1
|
Wang D, Sayed MAM, Galal AE, Attaai AH, Makled MN, Ali AHH, Wei C, Habib MA, Abdelfattah MG, Abouelezz K. The antioxidative properties of thyme, cinnamon, and pomegranate oils in heat-stressed broilers. Poult Sci 2025; 104:105228. [PMID: 40319582 DOI: 10.1016/j.psj.2025.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
This study evaluated the effects of different feed additives on growth performance and heat stress mitigation in broiler chickens. Three hundred 1-d-old Cobb broiler chicks were randomly allocated into five treatments, each treatment contained six replicates (10 birds/replicate). Treatment 1 (-Control) was fed a basal diet (BD) under thermo-neutral conditions between d 1 and 42 of age. Treatment 2 (+Control) also fed the BD under thermo-neutral conditions from d 1 to 28 of age, followed by exposure to cyclic heat stress (HS; 36°C between 0900 and 1700 h, then to 24°C between 1700 and 0900 h daily) during the fifth week. During the fifth week, Treatments 3, 4, and 5 underwent the same HS regime and fed the same BD containing 15g/kg of thyme oil (TO), cinnamon oil (CO), and pomegranate oil (PO) from d 1 to 42, respectively. Compared to the thermoneutral control, HS control exhibited lower ADFI, higher FCR, increased mortality rate, altered plasma biochemicals, and reduced anti-oxidant capacity. Broilers supplemented with PO showed a 14.4 % increase in final BW and a 25.8 % in ADG during recovery period. FCR was improved by 16.9 %, and mortality dropped to 6 % compared to 10 % in the HS control, suggesting reduced losses under heat stress. TO and CO treatments also showed beneficial effects compared to the HS control group. The supplemented feed additives decreased plasma cholesterol, triglycerides, and malondialdehyde content, while increasing plasma glutathione peroxidase activity and total antioxidant capacity relative to the HS control. TO, CO, and PO treatments exhibited higher plasma superoxide dismutase activity compared to the HS control. All supplemented treatments showed lower H/L ratio compared to HS control (P < 0.05). The PO and TO treatments exhibited an increased jejunal villus/crypt ratio relative to the control groups. In conclusion, supplementing broiler diets with PO, TO, and CO can alleviate heat stress effects, improve growth performance, and potentially boost profitability for poultry farmers, with PO providing the most significant benefits in both thermoneutral and heat stress conditions.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | | | - Ali Elsayed Galal
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | | | - Mohamed Nabil Makled
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | | | - Chen Wei
- Institute of Animal Science, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Mohamed Ahmed Habib
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | | | - Khaled Abouelezz
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Safaeian L, Asghari-Varzaneh M, Alavi SS, Halvaei-Varnousfaderani M, Laher I. Cardiovascular protective effects of cinnamic acid as a natural phenolic acid: a review. Arch Physiol Biochem 2025; 131:52-62. [PMID: 39101816 DOI: 10.1080/13813455.2024.2387694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/23/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Phenolic acids derived from plants have beneficial effects on cardiovascular diseases (CVD). Cinnamic acid (CA) is a crucial phenolic acid that can form numerous hydroxycinnamic derivate found in many food groups. We review current data on the cardiovascular pharmacology of CA with a focus on CVD and their risk factors including hyperlipidaemia, obesity, hyperglycaemia, cardiomyopathy and myocardial ischaemia, vascular dysfunction, oxidative stress and inflammation. Both in vivo and in vitro laboratory studies demonstrate the lipid-lowering, anti-obesity, anti-hyperglycemic, cardio-protective and vasorelaxant activities of CA. The protective impacts of CA against CVD occur by inhibiting inflammatory, oxidative, and apoptotic pathways, regulating the genes and enzymes involved in glucose and lipid metabolisms, and promoting vasodilation. This review showed that the most studied and prominent effects of CA are anti-hyperlipidemic and anti-diabetic properties. In conclusion, intake of plant foods rich in CA may reduce CVD risk especially through regulating blood glucose and lipids levels.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansooreh Asghari-Varzaneh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Sadegh Alavi
- Hakiman Pazhooh Co., Incubator and Entrepreneurship Center, Isfahan University, Isfahan, Iran
| | | | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Cierzniak A, Gliszczyńska A, Małodobra-Mazur M. 1,2-Dicinnamoyl- sn-glycero-3-phosphocholine Improves Insulin Sensitivity and Upregulates mtDNA-Encoded Genes in Insulin-Resistant 3T3-L1 Adipocytes: A Preliminary Study. Nutrients 2024; 16:3163. [PMID: 39339765 PMCID: PMC11435291 DOI: 10.3390/nu16183163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Insulin resistance is a condition characterized by a reduced biological response to insulin. It is one of the most common metabolic diseases in modern civilization. Numerous natural substances have a positive effect on metabolism and energy homeostasis including restoring the proper sensitivity to insulin. There may be several possible mechanisms of action. In the present study, we elucidated two natural compounds with an impact on insulin signaling in IR adipocytes involving mitochondria. METHODS Mature 3T3-L1 adipocytes with artificially induced insulin resistance by palmitic acid (16:0) were used for the study. Cinnamic acid and 1,2-dicinnamoyl-sn-glycero-3-phosphocholin (1,2-diCA-PC) were tested at three concentrations: 25 μM, 50 μM, and 125 μM. The number of mitochondria and the expression of genes encoded by mtDNA were elucidated in control and experimental cells. RESULTS Experimental cells treated with 1,2-diCA-PC displayed increased insulin-stimulated glucose uptake in a dose-dependent manner, accompanied by an increase in mtDNA copy number. Moreover, in experimental cells treated with 1,2-diCA-PC at a concentration of 125 μM, a significant increase in the expression level of all analyzed genes encoded by mtDNA compared to control cells was observed. Our study showed a relationship between improved cellular sensitivity to insulin by 1,2-diCA-PC and an increase in the number of mitochondria and expression levels of genes encoded by mtDNA. CONCLUSIONS To summarize, the results suggest the therapeutic potential of cinnamic acid derivative 1,2-diCA-PC to enhance the insulin sensitivity of adipocytes.
