1
|
Tong C, Wu Y, Zhuang Z, Yu Y. A diagnostic model for polycystic ovary syndrome based on machine learning. Sci Rep 2025; 15:9821. [PMID: 40119083 PMCID: PMC11928512 DOI: 10.1038/s41598-025-92630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Diagnosis of polycystic ovary syndrome remains a challenge. In this study, we propose constructing a diagnostic model of polycystic ovary syndrome by combining anti-Müllerian hormone with steroid hormones and oestrogens, with the aim of providing more bases and auxiliary means for the diagnosis of this disease. 1. Eighty-four samples from patients who were diagnosed with polycystic ovary syndrome at the First Affiliated Hospital of Zhejiang Chinese Medical University from May 2023 to November 2023 were collected as the case group, and 75 samples from the healthy population of the Health Screening Centre of the First Affiliated Hospital of Zhejiang Chinese Medical University during the same period were collected as the control group. 2. General information (including age, BMI, family history, medication history, etc.) and sex hormone data (including luteinising hormone, follicle stimulating hormone, prolactin, estradiol, testosterone, etc.) were collected from all study subjects. AMH and steroid hormone tests were performed on serum collected from all study subjects. 3. The data of 10 case groups and 10 control groups were randomly selected as validation set data, and the rest of the data were included in the model construction. The acquired data were screened for variables, a classification model based on a machine learning algorithm was constructed, and the constructed model was evaluated and validated for diagnostic efficacy. Ultimately, a total of 8 variables were screened and included in the subsequent model construction, namely LH, LH/FSH, E2, PRL, T, AMH, AD, and COR, with AMH having the highest diagnostic potential among all the variables included in the model. A total of five machine learning models were constructed, the logistic classification model has the best overall performance, and the support vector machine has the weakest overall performance. The validation set has an AUC of 0.86 for the model. In this study, five classification models based on machine learning algorithms were successfully constructed. Combining the evaluation metrics of each model performance, we concluded that the logistic classification model had the best performance capability in our study. However, since this study is a single-center small sample size study, some metabolic features of PCOS may be overlooked, and, as the validation set data in this study come from the same center as the modelling data, the validation results may have several limitations, so it is still necessary to expand the sample size and collect multicenter data to establish an external validation dataset to further improve the study.
Collapse
Affiliation(s)
- Cheng Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yue Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Zhenchao Zhuang
- Adicon Clinical Laboratories, Hangzhou, 310023, Zhejiang, China.
| | - Ying Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Su P, Chen C, Sun Y. Physiopathology of polycystic ovary syndrome in endocrinology, metabolism and inflammation. J Ovarian Res 2025; 18:34. [PMID: 39980043 PMCID: PMC11841159 DOI: 10.1186/s13048-025-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder characterized by elevated androgen levels, ovarian cysts, and impaired ovulation in females. This condition is closely linked with various reproductive health issues and has significant impacts on endocrine and metabolic pathways. Patients with PCOS commonly exhibit hyperandrogenaemia and insulin resistance, leading to complications such as acne, hirsutism, weight fluctuations, and metabolic disturbances, as well as an increased risk for type 2 diabetes, cardiovascular disease, and endometrial cancer. Although extensive research has identified several mechanistic aspects of PCOS, a thorough understanding of its pathophysiology remains incomplete. This review aims to provide a detailed analysis of the physiological and pathological aspects of PCOS, covering endocrine, metabolic, and inflammatory dimensions, to better elucidate its etiological framework.
Collapse
Affiliation(s)
- Pingping Su
- Wenzhou Graduate Joint Training Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Chao Chen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Sun
- Department of Gynecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
4
|
Li X, Lin S, Yang X, Chen C, Cao S, Zhang Q, Ma J, Zhu G, Zhang Q, Fang Q, Zheng C, Liang W, Wu X. When IGF-1 Meets Metabolic Inflammation and Polycystic Ovary Syndrome. Int Immunopharmacol 2024; 138:112529. [PMID: 38941670 DOI: 10.1016/j.intimp.2024.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder associated with insulin resistance (IR) and hyperandrogenaemia (HA). Metabolic inflammation (MI), characterized by a chronic low-grade inflammatory state, is intimately linked with chronic metabolic diseases such as IR and diabetes and is also considered an essential factor in the development of PCOS. Insulin-like growth factor 1 (IGF-1) plays an essential role in PCOS pathogenesis through its multiple functions in regulating cell proliferation metabolic processes and reducing inflammatory responses. This review summarizes the molecular mechanisms by which IGF-1, via MI, participates in the onset and progression of PCOS, aiming to provide insights for studies and clinical treatment of PCOS.
