1
|
Buja LM, McDonald MM, Zhao B, Narula N, Narula J, Barth RF. Insights from autopsy-initiated pathological studies of the pathogenesis and clinical manifestations of atherosclerosis and ischemic heart disease: Part II. Ischemic heart disease. Cardiovasc Pathol 2025; 76:107727. [PMID: 39956412 DOI: 10.1016/j.carpath.2025.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
CONTEXT Ischemic heart disease (IHD) due to coronary atherosclerosis constitutes the leading cause of morbidity and mortality worldwide. This review was undertaken to retrospectively analyze the lines of research that generated the evidence for our contemporary understanding of atherosclerosis-based coronary artery disease and to provide a rationale for continued support for autopsy-based research in order to make further progress in reduction of the morbidity and mortaility from IHD. OBJECTIVES To analyze the contributions of the autopsy to complement and validate other lines of investigation in determining the complex interactions between coronary artery alterations linked to the major manifestations of coronary atherosclerosis, namely, coronary thrombosis, acute myocardial infarction, and sudden cardiac death. DATA SOURCES Systematic search on PubMed to gather relevant studies concerning autopsy studies and reviews of the pathology and pathogenesis of atherosclerosis, ischemic heart disease, coronary atherosclerosis, coronary thrombosis, myocardial infarction and sudden cardiac death. CONCLUSIONS An extensive search of the published literature has confirmed the continuing importance of the autopsy as a powerful tool to understand the pathogenesis, clinical features, and therapeutic options for the treatment of atherosclerosis and its major manifestation, ischemic heart disease. This has been described in the Part I companion of the present review. Autopsy-initiated studies have documented the prevalence and clinicopathological significance of atherosclerosis in different human populations and its relationship to risk factors. It has been shown that the clinically silent phase of ischemic heart disease (IHD) begins in the first decades of life. Pathological studies have clarified the complex relationship between coronary atherosclerosis, coronary thrombosis, and myocardial ischemic events. These studies also have elucidated the pathological basis of sudden cardiac death. Insights from these studies also have been important in developing and evaluating strategies for continued progress in reducing the morbidity and mortality attributed to atherosclerosis and IHD.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA.
| | | | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Jagat Narula
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Buja LM, McDonald MM, Zhao B, Narula N, Narula J, Barth RF. Insights from autopsy-initiated pathological studies of the pathogenesis and clinical manifestations of atherosclerosis and ischemic heart disease: Part I. Atherosclerosis. Cardiovasc Pathol 2025; 76:107726. [PMID: 39971218 DOI: 10.1016/j.carpath.2025.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
CONTEXT Ischemic heart disease (IHD) due to coronary atherosclerosis constitutes the leading cause of morbidity and mortality worldwide. This review was undertaken to document the historical basis for our contemporary understanding of atherosclerosis-based disease and to provide a rationale for continued support for autopsy-based research to make further progress in reducing the morbidity and mortality from atherosclerosis-related disease. OBJECTIVES To analyze the contributions of the autopsy-initiated pathological studies to complement and validate other lines of investigation in determining the pathology and pathogenesis of the leading worldwide cause of morbidity and mortality, namely, atherosclerosis and its major complications of coronary atherosclerosis, ischemic heart disease, coronary thrombosis, acute myocardial infarction, and sudden cardiac death. DATA SOURCES Systematic search on PubMed to gather relevant studies concerning autopsy studies and reviews of the pathology and pathogenesis of atherosclerosis, ischemic heart disease, coronary atherosclerosis, coronary thrombosis, myocardial infarction, and sudden cardiac death CONCLUSIONS: Extensive published reports have confirmed the continuing importance of the autopsy as a powerful tool to understand the pathogenesis, clinical features, and therapeutic options for major diseases. This specifically has been shown by the analysis of atherosclerosis and its major manifestation of ischemic heart disease, as presented in this (Part I) and its companion (Part II) review. Autopsy-initiated pathological studies have documented the prevalence and natural history of atherosclerosis in different human populations in relationship to the prevalence of risk factors and established that the clinically silent phase of the disease begins in the first decades of life. Insights from these studies have been essential in developing and evaluating strategies for continued progress in preventing and controlling the disability and death associated with atherosclerotic heart disease.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA.
| | | | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Jagat Narula
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Aljakna Khan A, Sabatasso S. Autophagy in myocardial ischemia and ischemia/reperfusion. Cardiovasc Pathol 2025; 74:107691. [PMID: 39218167 DOI: 10.1016/j.carpath.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Myocardial infarction (MI) is a life-threatening condition that leads to loss of viable heart tissue. The best way to treat acute MI and limit the infarct size is to re-open the occluded coronary artery and restore the supply of oxygenated and nutrient-rich blood, but reperfusion can cause additional damage. Autophagy is an intracellular process that recycles damaged cytoplasmic components (molecules and organelles) by loading them into autophagosomes and degrading them in autolysosomes. Autophagy is increased in in vivo animal models of permanent ischemia and ischemia/reperfusion but by different molecular mechanisms. While autophagy is protective during permanent ischemia, it is detrimental during ischemia/reperfusion. Its modulation is being investigated as a potential target to reduce reperfusion injury. This review provides a synopsis of the current knowledge about autophagy, summarizes findings specifically in permanent ischemia and ischemia/reperfusion, and briefly discusses the potential implication of experimental findings.
Collapse
Affiliation(s)
- Aleksandra Aljakna Khan
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Unit of Forensic medicine, University Centre of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Buja LM. Pathobiology of myocardial and cardiomyocyte injury in ischemic heart disease: Perspective from seventy years of cell injury research. Exp Mol Pathol 2024; 140:104944. [PMID: 39577392 DOI: 10.1016/j.yexmp.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
This review presents a perspective on the pathobiology of acute myocardial infarction, a major manifestation of ischemic heart disease, and related mechanisms of ischemic and toxic cardiomyocyte injury, based on advances and insights that have accrued over the last seventy years, including my sixty years of involvement in the field as a physician-scientist-pathologist. This analysis is based on integration of my research within the broader context of research in the field. A particular focus has been on direct measurements in cardiomyocytes of electrolyte content by electron probe X-ray microanalysis (EPXMA) and Ca2+ fluxes by fura-2 microspectrofluorometry. These studies established that increased intracellular Ca2+ develops at a transitional stage in the progression of cardiomyocyte injury in association with ATP depletion, other electrolyte alterations, altered cell volume regulation, and altered membrane phospholipid composition. Subsequent increase in total calcium with mitochondrial calcium accumulation can occur. These alterations are characteristic of oncosis, which is an initial pre-lethal state of cell injury with cell swelling due to cell membrane dysfunction in ATP depleted cells; oncosis rapidly progresses to necrosis/necroptosis with physical disruption of the cell membrane, unless the adverse stimulus is rapidly reversed. The observed sequential changes fit a three-stage model of membrane injury leading to irreversible cell injury. The data establish oncosis as the primary mode of cardiomyocyte injury in evolving myocardial infarcts. Oncosis also has been documented to be the typical form of non-ischemic cell injury due to toxins. Cardiomyocytes with less energy impairment have the capability of undergoing apoptosis and autophagic death as well as oncosis, as is seen in pathological remodeling in chronic heart failure. Work is ongoing to apply the insights from experimental studies to better understand and ameliorate myocardial ischemia and reperfusion injury in patients. The perspective and insights in this review are derived from basic principles of pathology, an integrative discipline focused on mechanisms of disease affecting the cell, the organizing unit of living organisms.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, United States of America.
| |
Collapse
|
6
|
Gong F, He C, Li X, Wang K, Li M, Zhou X, Xu M, He X. Impacts of fertilization methods on Salvia miltiorrhiza quality and characteristics of the epiphytic microbial community. FRONTIERS IN PLANT SCIENCE 2024; 15:1395628. [PMID: 38817929 PMCID: PMC11138495 DOI: 10.3389/fpls.2024.1395628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.
