1
|
Saygun I, Slezovic MÖ, Özkan CK, Bengi VU, Elçi P, Serdar M, Kantarci A. Anti-proliferative impact of resveratrol on gingival fibroblasts from juvenile hyaline fibromatosis. Clin Oral Investig 2024; 28:448. [PMID: 39060456 PMCID: PMC11281951 DOI: 10.1007/s00784-024-05771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
AIM Resveratrol is a natural polyphenolic compound with biological activities such as anti-inflammation and antioxidation. Its anti-fibrotic effect has been experimentally demonstrated in the pancreas and liver. This study aims to determine the anti-proliferative effect of resveratrol on fibroblasts obtained from hyperplastic gingival tissues from a patient diagnosed with Juvenile Hyaline Fibromatosis (JHF). MATERIALS AND METHODS Primary gingival fibroblast cell lines were obtained from gingival growth tissues by the gingivectomy of a patient with JHF. Gingival fibroblasts were treated with or without 3 different doses of resveratrol (50, 100, 200 µM). Cytotoxicity and cell proliferation were evaluated after 24, 48, and 72 h. Collagen, TGF, and CTGF were analyzed by ELISA in the 48-hour supernatants. RESULTS All three doses of resveratrol suppressed the proliferation of JHF gingival fibroblasts at 24 and 48 h without showing any cytotoxic effect compared to the control group (p < 0.0001). At 72 h, 100 and 200 µM resveratrol showed significantly less proliferation (p < 0.0001), less collagen, CTGF, and TGF- β (p < 0.001) than the control group. CONCLUSION Resveratrol had a profound anti-proliferative effect on gingival fibroblasts obtained from gingival enlargements with JHF, suggesting that it can be used as a therapeutic to prevent excessive cell growth by suppressing collagen, CTGF, and TGF- β synthesis in the pathogenesis of hyperplasia.
Collapse
Affiliation(s)
- Işıl Saygun
- Department of Periodontology, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey.
| | - Melis Özgül Slezovic
- Department of Periodontology, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey.
| | - Cansel Köse Özkan
- Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Vahdi Umut Bengi
- Department of Periodontology, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Pınar Elçi
- Gulhane Health Sciences Institute, Stem Cell Lab, University of Health Sciences, Ankara, Turkey
| | - Muhittin Serdar
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University, Ankara, Turkey
| | | |
Collapse
|
2
|
Lv J, Zhang R, Li D, Liu Y. Resveratrol plays an anti-fibrotic and anti-autophagy role by stimulating miR-192-5p expression in urethral fibrosis. Funct Integr Genomics 2023; 23:241. [PMID: 37450096 DOI: 10.1007/s10142-023-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Resveratrol (RSV) exerts anti-fibrotic effects on various fibrotic diseases. Whereas the biological role of RSV on urethral fibrosis remains to be elucidated. This study aimed to determine the mechanisms by which RSV affects urethral fibrosis and autophagy. METHODS Sprague‒Dawley rats and primary fibroblasts were treated with transforming growth factor-β1 (TGFβ1) to generate in vivo and in vitro fibrosis models. Then, those were treated with RSV, and autophagy and fibrosis-related indicators were tested. RESULTS Firstly, we found that RSV reversed the upregulation of indicators related to TGFβ1-induced fibrosis (TGFβ1, α-smooth muscle actin, collagen type I, and collagen type III), autophagy (TFEB and LC3), and TGFβR1/Smad4 pathway, as well as the downregulation of p62 and miR-192-5p expression both in vivo and in vitro. Overexpression of miR-192-5p suppressed the upregulation of fibrosis-related markers expression, as well as TFEB and LC3 expression, induced by TGFβ1, while the expression trend of p62 was the opposite. Inhibiting miR-192-5p reversed the effects of RSV on the model group cells. It was also shown that RSV combined with sh-Smad4 inhibited autophagy more effectively than RSV alone. CONCLUSION These results suggest that RSV inhibits urinary fibrosis and autophagy via the miR-192-5p/TGFβR1/Smad4 pathway. RAV may be a potential drug for alleviating urethral fibrosis.
