1
|
Zhang Z, Wang H, Kan X, Zhang X, Xu S, Cai J, Guo J. The interplay of ferroptosis and oxidative stress in the pathogenesis of aortic dissection. Front Pharmacol 2025; 16:1519273. [PMID: 39974735 PMCID: PMC11835687 DOI: 10.3389/fphar.2025.1519273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025] Open
Abstract
Aortic dissection (AD) is a life-threatening vascular condition marked by the separation or tearing of the aortic media. Ferroptosis, a form of iron-dependent programmed cell death, occurs alongside lipid peroxidation and the accumulation of reactive oxygen species (ROS). The relationship between ferroptosis and AD lies in its damaging effect on vascular cells. In AD, ferroptosis worsens the damage to vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), thereby weakening the vascular wall's structural integrity and accelerating the onset and progression of the condition. However, the molecular mechanisms through which ferroptosis regulates the onset and progression of AD remain poorly understood. This article explores the relationship between ferroptosis and AD.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Haichao Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xi Kan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaozhao Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Senping Xu
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
3
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
4
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
5
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Park J, Son H. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms. THE PLANT PATHOLOGY JOURNAL 2024; 40:235-250. [PMID: 38835295 PMCID: PMC11162859 DOI: 10.5423/ppj.rw.01.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/06/2024]
Abstract
During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Liu YC, Tseng YH, Kuan YH, Wang LY, Huang SE, Tsai SP, Yeh JL, Hsu JH. Proteasome inhibitor bortezomib prevents proliferation and migration of pulmonary arterial smooth muscle cells. Kaohsiung J Med Sci 2024; 40:542-552. [PMID: 38682650 DOI: 10.1002/kjm2.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pulmonary vascular remodeling is a key pathological process of pulmonary arterial hypertension (PAH), characterized by uncontrolled proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Bortezomib (BTZ) is the first Food and Drug Administration (FDA)-approved proteasome inhibitor for multiple myeloma treatment. Recently, there is emerging evidence showing its effect on reversing PAH, although its mechanisms are not well understood. In this study, anti-proliferative and anti-migratory effects of BTZ on PASMCs were first examined by different inducers such as fetal bovine serum (FBS), angiotensin II (Ang II) and platelet-derived growth factor (PDGF)-BB, while potential mechanisms including cellular reactive oxygen species (ROS) and mitochondrial ROS were then investigated; finally, signal transduction of ERK and Akt was examined. Our results showed that BTZ attenuated FBS-, Ang II- and PDGF-BB-induced proliferation and migration, with associated decreased cellular ROS production and mitochondrial ROS production. In addition, the phosphorylation of ERK and Akt induced by Ang II and PDGF-BB was also inhibited by BTZ treatment. This study indicates that BTZ can prevent proliferation and migration of PASMCs, which are possibly mediated by decreased ROS production and down-regulation of ERK and Akt. Thus, proteasome inhibition can be a novel pharmacological target in the management of PAH.
Collapse
Affiliation(s)
- Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Kuan
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lin-Yen Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao-Ping Tsai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Wang S, Yu Y, Liu J, Hu S, Shi S, Feng W, Mao Y. Alginate oligosaccharide alleviates vascular aging by upregulating glutathione peroxidase 7. J Nutr Biochem 2024; 126:109578. [PMID: 38216066 DOI: 10.1016/j.jnutbio.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Alginate oligosaccharide (AOS) may delay aging by decreasing oxidative stress, but the effects on vascular aging remain unclear. Here, we evaluate the effect of AOS on vascular aging and investigate the underlying mechanisms. Twenty-month-old rats acted as the natural aging model in vivo. Senescence of human aortic vascular smooth muscle cells (HA-VSMCs) was induced in vitro using angiotensin II (AngII). The aging rats and senescent cells were treated with AOS, followed by assessment of aging makers, oxidative stress, and aging-induced vascular remodeling. AOS treatment alleviated vascular aging and HA-VSMC senescence and decreased the levels of oxidative stress and vascular remodeling-associated indicators. AOS upregulated the expression of glutathione peroxidase 7 (GPX7) in aging rats and GPX7 depletion disrupted the geroprotective effect of AOS. AOS increased the nuclear translocation of nuclear factor erythroid-2-related factor (Nrf2) protein, which interacts with GPX7 protein to induce its expression. In conclusion, AOS alleviates vascular aging and HA-VSMC senescence and reduces aging-related vascular remodeling via the GPX7 antioxidant pathway, which may provide new avenues for treating aging-associated diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Yu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Hu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shujuan Shi
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Khan K, Yu B, Tardif JC, Rhéaume E, Al-Kindi H, Filimon S, Pop C, Genest J, Cecere R, Schwertani A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med 2024; 11:1360380. [PMID: 38586172 PMCID: PMC10995361 DOI: 10.3389/fcvm.2024.1360380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled. Methods In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression. To determine the pathologic significance of increased Wnt, human vascular smooth muscle cells (vSMCs) were treated with Wnt3a, Wnt5a, and Wnt5b recombinant proteins and assessed for changes in cell differentiation and function. Results RT-PCR and Western blotting showed a significant increase in the expression of Wnt3a, Wnt5a, Wnt5b, and their receptors in diseased coronary arteries compared with that in non-diseased coronary arteries. Immunohistochemistry revealed an abundant expression of Wnt3a and Wnt5b in diseased coronary arteries, which contrasted with little or no signals in normal coronary arteries. Immunostaining of Wnt3a and Wnt5b was found largely in inflammatory cells and myointimal cells. The treatment of vSMCs with Wnt3a, Wnt5a, and Wnt5b resulted in increased vSMC differentiation, migration, calcification, oxidative stress, and impaired cholesterol handling. Conclusions This study demonstrates the upregulation of three important members of canonical and non-canonical Wnt signaling pathways and their receptors in coronary atherosclerosis and shows an important role for these molecules in plaque development through increased cellular remodeling and impaired cholesterol handling.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | | | - Eric Rhéaume
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Sabin Filimon
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Cristina Pop
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
10
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
11
|
Cerecedo D, Martínez-Vieyra I, Hernández-Rojo I, Hernández-Cruz A, Rincón-Heredia R, Millán-Aldaco D, Mendoza-Garrido ME. Reactive oxygen species downregulate dystroglycans in the megakaryocytes of rats with arterial hypertension. Exp Cell Res 2023; 433:113847. [PMID: 37931771 DOI: 10.1016/j.yexcr.2023.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of β-dystroglycan (β-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of β-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in β-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.