Collapse
Affiliation(s)
- Xiushen Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China; Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Sailing Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Xiaolu Yang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Can Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Shu Cao
- Xin'an Academy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jingxin Ma
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Guli Zhu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qiongfang Fang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Xueqing Wu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, Seth N, Kamal MA, Rizvi S, Babker AM, Hafez W. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309:1707-1723. [PMID: 38316651 DOI: 10.1007/s00404-024-07379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9-21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School, Amity University Haryana, Gurugram, India.
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, 110025, India
| | | | - Rana A Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Homa Hassan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Namrata Seth
- Department of Biotechnology, Indian Institute of Science and Technology, Bhopal, 462066, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saliha Rizvi
- Department of Biotechnology, Era University, Lucknow, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Wael Hafez
- The Medical Research Division, Department of Internal Medicine, the National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Yang N, Ma K, Liu W, Zhang N, Shi Z, Ren J, Xu W, Li Y, Su R, Liang Y, Wang S, Li X. Serum metabolomics probes the molecular mechanism of action of acupuncture on metabolic pathways related to glucose metabolism in patients with polycystic ovary syndrome-related obesity. Biomed Chromatogr 2023; 37:e5710. [PMID: 37593801 DOI: 10.1002/bmc.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine syndrome, and obesity is the most common clinical manifestation. Acupuncture is effective in treating PCOS, but the differences in the biological mechanisms of acupuncture therapy and Western medicine treatment have not been determined. Thus, the purpose of this study was to find glucose metabolism-related pathways in acupuncture treatment and differentiate them from Western medical treatment. Sixty patients with PCOS-related obesity were randomly distributed into three groups: patients receiving (1) acupuncture treatment alone, (2) conventional Western medicine treatment, and (3) acupuncture combined with Western medicine treatment. A targeted metabolomics approach was used to identify small molecules and metabolites related to glucose metabolism in the serum of each group, and ultra-high-performance liquid chromatography-tandem mass spectrometry was used to analyze different metabolic fractions. The results showed acupuncture treatment modulates the activity of citric and succinic acids in the tricarboxylic acid cycle, regulates glycolytic and gluconeogenesis pathways, and improves the levels of sex hormones and energy metabolism. The intervention effects on the metabolic pathways were different between patients receiving combination therapy and patients receiving acupuncture therapy alone, suggesting that the dominant modulatory effect of Western drugs may largely conceal the efficacy of acupuncture intervention.
Collapse
Affiliation(s)
- Nan Yang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhouhua Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jian Ren
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wanli Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqiu Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Riliang Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanbo Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuyang Li
- Postdoctoral Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Zhang H, Butoyi C, Yuan G, Jia J. Exploring the role of gut microbiota in obesity and PCOS: Current updates and future prospects. Diabetes Res Clin Pract 2023; 202:110781. [PMID: 37331521 DOI: 10.1016/j.diabres.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder, and the specific pathogenesis of PCOS has not been elucidated. Obesity is a current major public health problem, which is also vital to PCOS. It can exacerbate PCOS symptoms via insulin resistance and hyperandrogenemia. The treatment of PCOS patients depends on the prevailing symptoms. Lifestyle interventions and weight loss remain first-line treatments for women with PCOS. The gut microbiota, which is a current research hot spot, has a substantial influence on PCOS and is closely related to obesity. The present study aimed to elucidate the function of the gut microbiota in obesity and PCOS to provide new ideas for the treatment of PCOS.