Collapse
Affiliation(s)
- Feng Gong
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehan Wang
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Min Li
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xiangyun Zhou
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Minghui Xu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
7
|
Giedraitiene A, Tatarunas V, Kaminskaite K, Meskauskaite U, Boieva S, Ajima Y, Ciapiene I, Veikutiene A, Zvikas V, Kupstyte-Kristapone N, Jakstas V, Luksiene D, Tamosiunas A, Lesauskaite V. Enterobacterales Biofilm-Specific Genes and Antimicrobial and Anti-Inflammatory Biomarkers in the Blood of Patients with Ischemic Heart Disease. Diagnostics (Basel) 2024; 14:546. [PMID: 38473018 DOI: 10.3390/diagnostics14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) is the most prevalent type of cardiovascular disease. The main cause of IHD is atherosclerosis, which is a multifactorial inflammatory disease of blood vessels. Studies show that bacteria might have a significant impact on the pathogenesis of atherosclerosis and plaque rupture. This study aimed to evaluate the complexity of interactions between bacteria and the human body concerning metabolites and bacterial genes in patients with ischemic heart disease. METHODS Bacterial 16S rDNA and wcaF, papC, and sdhC genes were detected in whole blood using a real-time PCR methodology. An enzyme-linked immunosorbent assay was used to measure the concentration of the LL-37 protein. An analysis of ARA in blood plasma was performed. RESULTS Bacterial 16S rDNA was detected in 31% of the study patients, and the genes wcaF and sdhC in 20%. Enterobacterales genes were detected more frequently in patients younger than 65 years than in patients aged 65 years and older (p = 0.018) and in patients with type 2 diabetes (p = 0.048). Concentrations of the human antimicrobial peptide LL-37 and 12S-HETE concentrations were determined to be higher if patients had 16S rDNA and biofilm-specific genes. CONCLUSIONS The results of this study enhance the understanding that Enterobacterales bacteria may participate in the pathogenesis of atherosclerosis and IHD. Bacterial DNA and host metabolites in higher concentrations appear to be detected.
Collapse
Affiliation(s)
- Agne Giedraitiene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Kornelija Kaminskaite
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Ugne Meskauskaite
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Svitlana Boieva
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Yu Ajima
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
- School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ieva Ciapiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Audrone Veikutiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu 13, LT 50161 Kaunas, Lithuania
| | - Nora Kupstyte-Kristapone
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu 13, LT 50161 Kaunas, Lithuania
| | - Dalia Luksiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Abdonas Tamosiunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| |
Collapse
|
8
|
Tan L, Long LZ, Li HZ, Yang WW, Peng YX, Lu JM, Liao FF, Ma XC, Qu H, Fu CG, Zhang SS. Growth factor for therapeutic angiogenesis in ischemic heart disease: A meta-analysis of randomized controlled trials. Front Cell Dev Biol 2022; 10:1095623. [PMID: 36568984 PMCID: PMC9780500 DOI: 10.3389/fcell.2022.1095623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aim: This study was designed to systematically evaluate the effects of growth factor (GF) for therapeutic angiogenesis on ischemic heart disease (IHD) by pooling the results of randomized controlled trials (RCTs). Methods and Results: PubMed, EMBASE, and CENTRAL databases were searched from inception to October 2022. RCTs, investigating the effects of GF therapy on IHD, were included. The risk bias of included study was assessed according to Cochrane tool. Weighted mean difference (WMD), calculated with fixed effect model or random effect model, was used to evaluate the effects of GF therapy on left ventricular ejection fraction (LVEF) and Canadian Cardiovascular Society (CCS) angina class. Relative risk (RR) was used to evaluate the effects of GF therapy on all-cause mortality, major adverse cardiovascular events (MACE) and revascularization. Meta-analysis, meta-regression analysis and publication bias analysis were performed by RevMan 5.3 or Stata 15.1 software. Twenty-nine studies involving 2899 IHD patients (1,577 patients in GF group and 1,322 patients in control group) were included. Compared with the control group, GF therapy did not reduce all-cause mortality (RR: 0.82; 95% CI: 0.54-1.24; p = 0.341), MACE [(RR: 0.83; 95% CI: 0.61-1.12; p = 0.227), revascularization (RR: 1.27, 95% CI: 0.82-1.96, p = 0.290) and CCS angina class (WMD: -0.08, 95% CI: -0.36 to 0.20, p = 0.560). However, GF therapy could increase LVEF during short-term follow-up (<1 year). Conclusion: GF for therapeutic angiogenesis was beneficial for increasing LVEF during short-term follow-up (<1 year), however, the therapy was not efficacious in decreasing all-cause mortality, MACE and revascularization.
Collapse
Affiliation(s)
- Ling Tan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Zi Long
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Zheng Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Wen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Xuan Peng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jie-Ming Lu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fei-Fei Liao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Chang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Cardiovascular Clinical Medical Research Center of TCM, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Cardiovascular Clinical Medical Research Center of TCM, Beijing, China,*Correspondence: Hua Qu, ; Chang-Geng Fu, ; Shan-Shan Zhang,
| | - Chang-Geng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,National Cardiovascular Clinical Medical Research Center of TCM, Beijing, China,*Correspondence: Hua Qu, ; Chang-Geng Fu, ; Shan-Shan Zhang,
| | - Shan-Shan Zhang
- Beijing Xibeiwang Town Community Health Service Center, Beijing, China,*Correspondence: Hua Qu, ; Chang-Geng Fu, ; Shan-Shan Zhang,
| |
Collapse
|
9
|
McDonald MM, Mihalj M, Zhao B, Nathan S, Matejin S, Ottaviani G, Jezovnik MK, Radovancevic R, Kar B, Gregoric ID, Buja LM. Clinicopathological correlations in heart transplantation recipients complicated by death or re-transplantation. Front Cardiovasc Med 2022; 9:1014796. [PMID: 36407445 PMCID: PMC9669710 DOI: 10.3389/fcvm.2022.1014796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose This study aimed to identify and correlate pathological findings with clinical outcomes in patients after orthotopic heart transplantation (OHT) who either died or underwent a re-transplantation. Methodology and study design Single-center retrospective analysis of primary OHT patients who died or were re-transplanted between October 2012 and July 2021. Clinical data were matched with corresponding pathological findings from endomyocardial biopsies on antibody-mediated rejection, cellular rejection, and cardiac allograft vasculopathy. Re-assessment of available tissue samples was performed to investigate acute myocardial injury (AMI) as a distinct phenomenon. These were correlated with clinical outcomes, which included severe primary graft dysfunction. Patients were grouped according to the presence of AMI and compared. Results We identified 47 patients with truncated outcomes after the first OHT. The median age was 59 years, 36 patients (76%) were male, 25 patients (53%) had a prior history of cardiac operation, and 21 patients (45%) were supported with a durable assist device before OHT. Of those, AMI was identified in 22 (47%) patients (AMI group), and 25 patients had no AMI (non-AMI group). Groups were comparable in baseline and perioperative data. Histopathological observations in AMI group included a non-significant higher incidence of antibody-mediated rejection Grade 1 or higher (pAMR ≥ 1) (32% vs. 12%, P = 0.154), and non-significant lower incidence of severe acute cellular rejection (ACR ≥ 2R) (32% vs. 40%, P = 0.762). Clinical observations in the AMI group found a significantly higher occurrence of severe primary graft dysfunction (68% vs. 20%, P = 0.001) and a highly significant shorter duration from transplantation to death or re-transplantation (42 days [IQR 26, 120] vs. 1,133 days [711–1,664], P < 0.0001). Those patients had a significantly higher occurrence of cardiac-related deaths (64% vs. 24%, P = 0.020). No difference was observed in other outcomes. Conclusion In heart transplant recipients with a truncated postoperative course leading to either death or re-transplantation, AMI in endomyocardial biopsies was a common pathological phenomenon, which correlated with the clinical occurrence of severe primary graft dysfunction. Those patients had significantly shorter survival times and higher cardiac-related deaths. The presence of AMI suggests a truncated course after OHT.