Collapse
Affiliation(s)
- Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Isaac Hernández-Rojo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Millán-Aldaco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
12
|
Lee AS, Kim Y, Hur HJ, Lee SH, Sung MJ. Chrysanthemum coronarium L. Extract Attenuates Homocysteine-Induced Vascular Inflammation in Vascular Smooth Muscle Cells. J Med Food 2023; 26:869-876. [PMID: 38010869 DOI: 10.1089/jmf.2023.k.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Hyperhomocysteinemia is a main risk factor for phenotypic modulation of vascular smooth muscle cells (VSMCs) and atherosclerosis. Phenotypic switching and proliferation of VSMCs are related to the progression of vascular inflammation. Chrysanthemum coronarium L. is a leafy vegetable with various biological functions, such as antioxidative, anti-inflammatory, and antiproliferative effects. In this study, we aimed to identify the mechanisms underlying the therapeutic and preventive effects of C. coronarium L. extract (CC) in regulating homocysteine (Hcy)-induced vascular inflammation in human aortic VSMCs. CC did not exhibit cytotoxicity and inhibited Hcy-stimulated VSMC proliferation and migration. In addition, CC promoted Hcy-induced expression of VSMC contractile phenotype proteins, including alpha-smooth muscle actin, calponin, and smooth muscle 22α. CC also decreased Hcy-induced accumulation of reactive oxygen species and expression of inflammatory markers nicotinamide adenine dinucleotide phosphate oxidase-4 and soluble epoxide hydrolase. These results showed that CC attenuates Hcy-induced inflammatory responses, highlighting its potential as a therapeutic or preventive target for Hcy-induced vascular inflammation.
Collapse
Affiliation(s)
- Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yiseul Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang-Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
13
|
Enkhjargal B, De Leon SSP, Tsukahara Y, Liu H, Huangfu Y, Wang Y, Seabra PM, Yang X, Goodman J, Wan X, Chitalia V, Han J, Seta F. Redox Dysregulation of Vascular Smooth Muscle Sirtuin-1 in Thoracic Aortic Aneurysm in Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e339-e357. [PMID: 37288573 PMCID: PMC10524979 DOI: 10.1161/atvbaha.123.319145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFβ (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Yuko Tsukahara
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanxiao Liu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuhao Huangfu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yu Wang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pedro Maria Seabra
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoqiu Yang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jena Goodman
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xueping Wan
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Panthiya L, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin mitigates angiotensin II-induced proliferation, migration, and inflammation in vascular smooth muscle cells. EXCLI JOURNAL 2023; 22:466-481. [PMID: 37534221 PMCID: PMC10391613 DOI: 10.17179/excli2023-6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Luckika Panthiya
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Grewal N, Dolmaci O, Jansen E, Klautz R, Driessen A, Poelmann RE. Thoracic aortopathy in Marfan syndrome overlaps with mechanisms seen in bicuspid aortic valve disease. Front Cardiovasc Med 2023; 10:1018167. [PMID: 36844720 PMCID: PMC9949376 DOI: 10.3389/fcvm.2023.1018167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Background Thoracic aortopathy is a serious complication which is more often seen in patients with Marfan syndrome (MFS) and patients with a bicuspid aortic valve (BAV) than in individuals with a tricuspid aortic valve (TAV). The identification of common pathological mechanisms leading to aortic complications in non-syndromic and syndromic diseases would significantly improve the field of personalized medicine. Objective This study sought to compare thoracic aortopathy between MFS, BAV, and TAV individuals. Materials and methods Bicuspid aortic valve (BAV; n = 36), TAV (n = 23), and MFS (n = 8) patients were included. Ascending aortic wall specimen were studied for general histologic features, apoptosis, markers of cardiovascular ageing, expression of synthetic and contractile vascular smooth muscle cells (VSMC), and fibrillin-1 expression. Results The MFS group showed many similarities with the dilated BAV. Both patient groups showed a thinner intima (p < 0.0005), a lower expression of contractile VSMCs (p < 0.05), more elastic fiber thinning (p < 0.001), lack of inflammation (p < 0.001), and a decreased progerin expression (p < 0.05) as compared to the TAV. Other features of cardiovascular ageing differed between the BAV and MFS. Dilated BAV patients demonstrated less medial degeneration (p < 0.0001), VSMC nuclei loss (p < 0.0001), apoptosis of the vessel wall (p < 0.03), and elastic fiber fragmentation and disorganization (p < 0.001), as compared to the MFS and dilated TAV. Conclusion This study showed important similarities in the pathogenesis of thoracic aortic aneurysms in BAV and MFS. These common mechanisms can be further investigated to personalize treatment strategies in non-syndromic and syndromic conditions.
Collapse
Affiliation(s)
- Nimrat Grewal
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands,Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Nimrat Grewal,
| | - Onur Dolmaci
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Evert Jansen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands,Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine Driessen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert E. Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
17
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
18
|
Cui Y, Gutierrez S, Ariai S, Öberg L, Thörn K, Gehrmann U, Cloonan SM, Naessens T, Olsson H. Non-heme iron overload impairs monocyte to macrophage differentiation via mitochondrial oxidative stress. Front Immunol 2022; 13:998059. [PMID: 36341326 PMCID: PMC9634638 DOI: 10.3389/fimmu.2022.998059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Iron is a key element for systemic oxygen delivery and cellular energy metabolism. Thus regulation of systemic and local iron metabolism is key for maintaining energy homeostasis. Significant changes in iron levels due to malnutrition or hemorrhage, have been associated with several diseases such as hemochromatosis, liver cirrhosis and COPD. Macrophages are key cells in regulating iron levels in tissues as they sequester excess iron. How iron overload affects macrophage differentiation and function remains a subject of debate. Here we used an in vitro model of monocyte-to-macrophage differentiation to study the effect of iron overload on macrophage function. We found that providing excess iron as soluble ferric ammonium citrate (FAC) rather than as heme-iron complexes derived from stressed red blood cells (sRBC) interferes with macrophage differentiation and phagocytosis. Impaired macrophage differentiation coincided with increased expression of oxidative stress-related genes. Addition of FAC also led to increased levels of cellular and mitochondrial reactive oxygen species (ROS) and interfered with mitochondrial function and ATP generation. The effects of iron overload were reproduced by the mitochondrial ROS-inducer rotenone while treatment with the ROS-scavenger N-Acetylcysteine partially reversed FAC-induced effects. Finally, we found that iron-induced oxidative stress interfered with upregulation of M-CSFR and MAFB, two crucial determinants of macrophage differentiation and function. In summary, our findings suggest that high levels of non-heme iron interfere with macrophage differentiation by inducing mitochondrial oxidative stress. These findings might be important to consider in the context of diseases like chronic obstructive pulmonary disease (COPD) where both iron overload and defective macrophage function have been suggested to play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Yue Cui