Collapse
Affiliation(s)
- Hui Zhang
- First Clinical Medical College, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Claudette Butoyi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China; School of Medicine , Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
9
|
Udesen PB, Sørensen AE, Svendsen R, Frisk NLS, Hess AL, Aziz M, Wissing MLM, Englund ALM, Dalgaard LT. Circulating miRNAs in Women with Polycystic Ovary Syndrome: A Longitudinal Cohort Study. Cells 2023; 12:cells12070983. [PMID: 37048055 PMCID: PMC10093401 DOI: 10.3390/cells12070983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) often change their metabolic profile over time to decrease levels of androgens while often gaining a propensity for the development of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs associated with the development of an impaired metabolic profile in women with PCOS, in a follow-up study, compared with women without PCOS. METHODS AND MATERIALS Clinical measurements of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women with PCOS and nine controls. All participants were evaluated for degree of metabolic disease (hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or metabolic disease. RESULTS Women with PCOS decreased their levels of androgens during follow-up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS during the follow-up, and twenty-four of them had decreased, while levels did not change in the control group. Four miRNAs were significantly different at baseline between healthy controls and women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone signaling, tyrosine kinase signaling, and WNT signaling. CONCLUSIONS These studies indicate that miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up, reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.
Collapse
Affiliation(s)
- Pernille B Udesen
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Rikke Svendsen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Nanna L S Frisk
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Anne L Hess
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mubeena Aziz
- Department of Gynecology and Obstetrics, Amager/Hvidovre Hospital, Kettegaards Allé 30, 2650 Hvidovre, Denmark
| | | | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
10
|
Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J Clin Med 2023; 12:1454. [PMID: 36835989 PMCID: PMC9964744 DOI: 10.3390/jcm12041454] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, typically characterized by anovulation, infertility, obesity, insulin resistance, and polycystic ovaries. Lifestyle or diet, environmental pollutants, genetics, gut dysbiosis, neuroendocrine alterations, and obesity are among the risk factors that predispose females to PCOS. These factors might contribute to upsurging metabolic syndrome by causing hyperinsulinemia, oxidative stress, hyperandrogenism, impaired folliculogenesis, and irregular menstrual cycles. Dysbiosis of gut microbiota may play a pathogenic role in the development of PCOS. The restoration of gut microbiota by probiotics, prebiotics, or a fecal microbiota transplant (FMT) might serve as an innovative, efficient, and noninvasive way to prevent and mitigate PCOS. This review deliberates on the variety of risk factors potentially involved in the etiology, prevalence, and modulation of PCOS, in addition to plausible therapeutic interventions, including miRNA therapy and the eubiosis of gut microbiota, that may help treat and manage PCOS.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Namrata Pal
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Swasti Shubham
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Devojit Kumar Sarma
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of MedicalSciences, Lucknow 226014, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20144 Milano, Lombardia, Italy
| | - Manoj Kumar
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| |
Collapse
|
11
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
12
|
Xu S, Liu Y, Xue K, Liu X, Jia G, Zeng Y, Chen Y. Diagnostic value of total testosterone and free androgen index measured by LC-MS/MS for PCOS and insulin resistance. J Clin Lab Anal 2022; 36:e24739. [PMID: 36258308 DOI: 10.1002/jcla.24739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The objective of the study was to explore the clinical significance of steroid hormones in the diagnosis of PCOS and PCOS-related insulin resistance through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and chemiluminescent immunoassay (CLIA). METHODS The study included 114 patients with PCOS and 100 controls. Steroid hormone levels in serum were measured using LC-MS/MS and CLIA. The Bland-Altman method was used to check the consistency between the two methods. The diagnostic value of the LC-MS/MS method for female hyperandrogenemia and PCOS was evaluated. RESULTS Women with PCOS were younger than controls on average (p < 0.001). PCOS patients had higher luteal hormone (LH, p < 0.001), insulin (p = 0.002), estradiol (E2, p < 0.001), total testosterone (TT, p < 0.001), free androgen index (FAI, p = 0.021), dehydroepiandrosterone sulfate (DHEA, p = 0.021), insulin resistance index (HOMA-IR) (p = 0.034), and fasting glucose (p = 0.017) levels than controls as measured by CLIA. The diagnostic value of TT was the best, and the area under the AUC curve was 0.766. Women with PCOS had higher androstenedione (A2, p < 0.001), FAI (p < 0.001), TT (p < 0.001), and 17-hydroxyprogesterone (17-OHP, p < 0.001) levels than controls as measured by LC-MS/MS. The ROC curve showed that the diagnostic efficacy of A2, TT, and 17-OHP was 0.830, 0.851, and 0.714, respectively. The consistency of TT detected by LC-MS/MS and CLIA was poor according to the Bland-Altman method. Detected TT by LC-MS/MS had the highest diagnostic efficiency for PCOS. The diagnostic power of the LC-MS/MS results for PCOS-related insulin resistance was analyzed. The results showed that the FAI had the highest diagnostic power, with an ROC curve of 0.798. CONCLUSION LC-MS/MS is more sensitive and accurate than CLIA in the determination of serum TT and FAI. TT is more effective for the diagnosis of PCOS, whereas FAI is more valuable in the diagnosis of insulin resistance.