Collapse
Affiliation(s)
- Michelle M. McDonald
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maks Mihalj
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cardiac Surgery, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sriram Nathan
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Stanislava Matejin
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Cardiovascular Pathology, Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mateja K. Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rajko Radovancevic
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Biswajit Kar
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Igor D. Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - L. Maximilian Buja
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: L. Maximilian Buja,
| |
Collapse
|
10
|
Buja LM. THE HISTORY, SCIENCE, AND ART OF WINE AND THE CASE FOR HEALTH BENEFITS: PERSPECITIVES OF AN OENOPHILIC CARDIOVASCULAR PATHOLOGIST. Cardiovasc Pathol 2022; 60:107446. [PMID: 35654336 DOI: 10.1016/j.carpath.2022.107446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/15/2023] Open
Abstract
This article stems from the intersection of the author's long-standing interests in science, medicine, pathology and oenology. A discussion is provided of selected aspects of the science of viticulture and wine production as well as qualities of the finished product crafted by the art of the wine maker. The case for health benefits of moderate consumption of wine and other alcoholic beverages also is discussed. Based on the "French paradox", an analysis is presented of the evidence for the special effects of red wine consumption, particularly as part of the Mediterranean diet and lifestyle. A concluding perspective is given in support of wine as a promotor of civility and social engagement.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston).
| |
Collapse
|
11
|
The Application of Autopsy and Explanted Heart Samples in Scientific Research. Cardiovasc Pathol 2022; 59:107424. [DOI: 10.1016/j.carpath.2022.107424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
|
12
|
Buja LM, Zhao B, Segura A, Lelenwa L, McDonald M, Michaud K. Cardiovascular pathology: guide to practice and training. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Han RH, Huang HM, Han H, Chen H, Zeng F, Xie X, Liu DY, Cai Y, Zhang LQ, Liu X, Xia ZY, Tang J. Propofol postconditioning ameliorates hypoxia/reoxygenation induced H9c2 cell apoptosis and autophagy via upregulating forkhead transcription factors under hyperglycemia. Mil Med Res 2021; 8:58. [PMID: 34753510 PMCID: PMC8579603 DOI: 10.1186/s40779-021-00353-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Administration of propofol, an intravenous anesthetic with antioxidant property, immediately at the onset of post-ischemic reperfusion (propofol postconditioning, P-PostC) has been shown to confer cardioprotection against ischemia-reperfusion injury, while the underlying mechanism remains incompletely understood. The FoxO transcription factors are reported to play critical roles in activating cardiomyocyte survival signaling throughout the process of cellular injuries induced by oxidative stress and are also involved in hypoxic postconditioning mediated neuroprotection, however, the role of FoxO in postconditioning mediated protection in the heart and in particular in high glucose condition is unknown. METHODS Rat heart-derived H9c2 cells were exposed to high glucose (HG) for 48 h (h), then subjected to hypoxia/reoxygenation (H/R, composed of 8 h of hypoxia followed by 12 h of reoxygenation) in the absence or presence of postconditioning with various concentrations of propofol (P-PostC) at the onset of reoxygenation. After having identified the optical concentration of propofol, H9c2 cells were subjected to H/R and P-PostC in the absence or presence of FoxO1 or FoxO3a gene silencing to explore their roles in P-PostC mediated protection against apoptotic and autophagic cell deaths under hyperglycemia. RESULTS The results showed that HG with or without H/R decreased cell viability, increased lactate dehydrogenase (LDH) leakage and the production of reactive oxygen species (ROS) in H9c2 cells, all of which were significantly reversed by propofol (P-PostC), especially at the concentration of 25 µmol/L (P25) (all P < 0.05, NC vs. HG; HG vs. HG + HR; HG + HR + P12.5 or HG + HR + P25 or HG + HR + P50 vs. HG + HR). Moreover, we found that propofol (P25) decreased H9c2 cells apoptosis and autophagy that were concomitant with increased FoxO1 and FoxO3a expression (all P < 0.05, HG + HR + P25 vs. HG + HR). The protective effects of propofol (P25) against H/R injury were reversed by silencing FoxO1 or FoxO3a (all P < 0.05, HG + HR + P25 vs. HG + HR + P25 + siRNA-1 or HG + HR + P25 + siRNA-5). CONCLUSION It is concluded that propofol postconditioning attenuated H9c2 cardiac cells apoptosis and autophagy induced by H/R injury through upregulating FoxO1 and FoxO3a under hyperglycemia.
Collapse
Affiliation(s)
- Rong-Hui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - He-Meng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Hong Han
- Department of Anesthesiology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 518000, China
| | - Hao Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Fei Zeng
- Department of Anesthesiology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Xiang Xie
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan-Yong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, China
| | - Liang-Qing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xin Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, 999077, Hong Kong SAR, China.
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China.
| |
Collapse
|
14
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Kobuszewska A, Jastrzębska E, Żukowski K, Brzózka Z. Simulation of hypoxia of myocardial cells in microfluidic systems. Sci Rep 2020; 10:15524. [PMID: 32968198 PMCID: PMC7511941 DOI: 10.1038/s41598-020-72660-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
The paper presents a newly designed microfluidic system that allows simulation of myocardial hypoxia by biochemical method. The geometry of the microsystem was designed in such a way, that quantitative fluorescent measurements using a spectrofluorometric plate reader was possible. Biochemical simulation of hypoxia was carried out using potent mitochondrial oxidative phosphorylation uncoupler—Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP). Two cardiac cell lines were used in the study—rat cardiomyoblasts (H9C2) and human cardiomyocytes. The effectiveness of biochemical simulation of hypoxia was studied using two fluorescent dyes: carbocyanine iodide (JC-1) and Fluo-4. Changes in the mitochondrial membrane potential and concentration of intracellular calcium ions were tested. The major novelty of this research was the applying the microfluidic system to create hypoxia conditions for cardiac cells using the biochemical approach. In further studies, the presented hypoxia model could be used to develop new methods of treatment of ischemic heart disease for example in cell therapy based on stem cells.
