS were the main compounds released to the liquor. Desirability function was performed to maximize the production of XOS and minimize the effects of release of monosaccharides and degradation compounds. The result indicated yield of 96% w[XOS]/w[xylan] for 190 °C-2.93% SL. The highest value for COS and total oligomers content (COS + XOS) was 6.42 g/L and 17.7 g/L, respectively, for 190 °C-17.07% SL. The mass balance for the best yield XOS condition predicted 132 kg of XOS (X2-X6) from 1000 kg of tobacco stem.
Collapse
Affiliation(s)
- Marcel B Santana
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lauren B Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Zanella
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcos Fellipe da Silva
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, Department of Food Engineering and Technology, University of Campinas, Campinas, Brazil
| | - Boris U Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, Department of Food Engineering and Technology, University of Campinas, Campinas, Brazil
| | - Alan Ambrosi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Acácio Zielinski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Patrícia Poletto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jaciane L Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
15
|
Xiao MZ, Hong S, Shen X, Du ZY, Yuan TQ. In vivo cadmium-assisted dilute acid pretreatment of the phytoremediation sweet sorghum for enzymatic hydrolysis and cadmium enrichment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121372. [PMID: 36858104 DOI: 10.1016/j.envpol.2023.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/28/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation with energy crops is considered an integrated technology that provides both environment and energy benefits. Herein, the sweet sorghum cultivated on Cd-contaminated farmland (1.21 mg/kg of Cd in the soil) showed promising phytoremediation potential, and the approach for utilizing sorghum stalks was explored. Sweet sorghum bagasse with Cd contamination was pretreated with dilute acid in order to improve enzymatic saccharification and achieve Cd recovery, resulting in harmless and value-added utilization. After pretreatment, hemicelluloses were dramatically degraded, and the lignocellulosic structures were partially deconstructed with xylan removal up to 98.1%. Under the optimal condition (0.75% H2SO4), the highest total sugar yield was 0.48 g/g of raw bagasse; and nearly 98% of Cd was enriched in the liquid phase. Compared with normal biomass, Cd reduced the biomass recalcitrance and further facilitated the deconstruction of biomass under super dilute acid conditions. This work provided an example for the subsequent valorization of Cd-containing biomass and Cd recovery, which will greatly facilitate the development of phytoremediation of heavy metal contaminated soil.
Collapse
Affiliation(s)
- Ming-Zhao Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojun Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Zhi-Yan Du
- Yuan Longping High-tech Agriculture Co., Ltd, Changsha, 410000, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Cao Z, Liu Z, Zhang N, Bao C, Li X, Liu M, Yuan W, Wu H, Shang H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int J Biol Macromol 2023; 240:124422. [PMID: 37068539 DOI: 10.1016/j.ijbiomac.2023.124422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.
Collapse
Affiliation(s)
- Zihang Cao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Chenguang Bao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Li
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
17
|
Curry TM, Peña MJ, Urbanowicz BR. An update on xylan structure, biosynthesis, and potential commercial applications. Cell Surf 2023; 9:100101. [PMID: 36748082 PMCID: PMC9898438 DOI: 10.1016/j.tcsw.2023.100101] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
•Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development.•Xylan structure is known to vary between different tissues and species.•The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses.•Xylan synthesis is directed by several types of Golgi-localized enzymes.•Xylan is being explored as an eco-friendly resource for diverse commercial applications.
Collapse
Key Words
- AGX, arabinoglucuronoxylan
- Araf, L-α-arabinofuranose, TBL, Trichome Birefringence Like
- GAX, glucuronoarabinoxylan
- GX, glucuronoxylan
- GXMT/GXM, glucuronoxylan methyltransferase
- GlcpA, glucuronic acid
- Glycosyltransferase
- Hemicellulose
- IRX10, Irregular Xylem 10
- IRX14, Irregular Xylem 14
- IRX9, Irregular Xylem 9
- MeGlcpA, 4-O-methylglucuronic acid
- NMR, Nuclear magnetic resonance
- Plant cell wall
- UDP-sugar, uridine diphosphate-linked sugar
- XOATs, xylan O-acetyltransferases
- XSC, xylan synthase complex
- Xylan
- Xylan biosynthesis
- glucuronoarabinoxylan (GAX)
- glucuronoxylan (GX)
- or arabinoglucuronoxylan (AGX)
Collapse
Affiliation(s)
- Thomas M. Curry
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Madadi M, Zahoor, Shah SWA, Sun C, Wang W, Ali SS, Khan A, Arif M, Zhu D. Efficient co-production of xylooligosaccharides and glucose from lignocelluloses by acid/pentanol pretreatment: Synergetic role of lignin removal and inhibitors. BIORESOURCE TECHNOLOGY 2022; 365:128171. [PMID: 36283660 DOI: 10.1016/j.biortech.2022.128171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A novel technology for co-production of xylooligosaccharides (XOS) and glucose from Monterey pine sawdust and wheat straw was introduced using dilute acid (DA)/pentanol pretreatment. Effects of pretreatment severity (PS), lignin removal, and inhibitors with byproduct concentrations on XOS production were investigated. Optimal identified conditions (PS: 3.71; 170 °C, 45 min) resulted in maximum XOS of 48.65 % (pine sawdust) and 46.85 % (wheat straw), due to appropriate lignin removal (pine sawdust, 88.5 %; wheat straw, 89.7 %) and formation of small amounts of inhibitors and byproducts. Enzymatic hydrolysis of optimal pretreated solid residues yielded 88.65 % and 93.34 % glucose in pine sawdust and wheat straw, respectively. Biomass characterization revealed that DA/pentanol pretreatment enhanced porosity and pore size along with removal of amorphous fractions in both samples, thereby increasing cellulose accessibility and glucose yield. This study demonstrated lignin removal and low formation of inhibitors and byproducts, effectively enhancing XOS and glucose production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zahoor
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wen Wang
- Bio-chemical Conversion Lab Center for Biomass Energy Research, Guangzhou Institute of Energy Conversion, CAS, 510640, China
| | - Sameh Samir Ali
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmad Khan
- Department of Agronomy, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif
- Department of Agronomy, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
20
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
21
|
Huang C, Yu Y, Li Z, Yan B, Pei W, Wu H. The preparation technology and application of xylo-oligosaccharide as prebiotics in different fields: A review. Front Nutr 2022; 9:996811. [PMID: 36091224 PMCID: PMC9453253 DOI: 10.3389/fnut.2022.996811] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Xylo-oligosaccharide (XOS) is a class of functional oligosaccharides that have been demonstrated with prebiotic activity over several decades. XOS has several advantages relative to other oligosaccharide molecules, such as promoting root development as a plant regulator, a sugar supplement for people, and prebiotics to promote intestinal motility utilization health. Now, the preparation and extraction process of XOS is gradually mature, which can maximize the extraction and avoid waste. To fully understand the recent preparation and application of XOS in different areas, we summarized the various technologies for obtaining XOS (including acid hydrolysis, enzymatic hydrolysis, hydrothermal pretreatment, and alkaline extraction) and current applications of XOS, including in animal feed, human food additives, and medicine. It is hoped that this review will serve as an entry point for those looking into the prebiotic field of research, and perhaps begin to dedicate their work toward this exciting classification of bio-based molecules.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Yuxin Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Zheng Li
- The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Hao Wu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- *Correspondence: Hao Wu,
| |
Collapse
|