Collapse
Affiliation(s)
- Aneta Cierzniak
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland;
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland;
| |
Collapse
|
4
|
Vu N, Maile TM, Gollapudi S, Gaun A, Seitzer P, O'Brien JJ, Hackett SR, Zavala-Solorio J, McAllister FE, Kolumam G, Keyser R, Bennett BD. Automated preparation of plasma lipids, metabolites, and proteins for LC/MS-based analysis of a high-fat diet in mice. J Lipid Res 2024; 65:100607. [PMID: 39067520 PMCID: PMC11399584 DOI: 10.1016/j.jlr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 μl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.
Collapse
Affiliation(s)
- Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Rob Keyser
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
5
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Synthetic Cinnamides and Cinnamates: Antimicrobial Activity, Mechanism of Action, and In Silico Study. Molecules 2023; 28:molecules28041918. [PMID: 36838906 PMCID: PMC9967511 DOI: 10.3390/molecules28041918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The severity of infectious diseases associated with the resistance of microorganisms to drugs highlights the importance of investigating bioactive compounds with antimicrobial potential. Therefore, nineteen synthetic cinnamides and cinnamates having a cinnamoyl nucleus were prepared and submitted for the evaluation of antimicrobial activity against pathogenic fungi and bacteria in this study. To determine the minimum inhibitory concentration (MIC) of the compounds, possible mechanisms of antifungal action, and synergistic effects, microdilution testing in broth was used. The structures of the synthesized products were characterized with FTIR spectroscopy, 1 H-NMR, 13 C-NMR, and HRMS. Derivative 6 presented the best antifungal profile, suggesting that the presence of the butyl substituent potentiates its biological response (MIC = 626.62 μM), followed by compound 4 (672.83 μM) and compound 3 (726.36 μM). All three compounds were fungicidal, with MFC/MIC ≤ 4. For mechanism of action, compounds 4 and 6 directly interacted with the ergosterol present in the fungal plasmatic membrane and with the cell wall. Compound 18 presented the best antibacterial profile (MIC = 458.15 μM), followed by compound 9 (550.96 μM) and compound 6 (626.62 μM), which suggested that the presence of an isopropyl group is important for antibacterial activity. The compounds were bactericidal, with MBC/MIC ≤ 4. Association tests were performed using the Checkerboard method to evaluate potential synergistic effects with nystatin (fungi) and amoxicillin (bacteria). Derivatives 6 and 18 presented additive effects. Molecular docking simulations suggested that the most likely targets of compound 6 in C. albicans were caHOS2 and caRPD3, while the most likely target of compound 18 in S. aureus was saFABH. Our results suggest that these compounds could be used as prototypes to obtain new antimicrobial drugs.
Collapse
|
7
|
Saied A, Attia A, El-Kholy M, Reda F, EL Nagar A. Effect of cinnamon oil supplementation into broiler chicken diets on growth, carcass traits, haemato-biochemical parameters, immune function, antioxidant status and caecal microbial count. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/146921/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Dosoky WM, Zeweil HS, Ahmed MH, Zahran SM, Shaalan MM, Abdelsalam NR, Abdel-Moneim AME, Taha AE, El-Tarabily KA, Abd El-Hack ME. Impacts of onion and cinnamon supplementation as natural additives on the performance, egg quality, and immunity in laying Japanese quail. Poult Sci 2021; 100:101482. [PMID: 34710709 PMCID: PMC8560991 DOI: 10.1016/j.psj.2021.101482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to investigate the effects of dietary dried onion and dried cinnamon supplementation on laying performance, egg quality, serum lipid profile, and immune responses of Japanese quails. A total of 120 laying quails aged 12 weeks were randomly allocated into five groups (24 birds each). Each treatment was replicated 4 times with 6 quails in a completely randomized design. Dietary treatments were as follows: control (basal diet only, without any supplementation); tylosin (basal diet + 100 mg tylosin/kg diet); onion (basal diet + 800 mg dried onion/kg diet); cinnamon (basal diet + 800 mg dried cinnamon/kg diet); and onion + cinnamon (basal diet + mixture of 400 mg each of dried onion and dried cinnamon/kg diet). Cinnamon supplementation improved laying rate, egg numbers, egg mass, and feed conversion ratio of quails compared to the control treatment, followed by tylosin supplementation. Egg shell percentage was higher (P < 0.05) in quails that consumed the onion + cinnamon mixture than those fed only the cinnamon supplemented diet. Serum total lipid content, egg yolk lipids and egg yolk cholesterol were lower (P < 0.05) in birds fed with the supplemented diets than that of the control group. On the other hand, dietary supplements did not affect levels of triglycerides and high-density lipoprotein levels. The dietary supplementation with onion and/or cinnamon reduced serum malondialdehyde levels compared to control treatment. The foot web index was higher (P < 0.05) in the onion treatment than in the other experimental groups. The dried cinnamon and the mixture of dried onion + dried cinnamon treatments showed higher (P < 0.05) immunoglobulin M (IgM) levels than the control treatment. In conclusion, dietary supplementation with natural plant materials such as dried onion and cinnamon can be used to improve the laying Japanese quail performance, egg quality, and immunity.