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Saray Gutierrez
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Sheller Ariai
- Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- School of Medicine, Trinity Biomedical Sciences Institute and Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Thomas Naessens
- Bioscience Cough & In vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
Zhang S, Bei Y, Huang Y, Huang Y, Hou L, Zheng XL, Xu Y, Wu S, Dai X. Induction of ferroptosis promotes vascular smooth muscle cell phenotypic switching and aggravates neointimal hyperplasia in mice. Mol Med 2022; 28:121. [PMID: 36192693 PMCID: PMC9528136 DOI: 10.1186/s10020-022-00549-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stent implantation-induced neointima formation is a dominant culprit in coronary artery disease treatment failure after percutaneous coronary intervention. Ferroptosis, an iron-dependent regulated cell death, has been associated with various cardiovascular diseases. However, the effect of ferroptosis on neointima formation remains unclear. METHODS The mouse common right carotid arteries were ligated for 16 or 30 days, and ligated tissues were collected for further analyses. Primary rat vascular smooth muscle cells (VSMCs) were isolated from the media of aortas of Sprague-Dawley (SD) rats and used for in vitro cell culture experiments. RESULTS Ferroptosis was positively associated with neointima formation. In vivo, RAS-selective lethal 3 (RSL3), a ferroptosis activator, aggravated carotid artery ligation-induced neointima formation and promoted VSMC phenotypic conversion. In contrast, a ferroptosis inhibitor, ferrostatin-1 (Fer-1), showed the opposite effects in mice. In vitro, RSL3 promoted rat VSMC phenotypic switching from a contractile to a synthetic phenotype, evidenced by increased contractile markers (smooth muscle myosin heavy chain and calponin 1), and decreased synthetic marker osteopontin. The induction of ferroptosis by RSL3 was confirmed by the increased expression level of ferroptosis-associated gene prostaglandin-endoperoxide synthase 2 (Ptgs2). The effect of RSL3 on rat VSMC phenotypic switching was abolished by Fer-1. Moreover, N-acetyl-L-cysteine (NAC), the reactive oxygen species inhibitor, counteracted the effect of RSL3 on the phenotypic conversion of rat VSMCs. CONCLUSIONS Ferroptosis induces VSMC phenotypic switching and accelerates ligation-induced neointimal hyperplasia in mice. Our findings suggest inhibition of ferroptosis as an attractive strategy for limiting vascular restenosis.
Collapse
Affiliation(s)
- Shunchi Zhang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yanrou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yueling Huang
- Experimental Animal Center, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yimin Huang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shaoguo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Xiaoyan Dai
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
20
|
Yin Q, Zang G, Li N, Sun C, Du R. Agonist-induced Piezo1 activation promote mitochondrial-dependent apoptosis in vascular smooth muscle cells. BMC Cardiovasc Disord 2022; 22:287. [PMID: 35751027 PMCID: PMC9233385 DOI: 10.1186/s12872-022-02726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Mechanical damage plays an essential role in the progression of atherosclerosis. Piezo1 is a new mechanically sensitive ion channel. The present study investigated the vascular smooth muscle cells (VSMCs) apoptosis induced by Piezo1 activation and explored its underlying mechanism. METHODS We evaluated cell viability and apoptosis rate with cell counting kit-8 (CCK-8) and Annexin V-FITC/PI flow cytometry assay, respectively. And then Western blot was performed to measure the relative protein. Reactive oxygen species (ROS) and intracellular Ca2+ were assessed via fluorescence microscope, and the mitochondrial transmembrane potential was monitored by JC-10 staining. RESULTS Our in vitro study revealed that mice in the ApoE-/- group compared with control mice showed higher Piezo1 expression(P < 0.05). Besides, Yoda1, a Piezo1 agonist, triggered Ca2+ overload, mitochondrial damage, accumulation of ROS, and VSMCs apoptosis in a dose-depend manner. Furthermore, BAPT-AM (an intracellular Ca2+ chelator) and NAC (an antioxidant) suppressed the mitochondrial damage and attenuated the VSMCs apoptosis. CONCLUSION Our study suggested that Piezo1 induced VSMCs apoptosis because of Ca2+ overload, excessive ROS generation, and mitochondrial dysfunction, which indicated that Piezo1 has potential value in treating vascular diseases.
Collapse
Affiliation(s)
- Qing Yin
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.,School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Guangyao Zang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Nannan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Chenchen Sun
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Rongzeng Du
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
| |
Collapse
|
21
|
Ryu JW, Jung IH, Park EY, Kim KH, Kim K, Yeom J, Jung J, Lee SW. Radiation-induced C-reactive protein triggers apoptosis of vascular smooth muscle cells through ROS interfering with the STAT3/Ref-1 complex. J Cell Mol Med 2022; 26:2104-2118. [PMID: 35178859 PMCID: PMC8980952 DOI: 10.1111/jcmm.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to normal tissue can occur over a long period after cancer radiotherapy. Free radical by radiation can initiate or accelerate chronic inflammation, which can lead to atherosclerosis. However, the underlying mechanisms remain unclear. Vascular smooth muscle cells (VSMCs) proliferate in response to JAK/STAT3 signalling. C-reactive protein (CRP) can induce VSMCs apoptosis via triggering NADPH oxidase (NOX). Apoptotic VSMCs promote instability and inflammation of atherosclerotic lesions. Herein, we identified a VSMCs that switched from proliferation to apoptosis through was enhanced by radiation-induced CRP. NOX inhibition using lentiviral sh-p22phox prevented apoptosis upon radiation-induced CRP. CRP overexpression reduced the amount of STAT3/Ref-1 complex, decreased JAK/STAT phosphorylation and formed a new complex of Ref-1/CRP in VSMC. Apoptosis of VSMCs was further increased by CRP co-overexpressed with Ref-1. Functional inhibition of NOX or p53 also prevented apoptotic activity of the CRP-Ref-1 complex. Immunofluorescence showed co-localization of CRP, Ref-1 and p53 with α-actin-positive VSMC in human atherosclerotic plaques. In conclusion, radiation-induced CRP increased the VSMCs apoptosis through Ref-1, which dissociated the STAT3/Ref-1 complex, interfered with JAK/STAT3 activity, and interacted with CRP-Ref-1, thus resulting in transcription-independent cell death via p53. Targeting CRP as a vascular side effect of radiotherapy could be exploited to improve curability.
Collapse
Affiliation(s)
- Je-Won Ryu
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Hye Jung
- Department of Radiation Oncology, Gang Neung Asan Medical Center, Ganneung-si, Republic of Korea
| | - Eun-Young Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kang-Hyun Kim
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jinhong Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Cai M, Wang Z, Luu TTT, Zhang D, Finke B, He J, Tay LWR, Di Paolo G, Du G. PLD1 promotes reactive oxygen species production in vascular smooth muscle cells and injury-induced neointima formation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159062. [PMID: 34610470 PMCID: PMC11960192 DOI: 10.1016/j.bbalip.2021.159062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1-/- VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1-/- VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.