Collapse
Affiliation(s)
- Jin Lv
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Rui Zhang
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - DaoYuan Li
- Department of Urology, Hainan Afliated Hospital of Hainan Medical University, Haikou, China
- Department of Urology, Hainan General Hospital, Haikou, China
| | - Yan Liu
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Peng M, Yang M, Lu Y, Lin S, Gao H, Xie L, Huang B, Chen D, Shen A, Shen Z, Peng J, Chu J. Huoxin Pill inhibits isoproterenol-induced transdifferentiation and collagen synthesis in cardiac fibroblasts through the TGF-β/Smads pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114061. [PMID: 33892065 DOI: 10.1016/j.jep.2021.114061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The abnormal proliferation and differentiation of cardiac fibroblasts (CFs) are universally regarded as the key process for the progressive development of cardiac fibrosis following various cardiovascular diseases. Huoxin Pill (Concentrated pill, HXP) is a Chinese herbal formula for treating coronary heart disease. However, the cellular and molecular mechanisms of HXP in the treatment of myocardial fibrosis are still unclear. AIM OF THE STUDY To investigate the effects of HXP on CFs transdifferentiation and collagen synthesis under isoproterenol (ISO) conditions, as well as the potential mechanism of action. MATERIALS AND METHODS In vivo, we established a rat model of cardiac fibrosis induced by ISO, and administered with low or high dose of HXP (10 mg/kg/day or 30 mg/kg/day). The level of α-SMA was detected by immunohistochemistry examination, and combined with RNA-sequencing analysis to determine the protective effect of HXP on myocardial fibrosis rats. In vitro, by culturing primary rat CFs, we examined the effects of HXP on the proliferation and transdifferentiation of CFs using CCK8, scratch wound healing and immunofluorescence assays. Western blot was used to determine protein expression. RESULTS The findings revealed that HXP protects against ISO-induced cardiac fibrosis and CFs transdifferentiation in rats. RNA-sequencing and pathway analyses demonstrated 238 or 295 differentially expressed genes (DEGs) and multiple enriched signal pathways, including transforming growth factor-beta (TGF-β) receptor signaling activates Smads, downregulation of TGF-β receptor signaling, signaling by TGF-β receptor complex, and collagen formation under treatment with low or high-dose of HXP. Moreover, HXP also markedly inhibited ISO-induced primary rat CFs proliferation, transdifferentiation, collagen synthesis and the upregulation of TGF-β1 and phosphorylated Smad2/3 protein expression. CONCLUSION HXP suppresses ISO-induced CFs transdifferentiation and collagen synthesis, and it may exert these effects in part by inhibiting the activation of the TGF-β/Smads pathway. This may be a new therapeutic tool for cardiac fibrosis.
Collapse
Affiliation(s)
- Meizhong Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meiling Yang
- The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yan Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Huajian Gao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lingling Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Qian X, Gu Z, Guan W, Qi J, Xu D. Resveratrol could attenuate prostatic inflammation in rats with Oestradiol-induced chronic prostatitis. Andrologia 2021; 53:e14004. [PMID: 33550669 DOI: 10.1111/and.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023] Open
Abstract
To evaluate the effect of resveratrol in rats with chronic prostatitis, 24 rats were randomly divided into the negative control, vehicle-treated and resveratrol groups. The rats in the vehicle-treated group and the resveratrol group were injected subcutaneously with 17-β-oestradiol (0.25 mg/kg) daily for 6 weeks while the rats in the control group were injected with equivalent normal saline. From the 45th day, the rats in the resveratrol group were given resveratrol (10 mg/kg) by gavage per day while the rest rats were given normal saline. After 55 days, all the rats were sacrificed and the prostatic tissue was removed. Morphological changes were examined by light microscope after H&E staining. The expressions of IL-6, IL-8 and TNF-α were determined through ELISA and immunohistochemical staining. As a result, significant inflammatory cell infiltration and fibroblastic hyperplasia were observed in prostatic stroma in the vehicle-treated group compared with the negative control group, as well as the high expression of IL-6, IL-8 and TNF-α. After resveratrol treatment, inflammatory cell infiltration and fibroblastic hyperplasia were shown prominently reduced. Meanwhile, the expression of IL-6, IL-8 and TNF-α was significantly suppressed. For conclusion, resveratrol could attenuate the prostatic inflammation and downregulate the expression of IL-6, IL-8 and TNF-α in rat with oestradiol-induced chronic prostatitis.
Collapse
Affiliation(s)
- Xiaoqiang Qian
- Reproductive Medical Centre, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengqin Gu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
6
|
The Diabetic Cardiac Fibroblast: Mechanisms Underlying Phenotype and Function. Int J Mol Sci 2020; 21:ijms21030970. [PMID: 32024054 PMCID: PMC7036958 DOI: 10.3390/ijms21030970] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy involves remodeling of the heart in response to diabetes that includes microvascular damage, cardiomyocyte hypertrophy, and cardiac fibrosis. Cardiac fibrosis is a major contributor to diastolic dysfunction that can ultimately result in heart failure with preserved ejection fraction. Cardiac fibroblasts are the final effector cell in the process of cardiac fibrosis. This review article aims to describe the cardiac fibroblast phenotype in response to high-glucose conditions that mimic the diabetic state, as well as to explain the pathways underlying this phenotype. As such, this review focuses on studies conducted on isolated cardiac fibroblasts. We also describe molecules that appear to oppose the pro-fibrotic actions of high glucose on cardiac fibroblasts. This represents a major gap in knowledge in the field that needs to be addressed.