Collapse
Affiliation(s)
- Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Hassan S Zeweil
- Department of Animal and Fish Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed H Ahmed
- Department of Animal and Fish Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Soliman M Zahran
- Department of Animal and Fish Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Maher M Shaalan
- Department of Animal and Fish Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, 21531, Egypt
| | | | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed, Edfina 22758, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
9
|
Selected 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors. A look into their use and potential in pre-diabetes and type 2 diabetes. Endocr Regul 2021; 55:182-192. [PMID: 34523296 DOI: 10.2478/enr-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives. This review assesses the comparative safety and efficacy of selected 3-hydroxy-3-methylglutaric acid coenzyme A inhibitors (statins, cinnamic acids. 3-hydroxy-3-methyl glutaric acid) on the pre-onset type 2 diabetes (PT2D) and post-onset type 2 diabetes (T2D)-related cluster of seven features (central obesity, hyperglycemia, hypertension, dyslipidemia, pro-thrombosis, oxidation and inflammation). Methods. Google scholar and PubMed were searched for statin*, flaxseed lignan complex (FLC), cinnamic acid (CA)*, and 3-hydroxy-3-methylglutaric acid (HMGA) in conjunction with each of PT2D, T2D and the cluster of seven. An introduction was followed by findings or absence thereof on the impacts of each of statins, FLC, CAs and HMGA on each member of the cluster of seven. Results. Pravastatin manages three features in PT2D, while a number of the statins improve five in T2D. FLC is negative in PT2D but controls four in T2D; it is not clear if the CAs and HMGA in FLC play a role in this success. CAs have potential in six and HMGA has potential in three of the cluster of seven though yet CAs and HMGA are untested in PT2D and T2D in humans. There are safety concerns with some statins and HMGA but FLC and CAs appear safe in the doses and durations tested. Conclusions. Selected statins, FLC, CAs and HMGA can manage or have a potential to manage at least three features of the cluster of seven. Most of the literature-stated concerns are with select statins but there are concerns (one actual and two potential) with HMGA.
Collapse
|
10
|
Zhao L, Qi Z, Yi L, Li J, Cui Y, Ur Rehman F, Yang J, Liu J, Li Y, Zhang J. The interaction between gut microbiota and flavonoid extract from Smilax glabra Roxb. and its potent alleviation of fatty liver. Food Funct 2021; 12:7836-7850. [PMID: 34235516 DOI: 10.1039/d1fo00727k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty liver is associated with intestinal microbiota dysbiosis and low-grade chronic inflammation. Herein we report the interaction of the flavonoid extract from Smilax glabra Roxb. (FSGR) with gut microbiota. Then, FSGR's function of modulating microbiota in a rat model of high-fat diet (HFD) induced fatty liver has been explored. These investigations indicated that the main compound in FSGR, such as astilbin and its isomers, could be metabolized to aglycone, while further splitting resulted in some phenolic acid compounds through a redox reaction. The data obtained clearly showed that FSGR not only alleviated the steatosis degree of liver cells and modulated the contents of short chain fatty acids (SCFAs) in the intestinal tract, but also reversed gut dysbiosis induced by HFD as prognosticated by the decreased ratio of Firmicutes/Bacteroidetes (F/B) and altered gene expression. The results demonstrated that FSGR probably could be used as a prebiotic agent to impede gut dysbiosis and fatty liver-related metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The ultrasound extract of Pleurotus pulmonarius (Fr.) Quél alleviates metabolic syndromes in hyperlipidaemic Wistar-Kyoto rats fed with a high-fat diet. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
AlSaad AMS, Alasmari F, Abuohashish HM, Mohany M, Ahmed MM, Al-Rejaie SS. Renin angiotensin system blockage by losartan neutralize hypercholesterolemia-induced inflammatory and oxidative injuries. Redox Rep 2021; 25:51-58. [PMID: 32396454 PMCID: PMC7269056 DOI: 10.1080/13510002.2020.1763714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objectives: This study explores the protective role of losartan (LT) against oxidative and inflammatory damages in different physiological systems including heart, liver, and kidney tissue in hypercholesterolemic rats. Methods: After induction of hypercholesterolemia by high cholesterol diet for 6 weeks, LT was administered for 4 weeks. In serum, the levels of lipoproteins, aminotransferases, creatine kinases, urea, apoptosis, and inflammatory markers were measured. In cardiac, hepatic, and renal tissues, lipid peroxidation product and GSH as well as antioxidant enzymatic activities were assayed. Finally, histopathological assessment evaluated the structural damage in cardiac, hepatic, and renal tissues. Results: Serum markers of cardiac, hepatic, and renal toxicities including creatine kinases, aminotransferases, and urea were attenuated by LT in hypercholesterolemic animals. Moreover, LT markedly corrected the elevated levels of lipoproteins, apoptosis, and inflammatory biomarkers. Hypercholesterolemia-induced lipid peroxidation, low GSH levels, and diminished activities of antioxidant enzymes were prominently improved in LT treated animals. Histopathological alterations by hypercholesterolemia in heart, liver, and kidney tissues were ameliorated by LT. Conclusion: This study confirmed the pathological enrollment of renin–angiotensin system in hypercholesterolemia-associated metabolic alterations. LT had a significant cardiac, hepatic, and renal protective role against these impairments through down-regulation of oxidative damage, inflammation and necrosis.