Collapse
Affiliation(s)
- Sujuan Xu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yun Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Kai Xue
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiaoguang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Genmei Jia
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yu Zeng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
13
|
Shi YQ, Wang Y, Zhu XT, Yin RY, Ma YF, Han H, Han YH, Zhang YH. The Application of Complementary and Alternative Medicine in Polycystic Ovary Syndrome Infertility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5076306. [PMID: 36248406 PMCID: PMC9568292 DOI: 10.1155/2022/5076306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive endocrine disease, which is the most common cause of anovular infertility. Modern medicine mainly treats infertile patients with PCOS by improving living habits, ovulation induction therapy, and assisted reproductive technology (ART), but the effect is not satisfied. Complementary alternative medicine (CAM) has conspicuous advantages in the treatment of PCOS infertility due to its good clinical efficacy, wide mechanism of action, and no obvious adverse reactions, but its safety and effectiveness in the treatment of PCOS infertility have not been proved. Based on the existing clinical and experimental studies, this paper looks for the therapeutic effect and the mechanism behind it, and explores the safety and effectiveness of its treatment in PCOS infertility, in order to provide reference for future clinical treatment and experimental research.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui-Yang Yin
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Han Han
- The First Clinical Hospital affiliated to Harbin Medical University, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Combined Transcriptomic and Metabolomic Analysis of Women with Polycystic Ovary Syndrome. DISEASE MARKERS 2022; 2022:4000424. [PMID: 36072900 PMCID: PMC9441417 DOI: 10.1155/2022/4000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Background. Polycystic ovary syndrome (PCOS) is a complex class of endocrine disorders with insulin resistance, compensatory hyperinsulinemia, and obesity. However, the pathogenesis and therapies of PCOS have not been fully elucidated. Exosomal miRNAs have the potential to serve as biomarkers and therapies for a wide range of medical conditions. Method. We collected follicular fluid from 5 PCOS patients and 5 healthy people. High-throughput sequencing technology to identify differentially expressed miRNAs and untargeted metabolome identify differential metabolites in follicular fluid exosomal. RT-qPCR and AUC analysis were performed. Result. miRNA high-throughput sequencing identified 124 differential miRNAs. RT-qPCR analysis confirmed the sequencing results. These differential miRNA target genes are mainly involved in metabolic pathways. Metabolomics studies identified 31 differential metabolites. miRNA and lncRNA coexpression networks in metabolic pathways rigorously screened 28 differentially expressed miRNAs. This network would identify miRNA signatures associated with metabolic processes in PCOS. Meanwhile, the area under curve of receiver operating characteristic revealed that hsa-miR-196a-3p, hsa-miR-143-5p, hsa-miR-106a-3p, hsa-miR-34a-5p, and hsa-miR-20a-5p were potential biomarkers for the diagnosis of PCOS. Conclusion. Collectively, these results demonstrate the potential pathogenesis of PCOS, and follicular fluid exosomal miRNAs may be efficient targets for the diagnosis and treatment of PCOS in long-term clinical studies.