Collapse
|
7
|
Jiang N, Zhou Y, Zhu M, Zhang J, Cao M, Lei H, Guo M, Gong P, Su G, Zhai X. Optimization and evaluation of novel tetrahydropyrido[4,3-d]pyrimidine derivatives as ATX inhibitors for cardiac and hepatic fibrosis. Eur J Med Chem 2020; 187:111904. [PMID: 31806537 DOI: 10.1016/j.ejmech.2019.111904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023]
Abstract
Aiming to develop potent autotaxin (ATX) inhibitors for fibrosis diseases, a novel series of tetrahydropyrido[4,3-d]pyrimidine derivatives was designed and synthesized based on our previous study. The enzymatic assay combined with anti-proliferative activities against cardiac fibroblasts (CFs) and hepatic stellate cell (HSC) in vitro were applied for preliminary evaluation of anti-fibrosis potency of target compounds, resulting in two outstanding ATX inhibitors 8b and 10g with the IC50 values in a nanomolar range (24.6 and 15.3 nM). Differently, 8b was the most prominent compound against CFs with inhibition ratio of 81.5%, while 10g exhibited the maximum inhibition ratio of 83.7% against t-HSC/Cl-6 cells. In the further pharmacological evaluations in vivo, collagen deposition assay demonstrated the conspicuous capacity of 8b to suppress TGF-β-mediated cardiac fibrosis. Simultaneously, H&E and Masson stains assays of mice liver validated 10g as an excellent anti-hepatofibrosis candidate, which reduced CCl4-induced hepatic fibrosis level prominently. Besides, the molecular binding models identified the essential interactions between 8b and ATX which was coincided with the SARs.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuhong Zhou
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - Minglin Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junlong Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Ma Z, Zhang K, Wang Y, Wang W, Yang Y, Liang X, Zhang Y, Li G. Doxycycline Improves Fibrosis-Induced Abnormalities in Atrial Conduction and Vulnerability to Atrial Fibrillation in Chronic Intermittent Hypoxia Rats. Med Sci Monit 2020; 26:e918883. [PMID: 31974331 PMCID: PMC6998791 DOI: 10.12659/msm.918883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The structural remodeling of atrial architecture, especially increased amounts of fibrosis, is a critical substrate to atrial fibrillation (AF). Doxycycline (Doxy) has recently been shown to exert protective effects against fibrogenic response. This study investigated whether doxycycline (Doxy) can sufficiently ameliorate the fibrosis-induced changes of atrial conduction and AF vulnerability in a chronic intermittent hypoxia (CIH) rat model. Material/Methods Sixty rats were randomized into 3 groups: Control, CIH, and CIH with Doxy treatment (DOXY) group. CIH rats were exposed to CIH (6 h/d) and Doxy-treated rats were treated with Doxy during processing CIH. After 6 weeks, echocardiographic and hemodynamic parameters were measured. Isolated atrial epicardial activation mapping and heart electrophysiology were performed. The extent of atrial interstitial fibrosis were estimated by Masson’s trichrome staining. The expression levels of TGF-β1 and downstream factors were determined by real-Time PCR, immunohistochemistry, and Western blot analysis. Results Compared to Control rats, the CIH rats showed significant atrial interstitial fibrosis, longer inter-atrial conduction time, and elevated conduction inhomogeneity and AF inducibility, and the expression of TGF-β1, TGF-βRI, TGF-βRII, P-Smad2/3, α-SMA, CTGF, and Collagen I were significantly increased, whereas the velocity of atrial conduction and the expression of miR-30c were dramatically decreased. All of these changes were significantly improved by Doxy treatment. Conclusions The findings suggested that Doxy can profoundly mitigate atrial fibrosis, conduction inhomogeneity as well as high AF inducibility secondary to fibrosis in a CIH rat model through suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Zuowang Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Kai Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yun Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yu Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
9
|
Wu B, Huang XY, Li L, Fan XH, Li PC, Huang CQ, Xiao J, Gui R, Wang S. Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model. J Cell Mol Med 2019; 23:7651-7663. [PMID: 31565849 PMCID: PMC6815847 DOI: 10.1111/jcmm.14638] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to investigate the cardioprotective effect of kirenol against DCM and underlying the potential mechanisms in a type 2 diabetes mellitus model. Kirenol treatment significantly decreased high glucose‐induced cardiofibroblasts proliferation and increased the cardiomyocytes viability, prevented the loss of mitochondrial membrane potential and further attenuated cardiomyocytes apoptosis, accompanied by a reduction in apoptosis‐related protein expression. Kirenol gavage could affect the expression of pro‐inflammatory cytokines in a dose‐dependent manner but not lower lipid profiles, and only decrease fasting plasma glucose, fasting plasma insulin and mean HbA1c levels in high‐dose kirenol‐treated group at some time‐points. Left ventricular dysfunction, hypertrophy, fibrosis and cell apoptosis, as structural and functional abnormalities, were ameliorated by kirenol administration. Moreover, in diabetic hearts, oral kirenol significantly attenuated activation of mitogen‐activated protein kinase subfamily and nuclear translocation of NF‐κB and Smad2/3 and decreased phosphorylation of IκBα and both fibrosis‐related and apoptosis‐related proteins. In an Electrophoretic mobility shift assay, the binding activities of NF‐κB, Smad3/4, SP1 and AP‐1 in the nucleus of diabetic myocardium were significantly down‐regulated by kirenol treatment. Additionally, high dose significantly enhanced myocardial Akt phosphorylation without intraperitoneal injection of insulin. Kirenol may have potent cardioprotective effects on treating for the established diabetic cardiomyopathy, which involves the inhibition of inflammation and fibrosis‐related signalling pathways and is independent of lowering hyperglycaemia, hyperinsulinemia and lipid profiles.