Collapse
Affiliation(s)
- Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thi Thu Trang Luu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dakai Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian Finke
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Verhagen JMA, Burger J, Bekkers JA, den Dekker AT, von der Thüsen JH, Zajec M, Brüggenwirth HT, van der Sterre MLT, van den Born M, Luider TM, van IJcken WFJ, Wessels MW, Essers J, Roos-Hesselink JW, van der Pluijm I, van de Laar IMBH, Brosens E. Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease. Int J Mol Sci 2021; 23:ijms23010438. [PMID: 35008861 PMCID: PMC8745050 DOI: 10.3390/ijms23010438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-β gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.
Collapse
Affiliation(s)
- Judith M. A. Verhagen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Joyce Burger
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Jos A. Bekkers
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Alexander T. den Dekker
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.T.d.D.); (W.F.J.v.I.)
| | - Jan H. von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Marina Zajec
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Marianne L. T. van der Sterre
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Theo M. Luider
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Wilfred F. J. van IJcken
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.T.d.D.); (W.F.J.v.I.)
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Vascular Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jolien W. Roos-Hesselink
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Vascular Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: (I.v.d.P.); (E.B.)
| | - Ingrid M. B. H. van de Laar
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (J.M.A.V.); (J.B.); (H.T.B.); (M.L.T.v.d.S.); (M.v.d.B.); (M.W.W.); (I.M.B.H.v.d.L.)
- Correspondence: (I.v.d.P.); (E.B.)
| |
Collapse
|
24
|
Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 2021; 79:6. [PMID: 34936041 PMCID: PMC11072026 DOI: 10.1007/s00018-021-04079-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is characterized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative "synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. However, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation and summarize the current knowledge in this field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
26
|
Rysz J, Gluba-Brzózka A, Rokicki R, Franczyk B. Oxidative Stress-Related Susceptibility to Aneurysm in Marfan's Syndrome. Biomedicines 2021; 9:biomedicines9091171. [PMID: 34572356 PMCID: PMC8467736 DOI: 10.3390/biomedicines9091171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023] Open
Abstract
The involvement of highly reactive oxygen-derived free radicals (ROS) in the genesis and progression of various cardiovascular diseases, including arrhythmias, aortic dilatation, aortic dissection, left ventricular hypertrophy, coronary arterial disease and congestive heart failure, is well-established. It has also been suggested that ROS may play a role in aortic aneurysm formation in patients with Marfan's syndrome (MFS). This syndrome is a multisystem disorder with manifestations including cardiovascular, skeletal, pulmonary and ocular systems, however, aortic aneurysm and dissection are still the most life-threatening manifestations of MFS. In this review, we will concentrate on the impact of oxidative stress on aneurysm formation in patients with MFS as well as on possible beneficial effects of some agents with antioxidant properties. Mechanisms responsible for oxidative stress in the MFS model involve a decreased expression of superoxide dismutase (SOD) as well as enhanced expression of NAD(P)H oxidase, inducible nitric oxide synthase (iNOS) and xanthine oxidase. The results of studies have indicated that reactive oxygen species may be involved in smooth muscle cell phenotype switching and apoptosis as well as matrix metalloproteinase activation, resulting in extracellular matrix (ECM) remodeling. The progression of the thoracic aortic aneurysm was suggested to be associated with markedly impaired aortic contractile function and decreased nitric oxide-mediated endothelial-dependent relaxation.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
27
|
Takaishi K, Kinoshita H, Kawashima S, Kawahito S. Human Vascular Smooth Muscle Function and Oxidative Stress Induced by NADPH Oxidase with the Clinical Implications. Cells 2021; 10:cells10081947. [PMID: 34440716 PMCID: PMC8393371 DOI: 10.3390/cells10081947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023] Open
Abstract
Among reactive oxygen species, superoxide mediates the critical vascular redox signaling, resulting in the regulation of the human cardiovascular system. The reduced form of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) is the source of superoxide and relates to the crucial intracellular pathology and physiology of vascular smooth muscle cells, including contraction, proliferation, apoptosis, and inflammatory response. Human vascular smooth muscle cells express NOX1, 2, 4, and 5 in physiological and pathological conditions, and those enzymes play roles in most cardiovascular disorders caused by hypertension, diabetes, inflammation, and arteriosclerosis. Various physiologically active substances, including angiotensin II, stimulate NOX via the cytosolic subunits’ translocation toward the vascular smooth muscle cell membrane. As we have shown, some pathological stimuli such as high glucose augment the enzymatic activity mediated by the phosphatidylinositol 3-kinase-Akt pathway, resulting in the membrane translocation of cytosolic subunits of NOXs. This review highlights and details the roles of human vascular smooth muscle NOXs in the pathophysiology and clinical aspects. The regulation of the enzyme expressed in the vascular smooth muscle cells may lead to the prevention and treatment of human cardiovascular diseases.
Collapse
Affiliation(s)
- Kazumi Takaishi
- Department of Dental Anesthesiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto, Tokushima 770-8504, Japan; (K.T.); (S.K.)
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
- Department of Anesthesiology and Intensive Care, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Hamamatsu City 431-3192, Japan;
- Correspondence: ; Tel.: +81-53-436-1251
| | - Shingo Kawashima
- Department of Anesthesiology and Intensive Care, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Hamamatsu City 431-3192, Japan;
| | - Shinji Kawahito
- Department of Dental Anesthesiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto, Tokushima 770-8504, Japan; (K.T.); (S.K.)
| |
Collapse
|
28
|
Ho CC, Chen YC, Tsai MH, Tsai HT, Weng CY, Yet SF, Lin P. Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols. Antioxidants (Basel) 2021; 10:antiox10050782. [PMID: 34069133 PMCID: PMC8156007 DOI: 10.3390/antiox10050782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epidemiological studies have demonstrated an association between ambient particulate matter (PM) exposure and vascular diseases. Here, we observed that treatment with ambient PM increased cell migration ability in vascular smooth muscle cells (VSMCs) and pulmonary arterial SMCs (PASMCs). These results suggest that VSMCs and PASMCs transitioned from a differentiated to a synthetic phenotype after PM exposure. Furthermore, treatment with PM increased intracellular reactive oxygen species (ROS), activated the NF-κB signaling pathway, and increased the expression of proinflammatory cytokines in VSMCs. Using specific inhibitors, we demonstrated that PM increased the migration ability of VSMCs via the nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1)/ROS-dependent NF-κB signaling pathway, which also partially involved in the induction of proinflammatory cytokines. Finally, we investigated whether nature polyphenolic compounds prevent PM-induced migration and proinflammatory cytokines secretion in VSMCs. Curcumin, resveratrol, and gallic acid prevented PM2.5-induced migration via the ROS-dependent NF-κB signaling pathway. However, honokiol did not prevent PM2.5-induced migration or activation of the ROS-dependent NF-κB signaling pathway. On the other hand, all polyphenols prevented PM2.5-induced cytokines secretion. These data indicated that polyphenols prevented PM-induced migration and cytokine secretion via blocking the ROS-dependent NF-κB signaling pathway in VSMCs. However, other mechanisms may also contribute to PM-induced cytokine secretion.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
| | - Ming-Hsien Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
| | - Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 53053, Taiwan
- Correspondence: (S.-F.Y.); (P.L.); Tel.: +886-37-246166 (ext. 38311) (S.-F.Y.); +886-37-246166 (ext. 36508) (P.L.)