Collapse
Affiliation(s)
- Abdulaziz M S AlSaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem M Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Yuvaraj S, Ramprasath T, Saravanan B, Vasudevan V, Sasikumar S, Selvam GS. Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats. Mol Cell Biochem 2021; 476:2719-2727. [PMID: 33677805 DOI: 10.1007/s11010-021-04105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the risk factors associated with increased morbidity and mortality in cardiovascular disorders. Chrysin (Chy) is reported to exhibit anti-inflammatory, anti-cancerous, anti-oxidative, anti-aging, and anti-atherogenic properties. In the present study, we aimed to investigate whether Chy would mediate the cardioprotective effect against hypercholesterolemia-triggered myocardial oxidative stress. Male Sprague Dawley rats were divided into different groups as control and fed with high-fat diet (HFD) followed by oral administration of Chy (100 mg/kg b.wt), atorvastatin (Atv) (10 mg/kg b.wt), and L-NAME (10 mg/kg b.wt) for 30 days. At the end of the experimental period, the rats were sacrificed and tissues were harvested. Biochemical results showed a significant increase of cardiac disease marker enzymes (ALT, AST, and CKMB), lipid peroxidation, and lipid profile (TC, TG, LDL, and VLDL) in HFD-fed rat tissues when compared to control, whereas oral administration of Chy significantly reduced the activities of these marker enzymes and controlled the lipid profile. qRT-PCR studies revealed that Chy administration significantly increased the expression of endothelial nitric oxide synthase (eNOS), and Nrf2 target genes such as SOD, catalase, and GCL3 in left ventricular heart tissue of HFD-challenged rats. Immunohistochemistry results also showed that Chy treatment increased myocardial protein expression of eNOS and Nrf2 in HFD-challenged rats. Concluding the results of the present study, the Chy could mediate the cardioprotective effect through the activation of eNOS and Nrf2 signaling against hypercholesterolemia-induced oxidative stress. Thus, the administration of Chy would provide a promising therapeutic strategy for the prevention of HFD-induced oxidative stress-mediated myocardial complications.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Balakrishnan Saravanan
- National Institute for Research in Tuberculosis (NIRT) - ICMR Chetpet, Chennai, 600 031, India
| | - Varadaraj Vasudevan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Sundaresan Sasikumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| |
Collapse
|
14
|
Krauze M, Cendrowska-Pinkosz M, Matuseviĉius P, Stępniowska A, Jurczak P, Ognik K. The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens. Animals (Basel) 2021; 11:ani11020399. [PMID: 33557433 PMCID: PMC7915170 DOI: 10.3390/ani11020399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In poultry farming, additives are sought after to ensure the living needs of birds, improve the health of birds, and improve growth performance. Noticeably, more and more hopes for obtaining such effects are being placed in plant additives, called phytobiotics, which are safe as natural additives, both for the health of birds and for not leaving toxic residues in final products (meat and eggs). A valuable phytobiotic ingredient is cinnamon, used in the form of an oil or a powder, which is obtained from the bark or leaves of the cinnamon tree. Cinnamon oil can stimulate the appetite, increase the secretion of digestive enzymes, stimulate immunity, have anti-allergic and detoxifying properties, and also have a positive effect on reducing sugar levels in the body. It has antimicrobial properties that destroy the cell membranes of pathogens, and, thanks to its antioxidant properties, it accelerates wound healing and stimulates the functioning and regeneration of intestinal epithelial cells. It is also antiparasitic, especially against gastrointestinal parasites. Due to the number of valuable properties of cinnamon oil, it seems advisable to find the most favorable dosage and time of application of this component to the chickens’ water, that may cause intended effects such as improving the health of chickens and increasing the efficiency of their rearing. Abstract It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1–42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1–7, 15–21, and 29–35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased).
Collapse
Affiliation(s)
- Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Akademicka st. 13, 20-950 Lublin, Poland; (A.S.); (P.J.); (K.O.)
- Correspondence:
| | | | - Paulius Matuseviĉius
- Department of Animal Nutrition, Lithuanian University of Health, Kaunas, Tilzes 18, LT-47181 Kaunas, Lithuania;
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Akademicka st. 13, 20-950 Lublin, Poland; (A.S.); (P.J.); (K.O.)
| | - Paweł Jurczak
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Akademicka st. 13, 20-950 Lublin, Poland; (A.S.); (P.J.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Akademicka st. 13, 20-950 Lublin, Poland; (A.S.); (P.J.); (K.O.)
| |
Collapse
|
15
|
p-Methoxycinnamic Acid Diesters Lower Dyslipidemia, Liver Oxidative Stress and Toxicity in High-Fat Diet Fed Mice and Human Peripheral Blood Lymphocytes. Nutrients 2020; 12:nu12010262. [PMID: 31968556 PMCID: PMC7019318 DOI: 10.3390/nu12010262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023] Open
Abstract
The pursuit of cholesterol lowering natural products with less side effects is needed for controlling dyslipidemia and reducing the increasing toll of cardiovascular diseases that are associated with morbidity and mortality worldwide. The present study aimed at the examining effects of p-methoxycinnamic acid diesters (PCO-C) from carnauba (Copernicia prunifera)-derived wax on cytotoxic, genotoxic responses in vitro and on dyslipidemia and liver oxidative stress in vivo, utilizing high-fat diet (HFD) chronically fed Swiss mice. In addition, we evaluated the effect of PCO-C on the expression of key cholesterol metabolism-related genes, as well as the structural interactions between PCO-C and lecithin-cholesterol acyl transferase (LCAT) in silico. Oral treatment with PCO-C was able to reduce total serum cholesterol and low-density lipoprotein (LDL) levels following HFD. In addition, PCO-C reduced excessive weight gain and lipid peroxidation, and increased the gene expression of LCAT following HFD. Furthermore, the high affinity of the studied compound (ΔG: −8.78 Kcal/mol) towards the active sites of mutant LCAT owing to hydrophobic and van der Waals interactions was confirmed using bioinformatics. PCO-C showed no evidence of renal and hepatic toxicity, unlike simvastatin, that elevated aspartate aminotransferase (AST) levels, a marker of liver dysfunction. Finally, PCO-C showed no cytotoxicity or genotoxicity towards human peripheral blood lymphocytes in vitro. Our results suggest that PCO-C exerts hypocholesterolemic effects. The safety of PCO-C in the toxicological tests performed and the reports of its beneficial biological effects render this a promising compound for the development of new cholesterol-lowering therapeutics to control dyslipidemia. More work is needed for further elucidating PCO-C role on lipid metabolism to support future clinical studies.