Collapse
Affiliation(s)
- Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology and Pharmacology, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Xue-Yuan Huang
- Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Li
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hang Fan
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan-Qi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Xiao
- Department of Immunology, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Rong Gui
- Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Shun Wang
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol 2019; 20:21. [PMID: 31438862 PMCID: PMC6704591 DOI: 10.1186/s12867-019-0135-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The current study aimed to investigate the effects of miR-32-5p on cardiac fibroblasts (CFs) that were induced with high levels of glucose; we also aimed to identify the potential mechanisms involved in the regulation of DUSP1 expression. Methods Human CFs were transfected with a miR-32-5p inhibitor or mimic and were treated with a normal concentration or a high concentration of glucose. Flow cytometry analysis was performed to identify cardiac fibroblasts by examining vimentin, fibronectin (FN) and α-actin expression in human CFs. qRT-PCR and western blot assays were performed to confirm the expression of miR-32-5p, DUSP1 and cardiac fibrosis relevant proteins. The proliferation of CFs was assessed by using MTT assay. An immunocytofluorescent staining assay was performed to determine the protein level of α-SMA and to investigate the degree of phenotypic changes in human CFs. The specific relationship between miR-32-5p and DUSP1 was investigated by a dual luciferase reporter assay. Cell apoptosis rates were measured with flow cytometry and the annexin V-FITC and propidine iodide (PI) staining method. Results A luciferase reporter assay indicated that miR-32-5p could directly target DUSP1. High glucose levels resulted in the overexpression of miR-32-5p, which downregulated DUSP1 expression. Both the upregulation of miR-32-5p and the downregulation of DUSP1 promoted cell apoptosis, proliferation and phenotypic changes in human CFs. Conclusions All findings in this study provide further evidence for the positive effects of miR-32-5p on cell proliferation and the phenotypic changes in CFs by inhibiting DUSP1 expression, and reveal that miR-32-5p could serve as prognostic diagnostic target for cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12867-019-0135-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Wang C, Luo H, Xu Y, Tao L, Chang C, Shen X. Salvianolic Acid B-Alleviated Angiotensin II Induces Cardiac Fibrosis by Suppressing NF-κB Pathway In Vitro. Med Sci Monit 2018; 24:7654-7664. [PMID: 30365482 PMCID: PMC6215385 DOI: 10.12659/msm.908936] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salvianolic acid B (SalB) is the representative component of phenolic acids derived from the roots and rhizomes of Salvia miltiorrhiza Bge (Labiatae), which has been used widely in Asian countries for clinical therapy of various cardiovascular dysfunction-related diseases. However, cardiac protection effects and the underlying mechanism for clinical application are still poorly understood. Here, we investigated the potential anti-myocardial fibrosis effect and mechanism of SalB on Angiotensin II (Ang II)-induced cardiac fibrosis in vitro. MATERIAL AND METHODS The proliferation and migration capacity of cardiac fibroblasts (CFBs) were measured by MTT assay and scratch analysis, respectively. The colorimetric assay determined the hydroxyproline content in medium. Western blotting detected the protein expressions of nuclear transcription factor-kappa B (NF-κB) pathway-associated proteins, fibronectin (FN), collagen type I (Coll I), α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF). The expression of α-SMA protein was observed by immunofluorescence staining. qRT-PCR detected the mRNA expression of NF-κB. RESULTS SalB attenuated Ang II-induced the proliferation and the migration ability of CFBs. Ang II-induced the extracellular matrix protein Coll I, FN, and α-SMA, the pro-fibrotic cytokine CTGF protein expression was inhibited, and the nuclear translocation of NF-κB p65 subunit was reduced by SalB. Western blotting and qRT-PCR confirmed that SalB blocked the activation of NF-κB induced by Ang II. PDTC (the NF-κB inhibitor) also inhibited proliferation of CFBs and reduced α-SMA and Coll I expression induced by Ang II. CONCLUSIONS SalB can alleviate Ang II-induced cardiac fibrosis via suppressing the NF-κB pathway in vitro.