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 53053, Taiwan; (C.-C.H.); (Y.-C.C.); (M.-H.T.); (H.-T.T.); (C.-Y.W.)
- Correspondence: (S.-F.Y.); (P.L.); Tel.: +886-37-246166 (ext. 38311) (S.-F.Y.); +886-37-246166 (ext. 36508) (P.L.)
| |
Collapse
|
29
|
Moreau KL, Hildreth KL, Klawitter J, Blatchford P, Kohrt WM. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. GeroScience 2020; 42:1699-1714. [PMID: 32770384 PMCID: PMC7732894 DOI: 10.1007/s11357-020-00236-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023] Open
Abstract
Endothelial function declines progressively across stages of the menopause transition; however, the mechanisms contributing to this decline are unknown. We hypothesized that differences in endothelial function among pre-, peri, and postmenopausal women are related to differences in estradiol and oxidative stress. Brachial artery flow-mediated dilation (FMD) was measured in 87 healthy women categorized by menopause stage (24 premenopausal, 17 early and 21 late perimenopausal, and 25 postmenopausal) before and after 3 days of ovarian hormone suppression (gonadotropin releasing hormone antagonist [GnRHant]) alone, and an additional 3 days of GnRHant with concurrent transdermal estradiol or placebo add-back treatment. In 82 women, FMD during acute vitamin C (antioxidant) infusion was measured before and after GnRHant + add-back. Before GnRHant, FMD was different among groups (p < 0.005; reduced across stages of menopause). Vitamin C increased FMD in late peri- and post- (p < 0.005) but not pre- or early perimenopausal women (p > 0.54). After GnRHant alone, FMD decreased in pre- and peri- (p < 0.01), but not postmenopausal women, and was restored to premenopausal levels by estradiol add-back in the pre- and perimenopausal groups. Vitamin C improved FMD in pre-, peri-, and postmenopausal women on GnRHant + placebo. There was no effect of vitamin C on FMD in women on GnRHant + estradiol. These observations support the concept that the decline in endothelial function across the menopause transition is related to the loss of ovarian estradiol. The decline in estradiol may alter redox balance, thereby increasing oxidative stress and impairing endothelial function.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA.
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA.
| | - Kerry L Hildreth
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Blatchford
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA
- Colorado Biostatistical Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA
| |
Collapse
|
30
|
Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228764. [PMID: 33233489 PMCID: PMC7699590 DOI: 10.3390/ijms21228764] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.
Collapse
|
31
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
32
|
Jeong SJ, Cho MJ, Ko NY, Kim S, Jung IH, Min JK, Lee SH, Park JG, Oh GT. Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm. Exp Mol Med 2020; 52:1587-1601. [PMID: 32929220 PMCID: PMC8080566 DOI: 10.1038/s12276-020-00498-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2−/− mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2−/− mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA. An enzyme with antioxidant properties may provide a biomarker and therapeutic agent to help treat abdominal aortic aneurysm (AAA). AAA involves the structural deterioration of the aorta through chronic inflammation and oxidative stress, and can trigger life-threatening artery rupture. An antioxidant enzyme called peroxiredoxin 2 (PRDX2) is increased in patients with ruptures, but whether its role in AAA is beneficial or detrimental is unclear. Goo Taeg Oh at the Ewha Womans University in Seoul, Jong-Gil Park at the Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, and co-workers examined the effect of PRDX2 on AAA progression. PRDX2 suppressed structural damage in mice, limiting artery dilation and protein degradation. Loss of PRDX2 accelerated AAA development. Measuring levels of PRDX2 may indicate AAA severity in patients, while boosting the enzyme could repair aortic damage.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Na Young Ko
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
34
|
Kelley CA, De Henau S, Bell L, Dansen TB, Cram EJ. Redox signaling modulates Rho activity and tissue contractility in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2020; 31:1486-1497. [PMID: 32374641 PMCID: PMC7359568 DOI: 10.1091/mbc.e20-04-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actomyosin-based contractility in smooth muscle and nonmuscle cells is regulated by signaling through the small GTPase Rho and by calcium-activated pathways. We use the myoepithelial cells of the Caenorhabditis elegans spermatheca to study the mechanisms of coordinated myosin activation in vivo. Here, we show that redox signaling modulates RHO-1/Rho activity in this contractile tissue. Exogenously added as well as endogenously generated hydrogen peroxide decreases spermathecal contractility by inhibition of RHO-1, which depends on a conserved cysteine in its nucleotide binding site (C20). Further, we identify an endogenous gradient of H2O2 across the spermathecal tissue, which depends on the activity of cytosolic superoxide dismutase, SOD-1. Collectively, we show that SOD-1-mediated H2O2 production regulates the redox environment and fine tunes Rho activity across the spermatheca through oxidation of RHO-1 C20.