Collapse
Affiliation(s)
- Anna Kobuszewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Kamil Żukowski
- CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Brzózka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
17
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
18
|
Fan S, Zhang J, Xiao Q, Liu P, Zhang Y, Yao E, Chen X. Cardioprotective effect of the polysaccharide from Ophiopogon japonicus on isoproterenol-induced myocardial ischemia in rats. Int J Biol Macromol 2020; 147:233-240. [PMID: 31923517 DOI: 10.1016/j.ijbiomac.2020.01.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
The polysaccharide (OJP1), extracted from the root of Ophiopogon japonicus, is a well-known traditional Chinese medicine used to treat cardiovascular diseases. The present study was set up to investigate the cardioprotective effect of OJP1 on isoproterenol (ISO)-induced myocardial ischemia injury in rats. Results showed that pretreatment with OJP1 (100, 200 and 300 mg/kg) significantly reduced ISO-induced ST-segment elevation and the heart index, attenuated the levels of marker enzymes (AST, LDH, CK and CK-MB), along with a significantly enhanced the activities of ATPases. Moreover, pretreatment with OJP1 not only enhanced the activities of SOD, GPx and CAT in serum and myocardium, but also decreased the level of MDA. The biochemical and histopathological analysis also showed that OJP1 can alleviate the myocardial injury induced by ISO. Taken together, our results indicated that oral administration of OJP1 offered significant cardioprotective effect against the damage induced by ISO through enhancement of endogenous antioxidants.
Collapse
Affiliation(s)
- Sairong Fan
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junfeng Zhang
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Xiao
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Peng Liu
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yining Zhang
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Enze Yao
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
19
|
Lu Y, Xi J, Zhang Y, Li C, Chen W, Hu X, Zhang M, Zhang F, Wei H, Li Z, Wang Z. MicroRNA-214-5p protects against myocardial ischemia reperfusion injury through targeting the FAS ligand. Arch Med Sci 2020; 16:1119-1129. [PMID: 32864001 PMCID: PMC7444694 DOI: 10.5114/aoms.2019.85405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are considered as crucial modulators in myocardial ischemia and reperfusion (I/R) injury. The present study aimed to investigate the expression and biological functions of miR-214-5p via targeting Fas ligand (FASLG) in I/R injury. MATERIAL AND METHODS Lactate dehydrogenase, casein kinase, malondialdehyde assay, reactive oxygen species (ROS) detection and cell apoptosis analysis measured cell damage and cell apoptosis in H9c2 cells under hypoxia/reperfusion (H/R) treatment. Bioinformatics and dual luciferase reporter assays demonstrated the molecular mechanism of miR-214-5p in cardiac cells. 2,3,5-Triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining and adenovirus injection were performed in I/R treated mice. RESULTS The expression of miR-214-5p was decreased in H/R injured H9c2 cells compared with control cells (p < 0.001). Overexpression of miR-214-5p reduced cell damage and apoptosis in H9c2 cells under H/R treatment (p < 0.001). Further study revealed that FASLG was a target of miR-214-5p. Enhanced expression of FASLG attenuated the protective function of miR-214-5p in H9c2 cells subjected to H/R injury (P < 0.001). Moreover, the elevated expression of miR-214-5p by adenovirus injection protected cardiac cells from I/R injury in mice (n = 6/per group). CONCLUSIONS We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG in vitro and in vivo.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jue Xi
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yao Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenzong Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wensu Chen
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoqin Hu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengyun Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Wei
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhi Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhirong Wang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
O’Dwyer J, Murphy R, Dolan EB, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv Transl Res 2019; 10:440-454. [DOI: 10.1007/s13346-019-00684-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wang M, Wang R, Xie X, Sun G, Sun X. Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function. Biomed Pharmacother 2019; 117:109143. [PMID: 31387189 DOI: 10.1016/j.biopha.2019.109143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Araloside C (AsC) has potential cardioprotective properties. However, the underlying mechanism of AsC-mediated cardioprotection, especially the role of mitochondrial function, remains largely unknown. Here, we used H9c2 cardiomyocytes to study the cardioprotective mechanisms of AsC through H2O2-induced oxidative stress. Cell viability, lactate dehydrogenase release, mitochondrial functions and bioenergetics were evaluated. Western blot analysis was used to measure the protein expression levels of apoptosis and the phosphorylation of AMP-activated protein kinase (AMPK). Results revealed that AsC increased cell viability, improved mitochondrial membrane potential disruption, decreased mitochondrial reactive oxygen species level, elevated cellular ATP levels and alleviated impaired mitochondrial respiration in H2O2-induced H9c2 cardiomyoblasts injury. Furthermore, AsC modulated apoptosis-associated protein expression and AMPK pathway in H9c2 cells under oxidative stress. In conclusion, AsC potentially protects H9c2 cardiomyoblasts against oxidative stress by regulating mitochondrial function and AMPK activation. AsC may be an effective therapeutic agent for the prevention of oxidative stress in cardiac injury.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Ruiying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Xueheng Xie
- Harbin University of Commerce, Harbin, 150076, Heilongjiang, PR China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
22
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med 2019; 6:e000336. [PMID: 31205729 PMCID: PMC6541752 DOI: 10.1136/lupus-2019-000336] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFN) can have dual and opposing roles in immunity, with effects that are beneficial or detrimental to the individual depending on whether IFN pathway activation is transient or sustained. Determinants of IFN production and its functional consequences include the nature of the microbial or nucleic acid stimulus, the type of nucleic acid sensor involved in inducing IFN, the predominant subtype of type I IFN produced and the immune ecology of the tissue at the time of IFN expression. When dysregulated, the type I IFN system drives many autoimmune and non-autoimmune inflammatory diseases, including SLE and the tissue inflammation associated with chronic infection. The type I IFN system may also contribute to outcomes for patients affected by solid cancers or myocardial infarction. Significantly more research is needed to discern the mechanisms of induction and response to type I IFNs across these diseases, and patient endophenotyping may help determine whether the cytokine is acting as 'friend' or 'foe', within a particular patient, and at the time of treatment. This review summarises key concepts and discussions from the second International Summit on Interferons in Inflammatory Diseases, during which expert clinicians and scientists evaluated the evidence for the role of type I IFNs in autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Lars Ronnblom
- Section of Rheumatology, Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Tyrosine nitration of mitochondrial proteins during myocardial ischemia and reperfusion. J Physiol Biochem 2019; 75:217-227. [PMID: 31115776 DOI: 10.1007/s13105-019-00683-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
Myocardial ischemia reperfusion is associated with mitochondrial dysfunction and increased formation of reactive oxygen/nitrogen species. The main purpose of this study was to assess the role of tyrosine nitration of mitochondrial proteins in postischemic contractile dysfunction known as myocardial stunning. Isolated Langendorff-perfused rat hearts were subjected to 20-min global ischemia followed by 30-min reperfusion. The reperfused hearts showed marked decline in left ventricular developed pressure, maximal rate of contraction (+dP/dt), and maximal rate of relaxation (-dP/dt). Immunofluorescence and ELISA assays demonstrated enhanced protein tyrosine nitration in reperfused hearts. Using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry, eight mitochondrial proteins were identified to be nitrated after ischemia reperfusion. These proteins are crucial in mitochondrial electron transport, fatty acid oxidation, tricarboxylic acid cycle, ATP synthesis, and control of high-energy phosphates. The proteome data also indicated reduced abundance in several of nitrated proteins. The results suggest that these changes may contribute to inhibition of aconitase activity but are unlikely to affect electron transport chain activity. Whether tyrosine nitration of mitochondrial proteins can be considered the contributing factor of postischemic contractile dysfunction remains to be explored.