Collapse
Affiliation(s)
- Chunhua Wang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Hong Luo
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Yini Xu
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Churui Chang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| | - Xiangchun Shen
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Drug Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, Guizhou, P.R. China
| |
Collapse
|
12
|
Jing T, Miao X, Jiang F, Guo M, Xing L, Zhang J, Zuo D, Lei H, Zhai X. Discovery and optimization of tetrahydropyrido[4,3-d]pyrimidine derivatives as novel ATX and EGFR dual inhibitors. Bioorg Med Chem 2018; 26:1784-1796. [PMID: 29496411 DOI: 10.1016/j.bmc.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
In order to discovery autotaxin (ATX) and EGFR dual inhibitors with potential therapeutic effect on IPF-LC, a series of novel tetrahydropyrido[4,3-d]pyrimidine derivatives possessing semicarbazones moiety were designed and synthesized. The preliminary investigation at the cellular level indicated six compounds (7h, 8a, 8c, 8d, 9a and 9d) displayed preferable anti-tumor activities against A549, H1975, MKN-45 and SGC cancer cells. Further enzymatic assay against EGFR kinase identified 8a and 9a as promising hits with IC50 values of 18.0 nM and 24.2 nM. Meanwhile, anti-inflammatory assessment against cardiac fibroblasts (CFs) cell and RAW264.7 macrophages led to the discovery of candidate 9a, which exhibited considerable potency both on inhibition rate of 77% towards CFs and on reducing NO production to 1.05 μM at 10 μg/mL. Simultaneously, 9a indicated preferable potency towards ATX with IC50 value of 29.1 nM. Significantly, a RT-PCR study revealed the function of 9a to down-regulate the mRNA expression of TGF-β and TNF-α in a dose-dependent manner. The molecular docking analysis together with the pharmacological studies validated 9a as a potential ATX and EGFR dual inhibitor for IPF-LC treatments.
Collapse
Affiliation(s)
- Tongfei Jing
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiuqi Miao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Feng Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lingyun Xing
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Junlong Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Daiying Zuo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
13
|
Rahn S, Zimmermann V, Viol F, Knaack H, Stemmer K, Peters L, Lenk L, Ungefroren H, Saur D, Schäfer H, Helm O, Sebens S. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett 2017; 415:129-150. [PMID: 29222037 DOI: 10.1016/j.canlet.2017.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia and a risk to develop pancreatic ductal adenocarcinoma (PDAC), one of the most fatal malignancies. Cancer stem cells (CSC) are essential for initiation and maintenance of tumors, and acquisition of CSC-features is linked to epithelial-mesenchymal-transition (EMT). The present study investigated whether hyperglycemia promotes EMT and CSC-features in premalignant and malignant pancreatic ductal epithelial cells (PDEC). Under normoglycemia (5 mM d-glucose), Panc1 PDAC cells but not premalignant H6c7-kras cells exhibited a mesenchymal phenotype along with pronounced colony formation. While hyperglycemia (25 mM d-glucose) did not impact the mesenchymal phenotype of Panc1 cells, CSC-properties were aggravated exemplified by increased Nanog expression and Nanog-dependent formation of holo- and meroclones. In H6c7-kras cells, high glucose increased secretion of Transforming-Growth-Factor-beta1 (TGF-β1) as well as TGF-β1 signaling, and in a TGF-β1-dependent manner reduced E-cadherin expression, increased Nestin expression and number of meroclones. Finally, reduced E-cadherin expression was detected in pancreatic ducts of hyperglycemic but not normoglycemic mice. These data suggest that hyperglycemia promotes the acquisition of mesenchymal and CSC-properties in PDEC by activating TGF-β signaling and might explain how T2DM facilitates pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Sascha Rahn
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Vivien Zimmermann
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Fabrice Viol
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrike Knaack
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Kerstin Stemmer
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Lena Peters
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Lennart Lenk
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Hendrik Ungefroren
- Department of General Surgery and Thoracic Surgery, UKSH Campus Kiel, Germany; First Department of Medicine, UKSH Campus Lübeck, Lübeck, Germany
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany.