Collapse
|
16
|
Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur J Med Chem 2019; 166:445-469. [DOI: 10.1016/j.ejmech.2019.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
|
17
|
Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:337-348. [PMID: 31259699 DOI: 10.2478/acph-2018-0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
In our previous paper, we showed that three primaquine-cinnamic acid conjugates composed of primaquine (PQ) residue and cinnamic acid derivatives (CADs) bound directly by an amide linkage (1) or through an acylsemicarbazide spacer (2 and 3) had significant growth inhibitory effects on some cancer cell lines. Compound 1 induced significant growth inhibition in the colorectal adenocarcinoma (SW620), human breast adenocarcinoma (MCF-7) and cervical carcinoma (HeLa) cell lines, while compounds 2 and 3 selectively inhibited the growth of MCF-7 cells. To better understand the underlying mechanisms of action of these PQ-CADs, morphological studies of the effects of test compounds on MCF-7 cells were undertaken using haematoxylin and eosin stain. Further analysis to determine the effects of test compounds on caspase activity and on the levels of apoptosis proteins were undertaken using the enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin staining revealed that compounds 1 and 3 induced morphological changes in MCF-7 cells characteristic of apoptosis, while 2-treated cells were in interphase. Cell cycle analysis showed that cells treated with 1 and 3 were in sub-G1, while cells treated with 2 were mainly in interphase (G1 phase). Further, the study showed that the treatment of MCF-7 cells with 1 and 3 resulted in poly ADP ribose polymerase (PARP) cleavage as well as caspase-9 activation, indicating that they induced apoptotic cell death. We further investigated their effects on two important processes during metastasis, namely, migration and invasion. Compounds 1 and 3 inhibited the migration and invasion of MCF-7 cells, while compound 2 had a marginal effect.
Collapse
|
18
|
The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res Int 2018; 105:517-536. [DOI: 10.1016/j.foodres.2017.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022]
|
19
|
Pavić K, Perković I, Gilja P, Kozlina F, Ester K, Kralj M, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B. Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type. Molecules 2016; 21:E1629. [PMID: 27916811 PMCID: PMC6273687 DOI: 10.3390/molecules21121629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3a-k) or via a spacer (compounds 7a-k) are reported. In the first series of compounds, PQ and various CADs were connected by amide bonds and in the second series by acylsemicarbazide functional groups built from the PQ amino group, CONHNH spacer and the carbonyl group originating from the CADs. PQ-CAD amides 3a-k were prepared by a simple one-step condensation reaction of PQ with a series of CAD chlorides (method A) or benzotriazolides 2 (method B). The synthesis of acylsemicarbazides 7a-k included activation of PQ with benzotriazole, preparation of PQ-semicarbazide 6 and its condensation with CAD chlorides 4. All synthesized PQ-CAD conjugates were evaluated for their anticancer, antiviral and antioxidative activities. Almost all compounds from series 3 were selective towards the MCF-7 cell line and active at micromolar concentrations. The o-fluoro derivative 3h showed high activity against HeLa, MCF-7 and in particular against the SW 620 cell line, while acylsemicarbazide 7f with a benzodioxole ring and 7c, 7g and especially 7j with methoxy-, chloro- or trifluoromethyl-substituents in the para position showed high selectivity and high inhibitory activity against MCF-7 cell line at micromolar (7c, 7f, 7g) and nanomolar (7j) levels. Acylsemicarbazide derivatives with trifluoromethyl group(s) 7i, 7j and 7k showed specific activity against human coronavirus (229E) at concentrations which did not alter the normal cell morphology. The same compounds exerted the most potent reducing activity in the DPPH test, together with 7d and 7g, while methoxy (compounds 7c-e), benzodioxole (7f), p-Cl (7g) and m-CF₃ (7i) acylsemicarbazides and amide 3f presented the highest LP inhibition (83%-89%). The dimethoxy derivative 7d was the most potent LOX inhibitor (IC50 = 10 μΜ). The performed biological tests gave evidence of acylsemicarbazide functional group as superior binding group in PQ-CAD conjugates.
Collapse
Affiliation(s)
- Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Petra Gilja
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Filip Kozlina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Katja Ester
- Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia.
| | - Marijeta Kralj
- Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia.
| | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Dimitra Hadjipavlou-Litina
- Faculty of Health Sciences, School of Pharmacy, Aristotles University of Thessaloniki, Thessaloniki 54 124, Greece.
| | - Eleni Pontiki
- Faculty of Health Sciences, School of Pharmacy, Aristotles University of Thessaloniki, Thessaloniki 54 124, Greece.
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
20
|
Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (Lond) 2016; 13:27. [PMID: 27069498 PMCID: PMC4827240 DOI: 10.1186/s12986-016-0080-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
Hydroxycinnamic acid derivatives are important class of polyphenolic compounds originated from the Mavolanate-Shikimate biosynthesis pathways in plants. Several simple phenolic compounds such as cinnamic acid, p-coumaric acid, ferulic acid, caffeic acid, chlorgenic acid, and rosmarinic acid belong to this class. These phenolic compounds possess potent antioxidant and anti-inflammatory properties. These compounds were also showed potential therapeutic benefit in experimental diabetes and hyperlipidemia. Recent evidences also suggest that they may serve as valuable molecule for the treatment of obesity related health complications. In adipose tissues, hydroxycinnamic acid derivatives inhibit macrophage infiltration and nuclear factor κB (NF-κB) activation in obese animals. Hydroxycinnamic acid derivatives also reduce the expression of the potent proinflammatory adipokines tumor necrosis factor-α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor type-1 (PAI-1), and they increase the secretion of an anti-inflammatory agent adiponectin from adipocytes. Furthermore, hydroxycinnamic acid derivatives also prevent adipocyte differentiation and lower lipid profile in experimental animals. Through these diverse mechanisms hydroxycinnamic acid derivatives reduce obesity and curtail associated adverse health complications.