Collapse
|
25
|
Buja LM, Barth RF, Krueger GR, Brodsky SV, Hunter RL. The Importance of the Autopsy in Medicine: Perspectives of Pathology Colleagues. Acad Pathol 2019; 6:2374289519834041. [PMID: 30886893 PMCID: PMC6410379 DOI: 10.1177/2374289519834041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
This article presents a perspective on the importance of the autopsy in medical practice and science based on experiences of the authors as physician-scientists involved in autopsy practice. Our perspectives are presented on the seminal contributions of the autopsy in the areas of cardiovascular disease, including congenital heart disease, atherosclerosis, coronary artery disease, and myocardial infarction, and infectious disease, including tuberculosis and viral infections. On the positive side of the future of the autopsy, we discuss the tremendous opportunities for important research to be done by application of advanced molecular biological techniques to formalin-fixed, paraffin-embedded tissue blocks obtained at autopsy. We also note with concern the countervailing forces impacting the influence of pathology in education and clinical practice at our academic medical centers, which also present impediments to increasing autopsy rates. Our challenge as academic pathologists, whose careers have been molded by involvement in the autopsy, is to counter these trends. The challenges are great but the benefits for medicine and society are enormous.
Collapse
Affiliation(s)
- Louis Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Gerhard R. Krueger
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Sergey V. Brodsky
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
26
|
Gabrielová E, Bartošíková L, Nečas J, Modrianský M. Cardioprotective effect of 2,3-dehydrosilybin preconditioning in isolated rat heart. Fitoterapia 2018; 132:12-21. [PMID: 30385403 DOI: 10.1016/j.fitote.2018.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
2,3-dehydrosilybin (DHS) is a minor component of silymarin, Silybum marianum seed extract, used in some dietary supplements. One of the most promising activities of this compound is its anticancer and cardioprotective activity that results, at least partially, from its cytoprotective, antioxidant, and chemopreventive properties. The present study investigated the cardioprotective effects of DHS in myocardial ischemia and reperfusion injury in rats. Isolated hearts were perfused by the Langendorff technique with low dose DHS (100 nM) prior to 30 min of ischemia induced by coronary artery occlusion. After 60 min of coronary reperfusion infarct size was determined by triphenyltetrazolium staining, while lactatedehydrogenase activity was evaluated in perfusate samples collected at several timepoints during the entire perfusion procedure. Signalosomes were isolated from a heart tissue after reperfusion and involved signalling proteins were detected. DHS reduced the extent of infarction compared with untreated control hearts at low concentration; infarct size as proportion of ischemic risk zone was 7.47 ± 3.1% for DHS versus 75.3 ± 4.8% for ischemia. This protective effect was comparable to infarct limitation induced by ischemic preconditioning (22.3 ± 4.5%). Selective inhibition of Src-family kinases with PP2 (4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine) abrogated the protection afforded by DHS. This study provides experimental evidence that DHS can mediate Src-kinase-dependent cardioprotection against myocardial damage produced by ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Eva Gabrielová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lenka Bartošíková
- Department of Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jiří Nečas
- Department of Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Martin Modrianský
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Wang C, Luo H, Xu Y, Tao L, Chang C, Shen X. Salvianolic Acid B-Alleviated Angiotensin II Induces Cardiac Fibrosis by Suppressing NF-κB Pathway In Vitro. Med Sci Monit 2018; 24:7654-7664. [PMID: 30365482 PMCID: PMC6215385 DOI: 10.12659/msm.908936] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salvianolic acid B (SalB) is the representative component of phenolic acids derived from the roots and rhizomes of Salvia miltiorrhiza Bge (Labiatae), which has been used widely in Asian countries for clinical therapy of various cardiovascular dysfunction-related diseases. However, cardiac protection effects and the underlying mechanism for clinical application are still poorly understood. Here, we investigated the potential anti-myocardial fibrosis effect and mechanism of SalB on Angiotensin II (Ang II)-induced cardiac fibrosis in vitro. MATERIAL AND METHODS The proliferation and migration capacity of cardiac fibroblasts (CFBs) were measured by MTT assay and scratch analysis, respectively. The colorimetric assay determined the hydroxyproline content in medium. Western blotting detected the protein expressions of nuclear transcription factor-kappa B (NF-κB) pathway-associated proteins, fibronectin (FN), collagen type I (Coll I), α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF). The expression of α-SMA protein was observed by immunofluorescence staining. qRT-PCR detected the mRNA expression of NF-κB. RESULTS SalB attenuated Ang II-induced the proliferation and the migration ability of CFBs. Ang II-induced the extracellular matrix protein Coll I, FN, and α-SMA, the pro-fibrotic cytokine CTGF protein expression was inhibited, and the nuclear translocation of NF-κB p65 subunit was reduced by SalB. Western blotting and qRT-PCR confirmed that SalB blocked the activation of NF-κB induced by Ang II. PDTC (the NF-κB inhibitor) also inhibited proliferation of CFBs and reduced α-SMA and Coll I expression induced by Ang II. CONCLUSIONS SalB can alleviate Ang II-induced cardiac fibrosis via suppressing the NF-κB pathway in vitro.
Collapse
Affiliation(s)
- Chunhua Wang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Hong Luo
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Yini Xu
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Churui Chang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Xiangchun Shen
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| |
Collapse
|
28
|
Ji C, Song F, Huang G, Wang S, Liu H, Liu S, Huang L, Liu S, Zhao J, Lu TJ, Xu F. The protective effects of acupoint gel embedding on rats with myocardial ischemia-reperfusion injury. Life Sci 2018; 211:51-62. [PMID: 30195034 DOI: 10.1016/j.lfs.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS Prevention and treatment of myocardial ischemia-reperfusion (I/R) injury has for many years been a hot topic in treating ischemic heart disease. As one of the most well-known methods of complementary and alternative medicine, acupuncture has attracted increasing interest in preventing myocardial I/R injury due to its remarkable effectiveness and minimal side effect. However, traditional acupuncture approaches are limited by cumbersome execution, high labor costs and inevitable pain caused by frequent stimulation. Therefore, in this work, we aimed to develop a novel acupoint gel embedding approach and investigated its role in protecting against myocardial I/R injury in rats. MAIN METHODS Gels were embedded at bilateral Neiguan (PC6) points of rats and their protective effects against myocardial I/R injury evaluated in terms of changes in histomorphology, myocardial enzymology, antioxidant capacity, anti-inflammatory response, and anti-apoptosis of cells. KEY FINDINGS We found that the approach of acupoint gel embedding could significantly reduce myocardial infarcted size, repair pathological changes, mitigate oxidative stress damage and inflammatory response, as well as inhibit apoptosis of cardiomyocytes. Such cardioprotective effects were found to be associated with Notch-1/Jagged-1 signaling pathway. SIGNIFICANCE The proposed approach of acupoint gel embedding has advantages in continuous acupoint stimulation, dosing controls, and no side effects in the course of treatment, as well as in reducing the pain caused by frequent acupuncture. It can form an alternative therapy to not only protect against myocardial I/R injury but also hold great potential in treating other diseases in the future.