| |
Collapse
|
14
|
Rathinavel A, Sankar J, Mohammed Sadullah SS, Niranjali Devaraj S. Oligomeric proanthocyanidins protect myocardium by mitigating left ventricular remodeling in isoproterenol-induced postmyocardial infarction. Fundam Clin Pharmacol 2017; 32:51-59. [PMID: 29059499 DOI: 10.1111/fcp.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022]
Abstract
Extracellular matrix (ECM) remodeling is a major pathophysiological process during post-myocardial infarction (MI). The activation, differentiation, and proliferation of cardiac fibroblasts to myofibroblasts regulate the expression of ECM proteins. The signaling by bone morphogenetic protein (BMP-4), an extracellular ligand of the TGF-β family, has recently been identified as an essential pathway in regulating cardiovascular dysfunctions including myocardial fibrosis. Oligomeric proanthocyanidins (OPC) are well known for their cardioprotective activity. The primary aim of the study was to investigate BMP-4-mediated ECM turnover in cardiac fibrosis during isoproterenol-induced post-MI and its downregulation by OPC. Myocardial injury was evaluated by assaying serum markers LDH and CK. Oxidative stress and the enzymatic and nonenzymatic antioxidant levels were assessed to support the cardioprotective nature of OPC. The total collagen level was analyzed by measuring hydroxyproline levels. The ISO-induced group showed a significant decrease in the levels of antioxidants due to severe oxidative stress and increased expression of BMP-4 which reflects the increased expression of MMP 2 and 9 with a concomitant increase and deposition of fibrillary collagens type I and III responsible for the fibrotic scar formation as evidenced in the histological analysis.BMP-4 activation, thus, is strongly associated with cardiac fibrosis which was downregulated upon OPC supplementation. This study provides an evidence supporting the antifibrotic effect of OPC via regulation of BMP-4-mediated ECM turnover and also substantiates the remarkable antioxidant efficacy of OPC against isoproterenol induced severe oxidative stress and subsequent post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Ashokkumar Rathinavel
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Jamuna Sankar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | | | |
Collapse
|
15
|
Gustafson D, Veitch S, Fish JE. Extracellular Vesicles as Protagonists of Diabetic Cardiovascular Pathology. Front Cardiovasc Med 2017; 4:71. [PMID: 29209616 PMCID: PMC5701646 DOI: 10.3389/fcvm.2017.00071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) represent an emerging mechanism of cell–cell communication in the cardiovascular system. Recent data suggest that EVs are produced and taken up by multiple cardiovascular cell types, influencing target cells through signaling or transfer of cargo (including proteins, lipids, messenger RNA, and non-coding RNA). The concentration and contents of circulating EVs are altered in several diseases and represent explicit signatures of cellular activation, making them of particular interest as circulating biomarkers. EVs also actively contribute to the progression of various cardiovascular diseases, including diabetes-related vascular disease. Understanding the relationships between circulating EVs, diabetes, and cardiovascular disease is of importance as diabetic patients are at elevated risk for developing several debilitating cardiovascular pathologies, including diabetic cardiomyopathy (DCM), a disease that remains an enigma at the molecular level. Enhancing and exploiting our understanding of EV biology could facilitate the development of effective non-invasive diagnostics, prognostics, and therapeutics. This review will focus on EV biology in diabetic cardiovascular diseases, including atherosclerosis and DCM. We will review EV biogenesis and functional properties, as well as provide insight into their emerging role in cell–cell communication. Finally, we will address the utility of EVs as clinical biomarkers and outline their impact as a biomedical tool in the development of therapeutics.