Collapse
|
15
|
Vitale SG, Fulghesu AM, Mikuš M, Watrowski R, D’Alterio MN, Lin LT, Shah M, Reyes-Muñoz E, Sathyapalan T, Angioni S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines 2022; 10:biomedicines10081816. [PMID: 36009364 PMCID: PMC9405312 DOI: 10.3390/biomedicines10081816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are essential for the regulation of post-transcriptional gene expression during tissue development and differentiation. They are involved in the regulation of manifold metabolic and hormonal processes and, within the female reproductive tract, in oocyte maturation and folliculogenesis. Altered miRNA levels have been observed in oncological and inflammatory diseases, diabetes or polycystic ovary syndrome (PCOS). Therefore, miRNAs are proving to be promising potential biomarkers. In women with PCOS, circulating miRNAs can be obtained from whole blood, serum, plasma, urine, and follicular fluid. Our systematic review summarizes data from 2010–2021 on miRNA expression in granulosa and theca cells; the relationship between miRNAs, hormonal changes, glucose and lipid metabolism in women with PCOS; and the potential role of altered miRNAs in fertility (oocyte quality) in PCOS. Furthermore, we discuss miRNAs as a potential therapeutic target in PCOS and as a diagnostic marker for PCOS.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
| | - Anna Maria Fulghesu
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Rafał Watrowski
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Maurizio Nicola D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Pei-Tou, Taipei 112, Taiwan
- Department of Biological Science, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung City 80424, Taiwan
| | - Mohsin Shah
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Enrique Reyes-Muñoz
- Department of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Stefano Angioni
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
- Correspondence:
| |
Collapse
|
16
|
Chen WH, Huang QY, Wang ZY, Zhuang XX, Lin S, Shi QY. Therapeutic potential of exosomes/miRNAs in polycystic ovary syndrome induced by the alteration of circadian rhythms. Front Endocrinol (Lausanne) 2022; 13:918805. [PMID: 36465652 PMCID: PMC9709483 DOI: 10.3389/fendo.2022.918805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive dysfunction associated with endocrine disorders and is most common in women of reproductive age. Clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, polycystic ovary, insulin resistance, and obesity. Presently, the aetiology and pathogenesis of PCOS remain unclear. In recent years, the role of circadian rhythm changes in PCOS has garnered considerable attention. Changes in circadian rhythm can trigger PCOS through mechanisms such as oxidative stress and inflammation; however, the specific mechanisms are unclear. Exosomes are vesicles with sizes ranging from 30-120nm that mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells and are widely involved in the regulation of various physiological and pathological processes. Circadian rhythm can alter circulating exosomes, leading to a series of related changes and physiological dysfunctions. Therefore, we speculate that circadian rhythm-induced changes in circulating exosomes may be involved in PCOS pathogenesis. In this review, we summarize the possible roles of exosomes and their derived microRNAs in the occurrence and development of PCOS and discuss their possible mechanisms, providing insights into the potential role of exosomes for PCOS treatment.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhi-yi Wang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuan-xuan Zhuang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| |
Collapse
|
17
|
He C, Wang K, Gao Y, Wang C, Li L, Liao Y, Hu K, Liang M. Roles of Noncoding RNA in Reproduction. Front Genet 2021; 12:777510. [PMID: 34956326 PMCID: PMC8695933 DOI: 10.3389/fgene.2021.777510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Xu L, Xiong F, Bai Y, Xiao J, Zhang Y, Chen J, Li Q. Circ_0043532 regulates miR-182/SGK3 axis to promote granulosa cell progression in polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19:167. [PMID: 34740363 PMCID: PMC8569971 DOI: 10.1186/s12958-021-00839-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women at childbearing age. Several circular RNAs (circRNAs) have been demonstrated to be involved in PCOS. In this study, we aimed to explore the function and mechanism of circ_0043532 in PCOS. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the expression of circ_0043532, miR-182 and serum/glucocorticoid regulated kinase family member 3 (SGK3). Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Flow cytometry analysis was employed to evaluate cell cycle and cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the association between miR-182 and SGK3. Western blot assay was carried out to determine the protein level of SGK3. RESULTS Circ_0043532 was markedly elevated in PCOS granulosa cells (GCs) and KGN cells. Silencing of circ_0043532 suppressed cell proliferation and cell cycle process and promoted cell apoptosis in PCOS GCs and KGN cells. For mechanistic analysis, circ_0043532 was identified as a sponge of miR-182 and SGK3 was confirmed to be a target gene of miR-182. Inhibition of miR-182 rescued the impacts of circ_0043532 interference on PCOS GCs and KGN cell progression. Moreover, miR-182 overexpression suppressed cell proliferation and cell cycle process and promoted cell apoptosis in PCOS GCs and KGN cells by targeting SGK3. CONCLUSION Deficiency of circ_0043532 suppressed cell proliferation and induced cell cycle arrest and cell apoptosis in PCOS by modulation of miR-182/SGK3 axis.