Collapse
Affiliation(s)
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Liam Bell
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
35
|
Ho CC, Chen YC, Yet SF, Weng CY, Tsai HT, Hsu JF, Lin P. Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137243. [PMID: 32147111 DOI: 10.1016/j.scitotenv.2020.137243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been associated with vascular diseases in epidemiological studies. We have demonstrated previously that exposure to ambient PM2.5 caused pulmonary vascular remodeling in mice and increased vascular smooth muscle cells (VSMCs) viability. Here, we further demonstrated that exposure of mice to ambient PM2.5 increased urinary 8‑hydroxy‑2'‑deoxyguanosine (8-OHdG) and cytokines concentrations in the broncheoalveolar lavage. The objective of the present study was to identify the PM2.5 components related to vascular dysfunction. Exposure to PM2.5 collected from various areas and seasons in Taiwan significantly increased viability, oxidative stress, and inflammatory cytokines secretion in VSMCs. The mass concentrations of benz[a]anthracene (BaA), benzo[e]pyrene (BeP), perylene, dibenzo[a,e]pyrene, molybdenum, zinc (Zn), vanadium (V), and nickel in the PM2.5 were significantly associated with increased viability of VSMCs. These components, except BaA and BeP, also were significantly associated with chemokine (CC motif) ligand 5 (CCL5) concentrations in the VSMCs. The effects of V and Zn on cell viability and CCL5 expression, respectively, were verified. In addition, the mass concentrations of sulfate and manganese (Mn) in PM2.5 were significantly correlated with increased oxidative stress; this correlation was also confirmed. After extraction, the inorganic fraction of PM2.5 increased cell viability and oxidative stress, but the organic fraction of PM2.5 increased only cell viability, which was inhibited by an aryl hydrocarbon receptor antagonist. These data suggest that controlling the emission of Zn, V, Mn, sulfate, and PAHs may prevent the occurrence of PM2.5-induced vascular diseases.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
36
|
The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants (Basel) 2020; 9:antiox9040280. [PMID: 32224940 PMCID: PMC7222192 DOI: 10.3390/antiox9040280] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an oxidizing agent that induces cellular damage at inappropriate concentrations and gives rise to an arrest during cell cycle progression, causing cell death. Recent evidence indicates that H2O2 also acts as a promoter for cell cycle progression by oxidizing specific thiol proteins. The intracellular concentration of H2O2 is regulated tightly, enabling its use as a cellular signaling molecule while minimizing its potential to cause cellular damage. Peroxiredoxins (Prxs) have peroxidase activity toward H2O2, organic hydroperoxides, and peroxynitrite for protecting cells from oxidative stress. They are suggested to work as signaling mediators, allowing the local accumulation of H2O2 by inactivating their peroxidase activity uniquely compared with other antioxidant proteins such as catalase and glutathione peroxidase. Given that Prxs are highly sensitive to oxidation by H2O2, they act as sensors and transducers of H2O2 signaling via transferring their oxidation state to effector proteins. The concentrations of intracellular H2O2 increase as the cell cycle progresses from G1 to mitosis. Here, we summarize the roles of Prxs with regard to the regulation of cell cycle-dependent kinase activity and anaphase-promoting complex/cyclosome in terms of changes in H2O2 levels. Protection of the cell from unwanted progression of the cell cycle is suggested to be a role of Prx. We discuss the possible roles of Prxs to control H2O2 levels.
Collapse
|
37
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 593] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
38
|
Zhang YY, Shi YN, Zhu N, Wang W, Deng CF, Xie XJ, Liao DF, Qin L. Autophagy: a killer or guardian of vascular smooth muscle cells. J Drug Target 2020; 28:449-455. [DOI: 10.1080/1061186x.2019.1705312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Yu Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
39
|
TGF- β3 Induces Autophagic Activity by Increasing ROS Generation in a NOX4-Dependent Pathway. Mediators Inflamm 2019; 2019:3153240. [PMID: 32082074 PMCID: PMC7012255 DOI: 10.1155/2019/3153240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Higher concentrations of reactive oxygen species (ROS) have been associated with epithelial cell damage, cell shedding, and airway hyperresponsiveness. Previous studies have indicated that transforming growth factor-beta (TGF-β) mediates ROS production and NADPH oxidase (NOX) activity. In our previous study, we also observed that TGF-β3 increases mucus secretion in airway epithelial cells in an autophagy-dependent fashion. Although it is well known that the relationship between ROS and autophagy is cell context-dependent, the exact mechanism of action remains unclear. The following study examined whether ROS act as upstream of autophagy activation in response to TGF-β3 induction. Using an allergic inflammation mouse model induced by house dust mite (HDM), we observed elevated lung amounts of TGF-β3 accompanied by increased ROS levels. And we found that ROS levels were elevated and NOX4 expression was increased in TGF-β3-induced epithelial cells, while the lack of NOX4 in the epithelial cells could reduce ROS generation and autophagy-dependent MUC5AC expression treated with TGF-β3. Furthermore, our studies demonstrated that the Smad2/3 pathway was involved in TGF-β3-induced ROS generation by promoting NOX4 expression. The inhibition of ROS generation by N-Acetyl-L-cysteine (NAC) resulted in a decrease in mucus expression and autophagy activity in vivo as well as in vitro. Finally, TGF-β3-neutralizing antibody significantly reduced the ROS generation, mucus expression, and autophagy activity and also decreased the phosphorylation of Smad2 and Smad3. Taken together, the obtained results revealed that persistent TGF-β3 activation increased ROS levels in a NOX4-dependent pathway and subsequently induced autophagy as well as MUC5AC expression in the epithelial cells.
Collapse
|
40
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Vanadium Derivative Exposure Promotes Functional Alterations of VSMCs and Consequent Atherosclerosis via ROS/p38/NF-κB-Mediated IL-6 Production. Int J Mol Sci 2019; 20:ijms20246115. [PMID: 31817202 PMCID: PMC6940940 DOI: 10.3390/ijms20246115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Vanadium is a transition metal widely distributed in the Earth’s crust, and is a major contaminant in fossil fuels. Its pathological effect and regulation in atherosclerosis remain unclear. We found that intranasal administration of the vanadium derivative NaVO3 significantly increased plasma and urinary vanadium levels and induced arterial lipid accumulation and atherosclerotic lesions in apolipoprotein E-deficient knockout mice (ApoE−/−) murine aorta compared to those in vehicle-exposed mice. This was accompanied by an increase in plasma reactive oxygen species (ROS) and interleukin 6 (IL-6) levels and a decrease in the vascular smooth muscle cell (VSMC) differentiation marker protein SM22α in the atherosclerotic lesions. Furthermore, exposure to NaVO3 or VOSO4 induced cytosolic ROS generation and IL-6 production in VSMCs and promoted VSMC synthetic differentiation, migration, and proliferation. The anti-oxidant N-acetylcysteine (NAC) not only suppresses IL-6 production and VSMC pathological responses including migration and proliferation but also prevents atherosclerosis in ApoE−/− mice. Inhibition experiments with NAC and pharmacological inhibitors demonstrated that NaVO3-induced IL-6 production is signaled by ROS-triggered p38-mediated NF-κB-dependent pathways. Neutralizing anti-IL-6 antibodies impaired NaVO3-mediated VSMC migration and proliferation. We concluded that NaVO3 exposure activates the ROS-triggering p38 signaling to selectively induce NF-κB-mediated IL-6 production. These signaling pathways induce VSMC synthetic differentiation, migration, and proliferation, leading to lipid accumulation and atherosclerosis.