Collapse
Affiliation(s)
- Changchun Ji
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Fan Song
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Guoyou Huang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Han Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shaobao Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liping Huang
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Shaoming Liu
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Jingyu Zhao
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
29
|
Barmaki S, Jokinen V, Obermaier D, Blokhina D, Korhonen M, Ras RHA, Vuola J, Franssila S, Kankuri E. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions. Acta Biomater 2018; 73:167-179. [PMID: 29649636 DOI: 10.1016/j.actbio.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0-1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid. We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane. We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles. The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles. STATEMENT OF SIGNIFICANCE Specific manipulation of oxygen concentrations in cultured cells' microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells' original tissue environments.
Collapse
Affiliation(s)
- Samineh Barmaki
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Jokinen
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland
| | | | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Robin H A Ras
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland; Aalto University, School of Science, Department of Applied Physics, Espoo, Finland
| | - Jyrki Vuola
- Helsinki Burn Centre, Jorvi Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sami Franssila
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Ding HS, Huang Y, Chen Z, Tang YH, Wang DD, Fan D, Huang CX. Regulator of G-protein signalling 5 deficiency impairs ventricular remodelling after myocardial infarction by promoting NF-κB and MAPK signalling in mice. Biochem Biophys Res Commun 2018; 499:143-149. [PMID: 29534968 DOI: 10.1016/j.bbrc.2018.03.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 02/02/2023]
Abstract
Regulator of G-protein signalling 5 (RGS5) is, highly expressed in different cell types of the adult human heart, and it is a negative regulator of G protein-mediated signalling that inactivates Gα(q) and Gα(i) and thereby inhibits many signalling pathways. However, the critical role of RGS5 in the pathology of myocardial infarction (MI) remains unexplored. Here, an in vitro MI model, induced by the permanent ligation of the left anterior descending coronary artery, was used with the isolated hearts of wild type (WT) and RGS5-knockout (KO) mice. Our results showed that the loss of RGS5 decreased the post-MI survival rate and left ventricular (LV) function and increased the infarct size. Additionally, the RGS5 knockout mice exhibited greater inflammation, apoptosis, and ventricular remodelling compared with WT-MI mice. Mechanistically, RGS5 loss activated the pathological response mainly by affecting the NF-κB and MAPK signalling pathways. Therefore, our data strongly indicate that RGS5 is a novel modulator of pathological progression after MI that functions NF-κB and MAPK signalling.
Collapse
Affiliation(s)
- Hua-Sheng Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Zhen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Dan-Dan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
31
|
Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S, Tang M, Li Y, Niu J, Fu M, Gao S, Zhang D. Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases. Curr Pharm Des 2018; 23:1077-1097. [PMID: 27748194 PMCID: PMC5421141 DOI: 10.2174/1381612822666161010105242] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Salvia miltiorrhiza Bunge, also known as Danshen in Chinese, has been widely used to treat cardiovascular diseases (CVD) in China and other Asia countries. Here, we summarize literatures of the historical traditional Chinese medicine (TCM) interpretation of the action of Salvia miltiorrhiza, its use in current clinical trials, its main phytochemical constituents and its pharmacological findings by consulting Pubmed, China Knowledge Resource Integrated, China Science and Technology Journal, and the Web of Science Databases. Since 2000, 39 clinical trials have been identified that used S. miltiorrhiza in TCM prescriptions alone or with other herbs for the treatment of patients with CVD. More than 200 individual compounds have been isolated and characterized from S. miltiorrhiza, which exhibited various pharmacological activities targeting different pathways for the treatment of CVD in various animal and cell models. The isolated compounds may provide new perspectives in alternative treatment regimes and reveal novel chemical scaffolds for the development of anti-CVD drugs. Meanwhile, there are also some rising concerns of the potential side effects and drug-drug interactions of this plant. The insights gained from this study will help us to better understanding of the actions of this herb for management of cardiovascular disorders. As an herb of red root, S. miltiorrhiza will act as a potential red light to prevent the development of CVD.
Collapse
Affiliation(s)
- Lili Wang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rufeng Ma
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Haixia Liu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuzhen Guo
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Minke Tang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu Li
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhao Niu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
32
|
Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, Xie Y, Feng X, Wang L, Wu X. Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol 2018; 112:608-615. [PMID: 29410271 DOI: 10.1016/j.ijbiomac.2018.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Abstract
Apoptosis induced by oxidative stress blocks the recovery of heart function in myocardial ischemia reperfusion injury (MIRI). Peroxiredoxin 1 (Prdx1) inhibits oxidative stress. However, the expression and function of Prdx1 in MIRI are unclear. In present study, Prdx1 protein level increased in rat MIRI model, associated with cardiomyocyte apoptosis. Cultured rat embryonic ventricular myocardial H9c2 cells with hypoxia/reoxygenation (H/R) treatment was utilized to mimic MIRI in vitro, showing that H/R treatment increased the ratio of p-p38/p38, p-JNK/JNK and apoptosis index. But Prdx1 ameliorate the up-regulation of p-p38/p38 ratio and p-JNK/JNK ratio, as well as decreased H9c2 cell apoptosis. SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) inhibited H9c2 cell apoptosis, and at the same time Prdx1 down-regulated the activation of p38 MAPK and JNK during H/R treatment. In addition, a ROS scavenger N-acetyl-l-cysteine (NAC) down-regulated the protein level of p-p38, p-JNK and Prdx1, and H9c2 cell apoptosis. In summary, these findings indicated that Prdx1 inhibited MAPK pathway induced cells apoptosis, and ROS is the upstream regulator of H/R induced apoptosis.
Collapse
Affiliation(s)
- Wanwan Guo
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Jingjing Li
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yimin Shen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zijian Zhou
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Mingming Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Yuyi Xie
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xuemei Feng
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Liyang Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
33
|
Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1035702. [PMID: 29435095 PMCID: PMC5757131 DOI: 10.1155/2017/1035702] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022]
Abstract
Capsaicin (Cap) has been reported to have beneficial effects on cardiovascular system, but the mechanisms underlying these effects are still poorly understood. Apoptosis has been shown to be involved in mitochondrial dysfunction, and upregulating expression of SIRT1 can inhibit the apoptosis of cardiomyocytes induced by anoxia/reoxygenation (A/R). Therefore, the aim of this study was to test whether the protective effects of Cap against the injury to the cardiomyocytes are mediated by SIRT1. The effects of Cap with or without coadministration of sirtinol, a SIRT1 inhibitor, on changes induced by A/R in the cell viability, activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK), levels of intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), related protein expression, mitochondrial permeability transition pore (mPTP) opening, and apoptosis rate in the primary neonatal rat cardiomyocytes were tested. Cap significantly increased the cell viability, upregulated expression of SIRT1 and Bcl-2, and decreased the LDH and CPK release, generation of ROS, loss of MMP, mPTP openness, activities of caspase-3, release of the cytochrome c, and apoptosis of the cardiomyocytes. Sirtinol significantly blocked the cardioprotective effects of Cap. The results suggest that the protective effects of Cap against A/R-induced injury to the cardiomyocytes are involved with SIRT1.