Collapse
Affiliation(s)
- Lishuang Xu
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Fang Xiong
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China.
| | - Yinyang Bai
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Juxia Xiao
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Yun Zhang
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Jie Chen
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Qiuping Li
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| |
Collapse
|
19
|
Farsimadan M, Ismail Haje M, Khudhur Mawlood C, Arabipour I, Emamvirdizadeh A, Takamoli S, Masumi M, Vaziri H. MicroRNA variants in endometriosis and its severity. Br J Biomed Sci 2021; 78:206-210. [PMID: 33583336 DOI: 10.1080/09674845.2021.1889157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: MicroRNAs (miRNAs) are naturally occurring posttranscriptional regulatory molecules that potentially play a role in endometriotic lesion development.Method: We evaluated the prevalence of miRNAs variants miR-146a rs2910164, miR-149 rs2292832, miR-196a2 rs11614913, and miR-499 rs3746444 in endometriosis in 260 cases and 260 controls. DNA was extracted and genotyping of the SNPs was carried out by PCR.Results: There was a significant association of rs2910164 and rs2292832 with increased rates of endometriosis under the dominant (p < 0.001), recessive (p < 0.05), co-dominant (p < 0.001), and allelic model (p < 0.001). Also, rs3746444 showed a borderline association with endometriosis under the recessive model (p = 0.05); however, rs11614913 was not linked to endometriosis. Further analysis indicated the significant association of miR-146a rs2910164 polymorphism genotypes (GG, GC, and CC) and miR-149 rs2292832 genotypes (CC and CT) with endometriosis severity in patients (p < 0.001). Additionally, haplotype frequency in cases compared to controls and Linkage disequilibrium (LD) between the mentioned SNPs was appraised.Conclusion: MiR-146a, miR-149 and miR-499 may have a role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- M Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - M Ismail Haje
- Medical Education Depatrment, College of Medicine, Hawler Medical University, Erbil, Kurdistan Region-Iraq
| | - C Khudhur Mawlood
- Gynicology and Obstitrict Department, College of Medicine, Hawler Medical University, Erbil, Kurdistan Region-Iraq
| | - I Arabipour
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Emamvirdizadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Takamoli
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - M Masumi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - H Vaziri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
20
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
21
|
Motta AB. Epigenetic Marks in Polycystic Ovary Syndrome. Curr Med Chem 2021; 27:6727-6743. [PMID: 31580245 DOI: 10.2174/0929867326666191003154548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine and metabolic disorder that affects women in their reproductive age. Recent studies have shown that genes have an important role in the etiology of PCOS. However, the precise way in which these genes are transcriptionally and post-transcriptionally regulated is poorly understood. The aim of the present review is to provide updated information on miRNAs and DNA methylation as epigenetic marks of PCOS. The data presented here allow concluding that both microRNAs and DNA methylation can be considered as possible useful biomarkers when choosing the treatment for a specific PCOS phenotype and thus represent two important tools for the diagnosis and treatment of PCOS patients.