Collapse
|
42
|
Zhu J, Kovacs L, Han W, Liu G, Huo Y, Lucas R, Fulton D, Greer PA, Su Y. Reactive Oxygen Species-Dependent Calpain Activation Contributes to Airway and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease. Antioxid Redox Signal 2019; 31:804-818. [PMID: 31088299 PMCID: PMC7061305 DOI: 10.1089/ars.2018.7648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Aims: Airway and pulmonary vascular remodeling is an important pathological feature in the pathogenesis of chronic obstructive pulmonary disease (COPD). Tobacco smoke (TS) induces the production of large amounts of reactive oxygen species (ROS) in COPD lungs. We investigated how ROS lead to airway and pulmonary vascular remodeling in COPD. Results: We used in vitro bronchial and pulmonary artery smooth muscle cells (BSMCs and PASMCs), in vivo TS-induced COPD rodent models, and lung tissues of COPD patients. We found that H2O2 and TS extract (TSE) induced calpain activation in BSMCs and PASMCs. Calpain activation was elevated in smooth muscle of bronchi and pulmonary arterioles in COPD patients and TS-induced COPD rodent models. Calpain inhibition attenuated H2O2- and TSE-induced collagen synthesis and proliferation of BSMCs and PASMCs. Exposure to TS causes increases in airway resistance, right ventricular systolic pressure (RVSP), and thickening of bronchi and pulmonary arteries. Calpain inhibition by smooth muscle-specific knockout of calpain and the calpain inhibitor MDL28170 attenuated increases in airway resistance, RVSP, and thickening of bronchi and pulmonary arteries. Moreover, smooth muscle-specific knockout of calpain did not reduce TS-induced emphysema in the mouse model, but MDL28170 did reduce TS-induced emphysema in the rat model. Innovation: This study provides the first evidence that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling in TS-induced COPD. Calpain might be a novel therapeutic target for the treatment of COPD. Conclusion: These results indicate that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling and pulmonary hypertension in COPD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, the People's Hospital of China Three Gorges University, Yichang, China
| | - Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Weihong Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guojun Liu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Peter A. Greer
- Queen's University Cancer Research Institute, Kingston, Canada
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
43
|
Wang Y, Li X, Huang X, Ma S, Xing Y, Geng X, He X. Sauchinone inhibits angiotensin II-induced proliferation and migration of vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2019; 47:220-226. [PMID: 31587339 DOI: 10.1111/1440-1681.13187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
Hypertension is a common type of cardiovascular disease that remains a major cause of death in the world. Vascular remodelling is an important complication of hypertension, and vascular smooth muscle cells (VSMCs) play a major role in vascular remodelling. Sauchinone is one of the active lignins which has been found to possess vascular protective effects. However, the functional role of sauchinone in hypertension has not been investigated. The aim of this study was to evaluate the role of sauchinone in the angiotensin II (Ang II)-induced vascular remodelling model in VSMCs. The results showed that treatment of sauchinone inhibited Ang II-induced VSMCs proliferation and migration in VSMCs. Sauchinone treatment suppressed the reactive oxygen species (ROS) production and NADPH oxidase (NOX) activity in Ang II-induced VSMCs. The inhibitory effects of Ang II on expressions of VSMCs phenotype markers including α-smooth muscle actin (α-SMA), calponin, osteopontin were mitigated by sauchinone treatment. Furthermore, sauchinone inhibited Ang II-induced over-activation of TGF-β1/Smad3 signalling pathway in VSMCs. Taken together, this study identified sauchinone as a potential agent for preventing vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ying Wang
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xiaoming Li
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xuying Huang
- Department of Emergency, Xi'an No.4 Hospital, Shaanxi, China
| | - Sirui Ma
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Yue Xing
- Department of Ultrasound, Xi'an No.4 Hospital, Shaanxi, China
| | - Xiaoying Geng
- Department of Intensive Care Medicine, Xi'an No.4 Hospital, Shaanxi, China
| | - Xu He
- Department of Cardiology, Yulin No.2 Hospital, Shaanxi, China
| |
Collapse
|
44
|
Xu F, Liu Y, Zhu X, Li S, Shi X, Li Z, Ai M, Sun J, Hou B, Cai W, Sun H, Ni L, Zhou Y, Qiu L. Protective Effects and Mechanisms of Vaccarin on Vascular Endothelial Dysfunction in Diabetic Angiopathy. Int J Mol Sci 2019; 20:ijms20184587. [PMID: 31533227 PMCID: PMC6769517 DOI: 10.3390/ijms20184587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complications are a major leading cause of mortality in patients suffering from type 2 diabetes mellitus (T2DM). Vascular endothelial dysfunction is a core pathophysiological event in the early stage of T2DM and eventually leads to cardiovascular disease. Vaccarin (VAC), an active flavonoid glycoside extracted from vaccariae semen, exhibits extensive biological activities including vascular endothelial cell protection effects. However, little is known about whether VAC is involved in endothelial dysfunction regulation under high glucose (HG) or hyperglycemia conditions. Here, in an in vivo study, we found that VAC attenuated increased blood glucose, increased glucose and insulin tolerance, relieved the disorder of lipid metabolism and oxidative stress, and improved endothelium-dependent vasorelaxation in STZ/HFD-induced T2DM mice. Furthermore, in cultured human microvascular endothelial cell-1 (HMEC-1) cells, we showed that pretreatment with VAC dose-dependently increased nitric oxide (NO) generation and the phosphorylation of eNOS under HG conditions. Mechanistically, VAC-treated HMEC-1 cells exhibited higher AMPK phosphorylation, which was attenuated by HG stimulation. Moreover, HG-triggered miRNA-34a upregulation was inhibited by VAC pretreatment, which is in accordance with pretreatment with AMPK inhibitor compound C (CC). In addition, both reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) and VAC abolished HG-evoked dephosphorylation of AMPK and eNOS, increased miRNA-34a expression, and decreased NO production. These results suggest that VAC impedes HG-induced endothelial dysfunction via inhibition of the ROS/AMPK/miRNA-34a/eNOS signaling cascade.