Collapse
|
34
|
Meng Z, Song MY, Li CF, Zhao JQ. shRNA interference of NLRP3 inflammasome alleviate ischemia reperfusion-induced myocardial damage through autophagy activation. Biochem Biophys Res Commun 2017; 494:728-735. [PMID: 29069583 DOI: 10.1016/j.bbrc.2017.10.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury always occur during the recovery of myocardial blood supply with high morbidity and mortality. Although, various therapeutic schedules were applied in clinic, there are real problems that have to be resolved on curative effect. Nod-like receptor protein 3 (NLRP3) inflammasome has moderation effects on cellular damage and inflammatory reaction after I/R injury. Our research aims to investigate a more effective approach to restrain the activation of NLRP3 inflammasome in treating myocardial I/R injury. Results indicated that cell viability, Bax/Bcl-2 expression were affected hardly by sh-NLRP3 transfection in normal cells. However, the decreased cell viability and increased Bax/Bcl-2 expression level caused by I/R were remarkably suppressed through sh-NLRP3 transfection. Besides that, the reduced levels of pro-autophagy proteins (Beclin1, Agt7, LC3II/LC3I) while enhanced level of anti-autophagy protein (p62) and apoptosis-related proteins (Bax/Bcl-2) were significantly repressed via sh-NLRP3 transfection. Nevertheless, the autophagy inhibitor 3 MA could reverse the results. Moreover, in vivo experiment suggested that NLRP3 was up-regulated in wild type (WT) rats with I/R injury. The expansion of infarct size induced by ischemia was tremendously constricted in NLRP3 knockout (KO) rats. NLRP3 silence had nearly no impact on myocardial enzymes (AST, LDH and CK) expressions, inflammatory factors (TNF-α and IL-1β) expressions and cell apoptosis in rats without I/R injury. Nonetheless, the elevated levels of myocardial enzymes, inflammatory factors and cell apoptosis caused by I/R injury were vastly inhibited in NLRP3 KO rats. Furthermore, NLRP3 KO itself would lead to higher level of pro-autophagy proteins (Beclin1, Agt7, LC3II/LC3I) while lower level of anti-autophagy protein (p62) in vivo. The decreased expressions of pro-autophagy proteins while increased expressions of anti-autophagy protein induced by I/R injury were remarkably suppressed by NLRP3 KO. Taken together, our study indicated that shRNA interference of NLRP3 inflammasome attenuated myocardial I/R injury via autophagy activation. These findings demonstrated that NLRP3 KO may a promising therapy in myocardial I/R injury.
Collapse
Affiliation(s)
- Zhu Meng
- Department of Senile Cardiovascular Disease, Qingdao Municipal Hospital, Qingdao, 266011, PR China
| | - Mei-Yan Song
- Department of Infectious Diseases, Yantaishan Hospital, Yantai, 264001, PR China
| | - Chuan-Fang Li
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272029, PR China
| | - Jia-Qi Zhao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272029, PR China.
| |
Collapse
|
35
|
Shin B, Cowan DB, Emani SM, Del Nido PJ, McCully JD. Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:595-619. [PMID: 28551809 DOI: 10.1007/978-3-319-55330-6_31] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ischemic heart disease remains the leading cause of death worldwide. Mitochondria are the power plant of the cardiomyocyte, generating more than 95% of the cardiac ATP. Complex cellular responses to myocardial ischemia converge on mitochondrial malfunction which persists and increases after reperfusion, determining the extent of cellular viability and post-ischemic functional recovery. In a quest to ameliorate various points in pathways from mitochondrial damage to myocardial necrosis, exhaustive pharmacologic and genetic tools have targeted various mediators of ischemia and reperfusion injury and procedural techniques without applicable success. The new concept of replacing damaged mitochondria with healthy mitochondria at the onset of reperfusion by auto-transplantation is emerging not only as potential therapy of myocardial rescue, but as gateway to a deeper understanding of mitochondrial metabolism and function. In this chapter, we explore the mechanisms of mitochondrial dysfunction during ischemia and reperfusion, current developments in the methodology of mitochondrial transplantation, mechanisms of cardioprotection and their clinical implications.
Collapse
Affiliation(s)
- Borami Shin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Department of Anesthesiology, Division of Cardiac Anesthesia Research, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Sitaram M Emani
- Division of Cardiovascular Critical Care, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, William E. Ladd Professor of Child Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
36
|
Cahuê F, Souza S, Dos Santos CFM, Machado V, Nascimento JHM, Barcellos L, Salerno VP. Short-term consumption of Ilex paraguariensis extracts protects isolated hearts from ischemia/reperfusion injury and contradicts exercise-mediated cardioprotection. Appl Physiol Nutr Metab 2017; 42:1149-1157. [PMID: 28683208 DOI: 10.1139/apnm-2017-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perfusion of hearts with extracts of Ilex paraguariensis (IP/mate) appears to reduce ischemia/reperfusion (I/R) injury. To determine if oral consumption of IP/mate can provide similar cardioprotection, short-term consumption was investigated alone or in association with exercise in rats. Animals were grouped into control (C), IP/mate consumption (M), exercise (E), and exercise with mate (E+M). M and E+M groups consumed IP/mate (1 g·kg-1 body weight in 1 mL water) by gavage. E and E+M groups swam 7× per week for 30 min carrying an additional 5% of body weight. After 1 week, hearts were tested ex vivo to measure left ventricle developed pressure (LVDP), systolic and end diastolic pressure (LVSP/LVEDP), maximum velocity of contraction and relaxation (dP/dt+ and dP/dt-) during I/R and infarction size. In addition, cardiac tissue was analyzed for oxidative stress by lipid peroxidation and protein carbonyl levels along with activity of catalase and superoxide dismutase (SOD). LVDP was higher in hearts from M and E groups as well as decreased infarction sizes than others. At the end of reperfusion, dP/dt+ was increased in E and M and dP/dt- was higher in M. LVSP was higher in M and E compared with C. Protein carbonyl and thiobarbituric acid reactive substances levels were higher in M while SOD activity was increased in E. No differences were observed in other activities. The results suggest that short-term consumption of IP/mate has protective effects on heart I/R injury similar to exercise, but the combination of these interventions appears to contradict the beneficial adaptations from exercise.