Collapse
Affiliation(s)
- Dakota Gustafson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shawn Veitch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Center of Excellence in Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
He Y, Zeng HZ, Yu Y, Zhang JS, Duan X, Zeng XN, Gong FT, Liu Q, Yang B. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:120-124. [PMID: 28704753 DOI: 10.1016/j.etap.2017.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
AIM We investigated whether prostate fibrosis was associated with urinary dysfunction in chronic prostatitis (CP) and whether resveratrol improved urinary dysfunction and the underlying molecular mechanism. METHODS Rat model of CP was established via subcutaneous injections of DPT vaccine and subsequently treated with resveratrol. Bladder pressure and volume tests investigated the effect of resveratrol on urinary dysfunction in CP rats. Western blotting and immunohistochemical staining examined the expression level of C-kit/SCF and TGF-β/Wnt/β-catenin. RESULTS Compared to the control group, the maximum capacity of the bladder, residual urine volume and maximum voiding pressure, the activity of C-kit/SCF and TGF-β/Wnt/β-catenin pathways were increased significantly in the CP group. Resveratrol treatment significantly improved these factors. CONCLUSION CP induced significantly prostate fibrosis, which exhibits a close relationship with urinary dysfunction. Resveratrol improved fibrosis, which may be associated with the suppression of C-kit/SCF and TGF-β/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui-Zhi Zeng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia-Shu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xingping Duan
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Na Zeng
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Feng-Tao Gong
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| | - Bo Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
17
|
Jiang L, Chen FX, Zang ST, Yang QF. Betulinic acid prevents high glucose-induced expression of extracellular matrix protein in cardiac fibroblasts by inhibiting the TGF-β1/Smad signaling pathway. Mol Med Rep 2017; 16:6320-6325. [DOI: 10.3892/mmr.2017.7323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
|
18
|
Li J, Dai Y, Su Z, Wei G. MicroRNA-9 inhibits high glucose-induced proliferation, differentiation and collagen accumulation of cardiac fibroblasts by down-regulation of TGFBR2. Biosci Rep 2016; 36:e00417. [PMID: 27756824 PMCID: PMC5293584 DOI: 10.1042/bsr20160346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023] Open
Abstract
To investigate the effects of miR-9 on high glucose (HG)-induced cardiac fibrosis in human cardiac fibroblasts (HCFs), and to establish the mechanism underlying these effects. HCFs were transfected with miR-9 inhibitor or mimic, and then treated with normal or HG. Cell viability and proliferation were detected by using the Cell Counting Kit-8 (CCK-8) assay and Brdu-ELISA assay. Cell differentiation and collagen accumulation of HCFs were detected by qRT-PCR and Western blot assays respectively. The mRNA and protein expressions of transforming growth factor-β receptor type II (TGFBR2) were determined by qRT-PCR and Western blotting. Up-regulation of miR-9 dramatically improved HG-induced increases in cell proliferation, differentiation and collagen accumulation of HCFs. Moreover, bioinformatics analysis predicted that the TGFBR2 was a potential target gene of miR-9 Luciferase reporter assay demonstrated that miR-9 could directly target TGFBR2. Inhibition of TGFBR2 had the similar effect as miR-9 overexpression. Down-regulation of TGFBR2 in HCFs transfected with miR-9 inhibitor partially reversed the protective effect of miR-9 overexpression on HG-induced cardiac fibrosis in HCFs. Up-regulation of miR-9 ameliorates HG-induced proliferation, differentiation and collagen accumulation of HCFs by down-regulation of TGFBR2. These results provide further evidence for protective effect of miR-9 overexpression on HG-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Jiaxin Li
- Vasculocardiology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yingnan Dai
- Vasculocardiology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhendong Su
- Vasculocardiology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guoqian Wei
- Vasculocardiology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
19
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
20
|
Tao H, Chen ZW, Yang JJ, Shi KH. MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol 2016; 88:414-23. [PMID: 27060017 DOI: 10.1016/j.ijbiomac.2016.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 04/04/2016] [Indexed: 10/25/2022]
Abstract
Cardiac fibroblasts proliferation is the most important pathophysiological character of cardiac fibrosis while the underlying mechanisms are still incompletely known. MicroRNAs (miRNAs) regulate gene expression by binding to specific sites. Studies have been indicated that miRNA-29a play a key role in cardiac fibrosis. VEGF-A carries out its functions through MAPK signaling pathway in cardiac fibrosis. Existing proofs predict that the VEGF-A is one of the potential targets of miRNA-29a. We therefore probe the role of miRNA-29a and its latent target VEGF-A during cardiac fibrosis. In our study, miRNA-29a was down-regulated while VEGF-A was up-regulated in cardiac fibrosis tissues. The rat cardiac fibroblasts that were transfected with miRNA-29a inhibitor exhibited low-expression of miRNA-29a, enhanced VEGF-A protein and mRNA expression. Nevertheless, the cardiac fibroblasts transfected with miRNA-29a mimics obtained the opposite expression result. Furthermore, over-expression of miRNA-29a suppresses cardiac fibroblasts proliferation. In conclusion, these results suggested that miRNA-29a suppresses cardiac fibrosis and fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway implicating that miRNA-29a might play a role in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Ze-Wen Chen
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
21
|
Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ, Wei ZH, Kang LN, Xu B. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 2016; 16:5. [PMID: 26750922 PMCID: PMC4707778 DOI: 10.1186/s12872-015-0169-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/14/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Myocardial fibrosis is an essential hallmark of diabetic cardiomyopathy (DCM) contributing to cardiac dysfunctions. Resveratrol, an antioxidant, exerts its anti-fibrotic effect via inhibition of oxidative stress, while the underlying molecular mechanism remains largely elusive. Periostin, a fibrogenesis matricellular protein, has been shown to be associated with oxidative stress. In the present study, we investigated the role of periostin in anti-fibrotic effect of resveratrol in streptozocin (STZ)-induced diabetic heart and the underlying mechanisms. METHODS Diabetic mice were induced by STZ injection. After treatment with resveratrol (5 or 25 mg/kg/day i.g) or Saline containing 0.5% carboxymethyl cellulose (CMC) for 2 months, the hearts were detected for oxidative stress and cardiac fibrosis using western blot, Masson's trichrome staining and Dihydroethidium (DHE) staining. In in vitro experiments, proliferation and differentiation of fibroblasts under different conditions were investigated through western blot, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and immunofluorescence staining. RESULTS Administration of resveratrol significantly mitigated oxidative level, interstitial fibrosis and expressions of related proteins in STZ-induced diabetic hearts. In in vitro experiments, resveratrol exhibited anti-proliferative effect on primary mouse cardiac fibroblasts via inhibiting reactive oxygen species (ROS)/extracellular regulated kinase (ERK) pathway and ameliorated myofibroblast differentiation via suppressing ROS/ERK/ transforming growth factor β (TGF-β)/periostin pathway. CONCLUSION Increased ROS production, activation of ERK/TGF-β/periostin pathway and myocardial fibrosis are important events in DCM. Alleviated ROS genesis by resveratrol prevents myocardial fibrosis by regulating periostin related signaling pathway. Thus, inhibition of ROS/periostin may represent a novel approach for resveratrol to reverse fibrosis in DCM.
Collapse
Affiliation(s)
- Han Wu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Guan-Nan Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Ran Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Qin-Hua Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Jian-Zhou Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Zhong-Hai Wei
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Li-Na Kang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
22
|
Ulakcsai Z, Bagaméry F, Vincze I, Szökő É, Tábi T. Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts. Croat Med J 2015; 56:78-84. [PMID: 25891866 PMCID: PMC4410169 DOI: 10.3325/cmj.2015.56.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim To study the effect of resveratrol on survival and caspase 3 activation in non-transformed cells after serum deprivation. Methods Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation and lactate dehydrogenase release were assayed as cell viability measure by using their fluorogenic substrates. The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling pathways was also examined. Results Serum deprivation of primary fibroblasts induced significant activation of caspase 3 within 3 hours and reduced cell viability after 24 hours. Resveratrol dose-dependently prevented caspase activation and improved cell viability with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 µM. It also reduced the already up-regulated caspase 3 activity when it was added to the cell culture medium after 3 hour serum deprivation, suggesting its rescue effect. Among the major signaling pathways, p38 kinase was critical for the protective effect of resveratrol which was abolished completely in the presence of p38 inhibitor. Conclusion Resveratrol showed protective effect against cell death in a rather high dose. Involvement of p38 kinase in this effect suggests the role of mild stress in its cytoprotective action. Furthermore due to its rescue effect, resveratrol may be used not only for prevention, but also treatment of age-related degenerative diseases, but in the higher dose than consumed in conventional diet.
Collapse
Affiliation(s)
| | | | | | | | - Tamás Tábi
- Tamas Tábi, Nagyvarad ter 4, Budapest, H-1089, Hungary,
| |
Collapse
|
23
|
Resveratrol ameliorates high glucose-induced oxidative stress injury in human umbilical vein endothelial cells by activating AMPK. Life Sci 2015; 136:94-9. [PMID: 26188290 DOI: 10.1016/j.lfs.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
AIMS To investigate the effects of resveratrol on high glucose (HG)-induced vascular injury, and to establish the mechanism(s) underlying these effects. MAIN METHODS Human umbilical vein endothelial cells (HUVECs) were treated with glucose, and then incubated with resveratrol in the presence or absence of Compound C, an AMP-activated protein kinase (AMPK) inhibitor. Cell viability was determined using the Cell Counting Kit-8 (CCK-8) method. Reactive oxygen species, malondialdehyde, and superoxide dismutase were detected by flow cytometry, thiobarbituric acid reaction, and the nitroblue tetrazolium method, respectively. Protein levels of total and phosphorylated AMPKα and acetyl-CoA carboxylase were detected by immunoblotting. KEY FINDINGS Resveratrol significantly ameliorated HG-induced decreases in cell viability and superoxide dismutase levels and increases in reactive oxygen species and MDA levels. Moreover, resveratrol significantly reversed HG-induced dephosphorylation of AMPKα and acetyl-CoA carboxylase. However, treatment with Compound C curtailed the beneficial effects of resveratrol on HG-treated HUVECs. SIGNIFICANCE Resveratrol ameliorates HG-induced injury in HUVECs by activation of AMPKα, leading to increased cellular reductive reactions and decreased oxidative stress. These results provide further evidence for resveratrol-mediated activation of AMPKα.
Collapse
|