Collapse
Affiliation(s)
- Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yixiao Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Shuangshuang Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuelin Shi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Zhongjie Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Min Ai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Jiangnan Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Lulu Ni
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yuetao Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| |
Collapse
|
45
|
Zickler D, Luecht C, Willy K, Chen L, Witowski J, Girndt M, Fiedler R, Storr M, Kamhieh-Milz J, Schoon J, Geissler S, Ringdén O, Schindler R, Moll G, Dragun D, Catar R. Tumour necrosis factor-alpha in uraemic serum promotes osteoblastic transition and calcification of vascular smooth muscle cells via extracellular signal-regulated kinases and activator protein 1/c-FOS-mediated induction of interleukin 6 expression. Nephrol Dial Transplant 2019; 33:574-585. [PMID: 29228352 DOI: 10.1093/ndt/gfx316] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background Vascular calcification is enhanced in uraemic chronic haemodialysis patients, likely due to the accumulation of midsize uraemic toxins, such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Here we have assessed the impact of uraemia on vascular smooth muscle cell (VSMC) calcification and examined the role of IL-6 and TNF-α as possible mediators and, most importantly, its underlying signalling pathway in VSMCs. Methods VSMCs were incubated with samples of uraemic serum obtained from patients treated with haemodialysis for renal failure in the Permeability Enhancement to Reduce Chronic Inflammation-I clinical trial. The VSMCs were assessed for IL-6 gene regulation and promoter activation in response to uraemic serum and TNF-α with reporter assays and electrophoretic mobility shift assay and for osteoblastic transition, cellular calcification and cell viability upon osteogenic differentiation. Results Uraemic serum contained higher levels of TNF-α and IL-6 compared with serum from healthy individuals. Exposure of VSMCs to uraemic serum or recombinant TNF-α lead to a strong upregulation of IL-6 mRNA expression and protein secretion, which was mediated by activator protein 1 (AP-1)/c-FOS-pathway signalling. Uraemic serum induced osteoblastic transition and calcification of VSMCs could be strongly attenuated by blocking TNF-α, IL-6 or AP-1/c-FOS signalling, which was accompanied by improved cell viability. Conclusion These results demonstrate that uraemic serum contains higher levels of uraemic toxins TNF-α and IL-6 and that uraemia promotes vascular calcification through a signalling pathway involving TNF-α, IL-6 and the AP-1/c-FOS cytokine-signalling axis. Thus treatment modalities aiming to reduce systemic TNF-α and IL-6 levels in chronic haemodialysis patients should be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Daniel Zickler
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Luecht
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Kevin Willy
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lei Chen
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Germany
| | - Markus Storr
- Department of Research and Development, Gambro Dialysatoren GmbH, Hechingen, Germany
| | | | - Janosch Schoon
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olle Ringdén
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ralf Schindler
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Berlin-Brandenburg Center and School for Regenerative Therapies(BCRT/BSRT)
- Julius Wolff Institute for Biomechanics and Muskuloskeletal Regeneration (JWI), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rusan Catar
- Clinic for Nephrology and Critical Care Medicine, Charite-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
46
|
Rondeau V, Jain A, Truong V, Srivastava AK. Involvement of the Akt-dependent CREB signaling pathway in hydrogen-peroxide-induced early growth response protein-1 expression in rat vascular smooth muscle cells. Can J Physiol Pharmacol 2019; 97:885-892. [DOI: 10.1139/cjpp-2019-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased generation of reactive oxygen species is believed to play a key role in the pathophysiology of cardiovascular diseases. Excessive growth and proliferation of vascular smooth muscle cells (VSMCs) have been suggested to be major contributors to vascular dysfunction. Potential involvement of early growth response protein-1 (Egr-1), a zinc finger transcription factor, in the development of vascular diseases has been suggested. Recent studies have shown that the reactive oxygen species hydrogen peroxide (H2O2) increases Egr-1 expression in VSMCs; however, signaling events leading to H2O2-induced Egr-1 expression are not fully understood. Therefore, we aimed to determine the signaling pathways implicated in H2O2-induced Egr-1 expression in rat VSMCs. Pharmacological blockade of the phosphatidylinositol 3-kinase/Akt pathway by wortmannin or SC66 significantly inhibited the protein and mRNA levels of Egr-1 induced by H2O2. H2O2-induced Egr-1 expression was associated with increased phosphorylation of cyclic AMP response element-binding (CREB) protein, and pharmacological inhibition or silencing of Akt attenuated both H2O2-induced CREB phosphorylation and Egr-1 expression. Moreover, RNA interference-mediated depletion of CREB almost completely suppressed the stimulatory effect of H2O2 on Egr-1 expression. Pharmacological blockade or silencing of c-Src resulted in significant suppression of H2O2-induced Egr-1 expression as well as Akt and CREB phosphorylation. These data show that H2O2 enhances the expression of Egr-1, which was associated with increased phosphorylation of Akt, and H2O2 triggers its effects on Egr-1 expression through c-Src–mediated Akt and CREB-dependent signaling events in VSMCs.
Collapse
Affiliation(s)
- Vincent Rondeau
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Ashish Jain
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Vanessa Truong
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Ashok K. Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M, Yousefi B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 2019; 234:14951-14965. [PMID: 30811039 DOI: 10.1002/jcp.28334] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways organize a great constitution network that regulates several physiological processes, like cell growth, differentiation, and apoptotic cell death. Due to the crucial importance of this signaling pathway, dysregulation of the MAPK signaling cascades is involved in the pathogenesis of various human cancer types. Oxidative stress and DNA damage are two important factors which in common lead to carcinogenesis through dysregulation of this signaling pathway. Reactive oxygen species (ROS) are a common subproduct of oxidative energy metabolism and are considered to be a significant physiological modulator of several intracellular signaling pathways including the MAPK pathway. Studies demonstrated that the MAP kinases extracellular signal-regulated kinase (ERK) 1/2 and p38 were activated in response to oxidative stress. In addition, DNA damage is a partly common circumstance in cell life and may result in mutation, cancer, and even cell death. Recently, accumulating evidence illustrated that the MEK/ERK pathway is associated with the suitable performance of cellular DNA damage response (DDR), the main pathway of tumor suppression. During DDR, the MEK/ERK pathway is regularly activated, which contributes to the appropriate activation of DDR checkpoints to inhibit cell division. Therefore, the aim of this review is to comprehensively discuss the critical function of MAPK signaling in oxidative stress, DNA damage, and cancer progression.
Collapse
Affiliation(s)
- Setareh Rezatabar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rameshknia
- Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Tayebeh Azramezani Kopi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida
| | - Ali Sadeghinia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Emrich F, Penov K, Arakawa M, Dhablania N, Burdon G, Pedroza AJ, Koyano TK, Kim YM, Raaz U, Connolly AJ, Iosef C, Fischbein MP. Anatomically specific reactive oxygen species production participates in Marfan syndrome aneurysm formation. J Cell Mol Med 2019; 23:7000-7009. [PMID: 31402541 PMCID: PMC6787454 DOI: 10.1111/jcmm.14587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.
Collapse
Affiliation(s)
- Fabian Emrich
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiothoracic Surgery, Leipzig University Heart Center, Leipzig, Germany
| | - Kiril Penov
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiothoracic Surgery, Leipzig University Heart Center, Leipzig, Germany
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California.,Department of Cardiovascular Surgery, Jichi Medical University, Saitama, Japan
| | - Nathan Dhablania
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Tiffany K Koyano
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Young M Kim
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Uwe Raaz
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | | | - Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| |
Collapse
|
49
|
Mohamed R, Janke R, Guo W, Cao Y, Zhou Y, Zheng W, Babaahmadi-Rezaei H, Xu S, Kamato D, Little PJ. GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:R1-R11. [PMID: 32923966 PMCID: PMC7439842 DOI: 10.1530/vb-18-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic studies suggest that these two transactivation pathways are distinct. Currently, there is a focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular diseases. With the broadening of GPCR transactivation signalling, it is therefore important from a therapeutic perspective to find a common transactivation pathway of EGFR and TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and they act as second messengers, thus modulating cellular signal transduction pathways. ROS are involved in different mechanisms of GPCR transactivation of EGFR. However, the role of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will discuss the involvement of ROS in GPCR transactivation-dependent signalling.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Reearna Janke
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wanru Guo
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Affiliation(s)
- Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens.
| |
Collapse
|