Collapse
Affiliation(s)
- Fábio Cahuê
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Simone Souza
- b Laboratório de Ergoespirometria e Cineantropometria, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Camilli Fernanda Martins Dos Santos
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Victor Machado
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - José H M Nascimento
- c Laboratório de Eletrofisiologia Cardíaca Antônio Paes de Carvalho - Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Luciane Barcellos
- b Laboratório de Ergoespirometria e Cineantropometria, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Verônica P Salerno
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
37
|
Diao H, Liu B, Shi Y, Song C, Guo Z, Liu N, Song X, Lu Y, Lin X, Li Z. MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3. Biosci Biotechnol Biochem 2017; 81:1712-1720. [PMID: 28661226 DOI: 10.1080/09168451.2017.1343118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress-induced myocardial apoptosis and necrosis are involved in ischemia/reperfusion (I/R) injury. This study was performed to investigate microRNA (miR)-210's role in oxidative stress-related myocardial damage. The expression of miR-210 was upregulated in myocardial tissues of I/R rats, while that of Bcl-2 adenovirus E1B 19kDa-interacting protein 3 (BNIP3) was downregulated. To simulate in vivo oxidative stress, H9c2 cells were treated with H2O2 for 48 h. MiR-210 level was increased upon H2O2 stimulation, peaked at 8 h, and then decreased. An opposite expression pattern of BNIP3 was observed. BNIP3 was demonstrated as a direct target of miR-210 via luciferase reporter assay. H2O2-induced cell apoptosis was attenuated by miR-210 mimics, whereas aggravated by miR-210 inhibitor. MiR-210 knockdown-induced cell apoptosis in presence of H2O2 was attenuated by BNIP3 siRNA. Our work demonstrates that miR-210 plays a protective role in H2O2-induced cardiomyocyte apoptosis at least by regulating the pro-apoptotic BNIP3.
Collapse
Affiliation(s)
- Hongying Diao
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Bin Liu
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Yongfeng Shi
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Chunli Song
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Ziyuan Guo
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Ning Liu
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Xianjing Song
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Yang Lu
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Xiaoye Lin
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Zhuoran Li
- a Department of Cardiology , The Second Hospital of Jilin University , Changchun , People's Republic of China
| |
Collapse
|
38
|
Kones R, Rumana U. Cardiometabolic diseases of civilization: history and maturation of an evolving global threat. An update and call to action. Ann Med 2017; 49:260-274. [PMID: 27936950 DOI: 10.1080/07853890.2016.1271957] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite striking extensions of lifespan, leading causes of death in most countries now constitute chronic, degenerative diseases which outpace the capacity of health systems. Cardiovascular disease is the most common cause of death in both developed and undeveloped countries. In America, nearly half of the adult population has at least one chronic disease, and polypharmacy is commonplace. Prevalence of ideal cardiovascular health has not meaningfully improved over the past two decades. The fall in cardiovascular deaths in Western countries, half due to a fall in risk factors and half due to improved treatments, have plateaued, and this reversal is due to the dual epidemics of obesity and diabetes type 2. High burdens of cardiovascular risk factors are also evident globally. Undeveloped nations bear the burdens of both infectious diseases and high childhood death rates. Unacceptable rates of morbidity and mortality arise from insufficient resources to improve sanitation, pure water, and hygiene, ultimately linked to poverty and disparities. Simultaneously, about 80% of cardiovascular deaths now occur in low- and middle-income nations. For these reasons, risk factors for noncommunicable diseases, including poverty, health illiteracy, and lack of adherence, must be targeted with unprecedented vigor worldwide. Key messages In developed and relatively wealthy countries, chronic "degenerative" diseases have attained crisis proportions that threaten to reverse health gains made within the past decades. Although poverty, disparities, and poor sanitation still cause unnecessary death and despair in developing nations, they are now also burdened with increasing cardiovascular mortality. Poor adherence and low levels of health literacy contribute to the high background levels of cardiovascular risk.
Collapse
Affiliation(s)
- Richard Kones
- a Cardiology Section , The Cardiometabolic Research Institute , Houston , TX , USA
| | - Umme Rumana
- a Cardiology Section , The Cardiometabolic Research Institute , Houston , TX , USA
| |
Collapse
|
39
|
Abstract
A core feature of ischemic heart disease is injury to cardiomyocytes (CMC). Ischemic CMC manifest the molecular mechanisms to undergo the major forms of cell injury and death, namely, oncotic necrosis, necroptosis, apoptosis and unregulated autophagy. Important modulators of ischemic injury are reperfusion and conditioning. Mitochondria have a major role in mediating the injury to CMC through membrane protein complexes referred to as death channels. Apoptosis is mediated by activation of a channel regulated by the Bcl-2 protein family leading to mitochondrial outer membrane permeabilization (MOMP). Oncotic type injury is mediated by opening of the mitochondrial permeability transition pore (mPTP). Mitochondria also have a reperfusion salvage kinase pathway (RISK). With cyclosporine A serving as a prototype, ongoing research is aimed at developing pharmacological approaches to condition and preserve mitochondrial integrity in order to promote CMC survival during episodes of myocardial ischemia.
Collapse
|
40
|
Vanhaebost J, Ducrot K, de Froidmont S, Scarpelli MP, Egger C, Baumann P, Schmit G, Grabherr S, Palmiere C. Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry. Radiol Med 2016; 122:95-105. [DOI: 10.1007/s11547-016-0698-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023]
|
41
|
Huang Y, Wang D, Wang X, Zhang Y, Liu T, Chen Y, Tang Y, Wang T, Hu D, Huang C. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Sci Rep 2016; 6:32660. [PMID: 27585634 PMCID: PMC5009347 DOI: 10.1038/srep32660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Dandan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yuting Chen
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Dan Hu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
- Masonic Medical Research Laboratory, Utica, NY, USA
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| |
Collapse
|
42
|
Ottaviani G, Buja LM. Anatomopathological changes of the cardiac conduction system in sudden cardiac death, particularly in infants: advances over the last 25 years. Cardiovasc Pathol 2016; 25:489-499. [PMID: 27616614 DOI: 10.1016/j.carpath.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023] Open
Abstract
Sudden cardiac death (SCD) is defined as the unexpected death without an obvious noncardiac cause that occurs within 1 h of witnessed symptom onset (established SCD) or within 24 h of unwitnessed symptom onset (probable SCD). In the United States, its incidence is 69/100,000 per year. Dysfunctions of the cardiac conduction and autonomic nervous systems are known to contribute to SCD pathogenesis, even if most clinicians and cardiovascular pathologists lack experience with detailed examination of the cardiac conduction system and fail to recognize lesions that are crucial to explain the SCD itself. In this review, we sought to describe the advances over the last 25 years in the study of the anatomopathological changes of the conducting tissue, in SCD, in mature hearts and particularly in sudden infant death syndrome (SIDS) and sudden intrauterine unexpected death syndrome (SIUDS), through the articles published in our journal Cardiovascular Pathology (CVP). We carried out an extensive Medline search to retrieve and review all articles published in CVP in which the sudden unexpected death of one or more subjects believed healthy was reported, especially if associated with lesions of the conducting tissue in settings that revealed no other explained causes of death, particularly in infants and fetuses. The cardiac conduction findings of resorptive degeneration, His bundle dispersion, Mahaim fibers, cartilaginous meta-hyperplasia, persistent fetal dispersion, left-sided His bundle, septation of the bifurcation, atrioventricular node dispersion, sinus node hypoplasia, Zahn node, His bundle hypoplasia, atrioventricular node, and His bundle dualism were similarly detected in SIDS and SIUDS victims.
Collapse
Affiliation(s)
- Giulia Ottaviani
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and Sudden Infant Death Syndrome (SIDS), Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy; Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - L Maximilian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
43
|
The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1656450. [PMID: 27313825 PMCID: PMC4897712 DOI: 10.1155/2016/1656450] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Abstract
Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions.
Collapse
|