Collapse
Affiliation(s)
- Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Nusrat Subhan
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales Australia
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - M Obayed Ullah
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
21
|
Sun J, Lin Y, Shen X, Jain R, Sun X, Yuan Q, Yan Y. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase. Metab Eng 2016; 35:75-82. [PMID: 26873116 DOI: 10.1016/j.ymben.2016.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023]
Abstract
3-Phenylpropionic acid (3PPA) and 3-(4-hydroxyphenyl) propionic acid (HPPA) are important commodity aromatic acids widely used in food, pharmaceutical and chemical industries. Currently, 3PPA and HPPA are mainly manufactured through chemical synthesis, which contains multiple steps involving toxic solvents and catalysts harmful to environment. Therefore, replacement of such existing petroleum-derived approaches with simple and environmentally friendly biological processes is highly desirable for manufacture of these chemicals. Here, for the first time we demonstrated the de novo biosynthesis of 3PPA and HPPA using simple carbon sources in E. coli by extending the cinnamic acids biosynthesis pathways through biological hydrogenation. We first screened 11 2-enoate reductases (ER) from nine microorganisms, leading to efficient conversion of cinnamic acid and p-coumaric acid to 3PPA and HPPA, respectively. Surprisingly, we found a strictly oxygen-sensitive Clostridia ER capable of functioning efficiently in E. coli even under aerobic conditions. On this basis, reconstitution of the full pathways led to the de novo production of 3PPA and HPPA and the accumulation of the intermediates (cinnamic acid and p-coumaric acid) with cell toxicity. To address this problem, different expression strategies were attempted to optimize individual enzyme׳s expression level and minimize intermediates accumulation. Finally, the titers of 3PPA and HPPA reached 366.77mg/L and 225.10mg/L in shake flasks, respectively. This study not only demonstrated the potential of microbial approach as an alternative to chemical process, but also proved the possibility of using oxygen-sensitive enzymes under aerobic conditions.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rachit Jain
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yajun Yan
- BiotecEra Inc., Athens, GA 30602, USA; BioChemical Engineering Program, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
ZHONG WEI, HUAN XIAODONG, CAO QIAN, YANG JUN. Cardioprotective effect of epigallocatechin-3-gallate against myocardial infarction in hypercholesterolemic rats. Exp Ther Med 2015; 9:405-410. [PMID: 25574206 PMCID: PMC4280953 DOI: 10.3892/etm.2014.2135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases are closely associated with a high-cholesterol or high-fat diet. The aim of the present study was to investigate the cadioprotective effect of epigallocatechin-3-gallate (EGCG) in high-fat diet-fed rats, with special emphasis on myocardial infarction. A high-fat diet was administered to male Wistar rats for 45 days and the rats of the treatment group were administered EGCG via intraperitoneal injection for the last 15 days. The serum lipid profile, antioxidant enzyme activity, lipid peroxidation, lipid metabolic proteins and cardiac tissue markers were assessed. The myocardium and aorta were also histopathologically examined. The high-fat diet-fed rats were found to be hypercholesterolemic or exhibited abnormal values in the selected parameters. However, these abnormalities were reversed to near-normal values in the rats administered EGCG. Similarly, the enzymatic antioxidant activity and non-enzymatic antioxidant levels were improved with EGCG treatment in high-fat diet-fed rats. In addition, EGCG activated sirtuin 1, endothelial nitric oxide synthase and AMP-activated protein kinase α, which suggests that its protective effect is mediated through the stimulation of lipid metabolism. The histopathological examination further revealed that EGCG significantly prevented the development of tissue abnormalities and improved the morphology of myocardial tissue. Taken together, our results suggested that EGCG plays a significant role in the protection of the cardiovascular system against the high-fat diet. This is a preliminary study, emphasizing on the cardioprotective properties of EGCG. We are currently analyzing the molecular mechanism underlying the protective effects of EGCG.
Collapse
Affiliation(s)
- WEI ZHONG
- Cadre Ward, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - XIAO-DONG HUAN
- Cadre Ward, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - QIAN CAO
- Department of Cardiology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong 277300, P.R. China
| | - JUN YANG
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|
23
|
Amelioration of Lipid Profile and Level of Antioxidant Activities by Epigallocatechin-gallate in a Rat Model of Atherogenesis. Heart Lung Circ 2014; 23:1194-201. [DOI: 10.1016/j.hlc.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/16/2014] [Accepted: 05/27/2014] [Indexed: 01/14/2023]
|
24
|
Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional Properties of Vinegar. J Food Sci 2014; 79:R757-64. [DOI: 10.1111/1750-3841.12434] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nilgün H. Budak
- Dept. of Food Technology; Egirdir Vocational School; Süleyman Demirel Univ.; Isparta Turkey
| | - Elif Aykin
- Dept. of Food Engineering; Engineering Faculty; Akdeniz Univ.; Antalya Turkey
| | - Atif C. Seydim
- Dept. of Food Engineering; Engineering Faculty; Süleyman Demirel Univ.; Isparta Turkey
| | - Annel K. Greene
- Dept. of Animal and Veterinary Science; Clemson Univ.; Clemson SC U.S.A
| | | |
Collapse
|
25
|
In vitro screening for β-hydroxy-β-methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions of Ficus palmata Forsk. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762620. [PMID: 24883325 PMCID: PMC4032710 DOI: 10.1155/2014/762620] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
Abstract
Hypercholesterolemia-induced oxidative stress has been strongly implicated in the pathogenesis of atherosclerosis, which is one of the major causes of mortality worldwide. The current work, for the first time, accounts the antioxidant, genoprotective, antilipoperoxidative, and HMG-CoA reductase (EC 1.1.1.34) inhibitory properties of traditional medicinal plant, Ficus palmata Forsk. Our result showed that among sequentially extracted fractions of Ficus palmata Forsk, FPBA (F. palmata bark aqueous extract) and FPLM (F. palmata leaves methanolic extract) extracts have higher phenolic content and also exhibited significantly more radical scavenging (DPPH and Superoxide) and antioxidant (FRAP) capacity. Moreover, FPBA extract also exhibited significantly higher inhibition of lipid peroxidation assay. Additionally, results showed almost complete and partial protection of oxidatively damaged DNA by these plant extracts when compared to mannitol. Furthermore, our results showed that FPBA extract (IC50 = 9.1 ± 0.61 µg/mL) exhibited noteworthy inhibition of HMG-CoA reductase activity as compared to other extracts, which might suggest its role as cardioprotective agent. In conclusion, results showed that FPBA extract not only possess significant antioxidant and genoprotective property but also is able to attenuate the enzymatic activity of HMG-CoA reductase, which might suggest its role in combating various oxidative stress-related diseases, including atherosclerosis.
Collapse
|
26
|
Mehdipour Z, Afsharmanesh M, Sami M. Effects of dietary synbiotic and cinnamon (Cinnamomum verum) supplementation on growth performance and meat quality in Japanese quail. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Ahmad S, Beg ZH. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem 2013; 138:1116-24. [DOI: 10.1016/j.foodchem.2012.11.109] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 11/20/2012] [Indexed: 11/26/2022]
|
28
|
Yan Y, Chai CZ, Wang DW, Yue XY, Zhu DN, Yu BY. HPLC-DAD-Q-TOF-MS/MS analysis and HPLC quantitation of chemical constituents in traditional Chinese medicinal formula Ge-Gen Decoction. J Pharm Biomed Anal 2013; 80:192-202. [PMID: 23584078 DOI: 10.1016/j.jpba.2013.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
Abstract
Ge-Gen Decoction (GGD) is a classical formula of traditional Chinese medicine. It is generally used for treating common cold, fever and influenza in China and South East Asia. In this study, a systematic method was established for the qualitative and quantitative analysis of the major constituents in GGD. For qualitative analysis, a method of liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) was developed for identification of multi-constituents. Based on the UV spectra, retention time and MS spectra, sixty compounds in GGD extract were identified or tentatively characterized by comparing with reference substances or literatures. According to the qualitative results, a new quantitative analysis method of GGD was established by HPLC-DAD. Fourteen representative compounds unequivocally identified were chosen as marker components which were derived from five herbs in GGD excluding Zingiberis Rhizoma Recens and Jujubae Fructus. The analytical method was validated through intra- and inter-day precision, repeatability and stability, and the R.S.D. was less than 3.18%, 4.48%, 3.36% and 3.54%, respectively. The LODs and the LOQs for the analytes were less than 1.06 and 3.12μgmL(-1), respectively. The overall recoveries ranged from 94.8% to 105.6%, with the R.S.D. ranging from 0.68% to 3.23%. Then the new method was applied to determine twelve batches of GGD commercial products of three dosage forms. The results indicated that the new approach was applicable in the routine analysis and quality control of GGD products. The study might provide a basis for quality control of GGD, and further study of GGD in vivo.
Collapse
Affiliation(s)
- Yan Yan
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | | | | | | | | | | |
Collapse
|
29
|
Flaxseed lignan complex administration in older human type 2 diabetics manages central obesity and prothrombosis-an invitation to further investigation into polypharmacy reduction. J Nutr Metab 2012; 2012:585170. [PMID: 23094144 PMCID: PMC3471460 DOI: 10.1155/2012/585170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
Aim. Animal and human study evidence supports the hypothesis that flaxseed lignan complex (FLC) at a dose of 600 mg secoisolariciresinol diglucoside (SDG)/day for three months would combat hyperglycaemia, dyslipidemia, blood pressure, central obesity, prothrombotic state, inflammation, and low density lipoprotein (LDL) oxidation. Methods. Sixteen type 2 diabetic patients completed this double-blind, randomised crossover placebo-controlled study. A univariate repeated measures analysis of covariance (significance P < 0.05) was followed by a mixed linear model effects analysis corrected for multiple comparisons (MCC). Results. Prior to MCC, FLC caused decreased fasting plasma glucose, A1c, inflammation (c-reactive protein (CRP) and interleukin-6 (IL-6)), and increased bleeding time. After correction for multiple comparisons, FLC induced a statistically significant increase in bleeding time and smaller waist circumference gain. No treatment effect occurred in the other variables before or after adjustment. Conclusions. It is concluded that FLC significantly increased bleeding time thus reducing the prothrombotic state, reduced central obesity gain as measured by waist circumference, and did not affect significantly the other dependent variables measured after adjustment for multiple comparisons. These findings, not yet published in human type 2 diabetes, suggest that this FLC dose over at least three months, may, subject to further investigation, reduce polypharmacy.
Collapse
|
30
|
Budak NH, Kumbul Doguc D, Savas CM, Seydim AC, Kok Tas T, Ciris MI, Guzel-Seydim ZB. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6638-6644. [PMID: 21561165 DOI: 10.1021/jf104912h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Red delicious apples were used to produce natural apple cider with and without inclusion of maceration. Traditional surface and industrial submersion methods were then applied to make vinegar from apple ciders. Apple cider vinegar samples produced with inclusion of maceration in the surface method had the highest total phenolic content, chlorogenic acid, ORAC, and TEAC levels. Cholesterol and apple vinegar samples were administered using oral gavage to all groups of rats except the control group. Apple cider vinegars, regardless of the production method, decreased triglyceride and VLDL levels in all groups when compared to animals on high-cholesterol diets without vinegar supplementation. Apple cider vinegars increased total cholesterol and HDL and LDL cholesterol levels and decreased liver function tests when compared to animals on a high-cholesterol diet without vinegar supplementation. A high-cholesterol diet resulted in hepatic steatosis. VSBM and VSB groups significantly decreased steatosis.
Collapse
Affiliation(s)
- Nilgun H Budak
- Department of Food Engineering, Faculty of Engineering, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | | | |
Collapse
|
31
|
van Veldhoven JPD, Blad CC, Artsen CM, Klopman C, Wolfram DR, Abdelkadir MJ, Lane JR, Brussee J, Ijzerman AP. Structure-activity relationships of trans-substituted-propenoic acid derivatives on the nicotinic acid receptor HCA2 (GPR109A). Bioorg Med Chem Lett 2010; 21:2736-9. [PMID: 21167710 DOI: 10.1016/j.bmcl.2010.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/19/2010] [Indexed: 11/29/2022]
Abstract
Nicotinic acid (niacin) has been used for decades as an antidyslipidemic drug in man. Its main target is the hydroxy-carboxylic acid receptor HCA2 (GPR109A), a G protein-coupled receptor. Other acids and esters such as methyl fumarate also interact with the receptor, which constituted the basis for the current study. We synthesized a novel series of substituted propenoic acids, such as fumaric acid esters, fumaric acid amides and cinnamic acid derivatives, and determined their affinities for the HCA2 receptor. We observed a rather restricted binding pocket on the receptor with trans-cinnamic acid being the largest planar ligand in our series with appreciable affinity for the receptor. Molecular modeling and analysis of the structure-activity relationships in the series suggest a planar trans-propenoic acid pharmacophore with a maximum length of 8 Å and out-of-plane orientation of the larger substituents.
Collapse
Affiliation(s)
- J P D van Veldhoven
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Effects of Dietary Antibiotic and Cinnamon Oil Supplementation on Antioxidant Enzyme Activities, Cholesterol Levels and Fatty Acid Compositions of Serum and Meat in Broiler Chickens. ACTA VET BRNO 2010. [DOI: 10.2754/avb201079010033] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate potential hypocholesterolaemic antioxidant activities of cinnamon oil and antibiotic, and their effects on fatty acid compositions of serum and meat in broilers. A total of 240 Ross-308 chicks, five days old, were divided randomly into four treatment groups composed of 60 chicks each. Experimental groups were: corn-soybean meal basal diet (Control), basal diet supplemented with 10 ppm avilamycin (antibiotic) and 500 or 1000 ppm of cinnamon oil (C500, C1000). Cinnamon oil lowered cholesterol levels of serum (P < 0.01), breast and thigh meat (P< 0.05) in cinnamon groups compared to control and antibiotic groups. Serum malondialdehyde (MDA, nmol/g protein) level was reduced significantly in C1000 group (P< 0.05). Glutathione peroxidase (GSH-Px,μkat/g protein) and catalase (CAT, kat/l) enzyme activities were different among the groups (P< 0.001). The higher levels of GSH-Px and CAT were obtained in C1000 group, the lower levels of these indicators were obtained in the antibiotic group. Total saturated fatty acid (SFA) ratio decreased and total unsaturated fatty acid (PUFA) ratio, ω-6 fatty acids increased significantly in serum and thigh meat in cinnamon groups (P< 0.01). These results showed that cinnamon oil had hypocholesterolaemic and antioxidant characteristics, and it also improved meat quality.
Collapse
|
33
|
Dalkilic B, Ciftci M, Guler T, Cerci IH, Ertas ON, Guvenc M. Influence of Dietary Cinnamon Oil Supplementation on Fatty Acid Composition of Liver and Abdominal Fat in Broiler Chicken. JOURNAL OF APPLIED ANIMAL RESEARCH 2009. [DOI: 10.1080/09712119.2009.9707011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Chen L, Wang D, Wu J, Yu B, Zhu D. Identification of multiple constituents in the traditional Chinese medicine formula GuiZhiFuLing-Wan by HPLC-DAD-MS/MS. J Pharm Biomed Anal 2008; 49:267-75. [PMID: 19095393 DOI: 10.1016/j.jpba.2008.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 11/25/2022]
Abstract
GuiZhiFuLing-Wan (GFW) has been used in China for centuries to improve blood stagnation. In this paper, a HPLC-DAD-MS/MS method was established for the efficient and rapid identification of the chemical constituents in extract of GuiZhiFuLing-Wan. Separation was performed on an Alltima C(18) analytical column by gradient elution with CH(3)CN/H(2)O-CH(3)COOH as mobile phase at a flow rate 1.0ml/min. 27 potentially bioactive compounds including monoterpene glycosides, galloyl glucoses, acetophenones, phenylallyl compounds and triterpenoids were identified or tentatively characterized by online ESI/MS/MS and the comparison with literature data and authentic compounds. After the identification, six different brands of GFW commercial products in various dosage forms were evaluated. The results demonstrated that capsule of GFW was superior to the other two dosage forms, honeyed pill and concentrated pill in administration. The points that should be paid more attention during the manufacturing process of GFW were also analyzed. The method can be the basis for the quality control of this commonly used herbal formula.
Collapse
Affiliation(s)
- Lu Chen
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 210038, People's Republic of China
| | | | | | | | | |
Collapse
|