Collapse
Affiliation(s)
- Alicia Beatriz Motta
- Laboratorio de Fisio-patologia Ovarica, Centro de Estudios Farmacologicos y Botanicos (CEFYBO), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, Xie Q. Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:741764. [PMID: 34745009 PMCID: PMC8564180 DOI: 10.3389/fendo.2021.741764] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
PCOS has a wide range of negative impacts on women's health and is one of the most frequent reproductive systemic endocrine disorders. PCOS has complex characteristics and symptom heterogeneity due to the several pathways that are involved in the infection and the absence of a comm14on cause. A recent study has shown that the main etiology and endocrine aspects of PCOS are the increased level of androgen, which is also known as "hyperandrogenemia (HA)" and secondly the "insulin resistance (IR)". The major underlying cause of the polycystic ovary is these two IR and HA, by initiating the disease and its severity or duration. As a consequence, study on Pathogenesis is crucial to understand the effect of "HA" and "IR" on the pathophysiology of numerous symptoms linked to PCOS. A deep understanding of the pattern of the growth in PCOS for HA and IR can help ameliorate the condition, along with adjustments in nutrition and life, as well as the discovery of new medicinal products. However, further research is required to clarify the mutual role of IR and HA on PCOS development.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| | - Qiong Xie
- Department of Gynecology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| |
Collapse
|
23
|
Peng Y, Yang X, Luo X, Liu C, Cao X, Wang H, Guo L. Novel mechanisms underlying anti-polycystic ovary like syndrome effects of electroacupuncture in rats: suppressing SREBP1 to mitigate insulin resistance, mitochondrial dysfunction and oxidative stress. Biol Res 2020; 53:50. [PMID: 33109277 PMCID: PMC7590702 DOI: 10.1186/s40659-020-00317-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Acupuncture, a therapy of traditional Chinese medicine, is confirmed to exert the therapeutic action on polycystic ovary syndrome (PCOS). However, the detailed therapeutic mechanisms of acupuncture in PCOS remain ambiguous. In this study, we further investigated whether electroacupuncture (EA) alleviated PCOS-like symptoms in rats via regulating a metabolic regulator, sterol regulatory element binding protein-1 (SREBP1). Methods The PCOS-like rat model was built by hypodermic injection with dehydroepiandrosterone (DHEA). The rats were subjected to EA intervention (ST29 and SP6 acupuncture points) for 5 weeks. Primary granulosa cells were isolated from control and PCOS-like rats for evaluating insulin resistance, mitochondrial dysfunction and oxidative stress in vitro. Results The expression of SREBP1 was increased in PCOS-like rats, which was suppressed by EA treatment. In addition, lentivirus-mediated overexpression of SREBP1 restrained EA treatment-induced improvement in pathological changes, serum hormone levels and insulin resistance in rats. In addition, overexpression of SREBP1 repressed insulin-stimulated phosphorylation of insulin receptor β (IR) and AKT in primary granulosa cells. Moreover, upregulation of SREBP1 further exacerbated mitochondrial dysfunction and oxidative stress in granulosa cells isolated from PCOS-like rats. Mechanically, EA treatment suppressed SREBP1 expression through inducing the activation of AMP-activated protein kinase (AMPK) signaling pathway in PCOS-like rats. Conclusion EA intervention alleviated PCOS-like symptoms in rats via improving IR, mitochondrial dysfunction and oxidative stress through regulating SREBP1, a lipid metabolism regulator. Our findings illuminate the novel protective mechanisms of EA in the treatment of PCOS.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Chunhong Liu
- College of Basic Medicine Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xia Cao
- Document Retrival Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hongyan Wang
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
24
|
Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci 2020; 259:118174. [PMID: 32745529 DOI: 10.1016/j.lfs.2020.118174] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are endogenously produced, small non-coding, single-stranded RNAs that capable of regulating gene expression at the post-transcriptional level. Altered miRNAs expression has been associated with various disorders, including T2DM, IR, lipid disorder, infertility, atherosclerosis, endometriosis, and cancer. Given that PCOS also present with similar features, there is an increasing interest to investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years, studies have demonstrated that miRNAs are present in various body fluids, including follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This review aims to summarise the up to date research on the relation between miRNAs and PCOS and explore its potential role in the diagnosis and the management of PCOS.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Harshal Deshmukh
- Clinical lecturer at Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Head of School Postgraduate Studies and Research, RCIS-Bahrain, Medical University of Bahrain, Bahrain.
| | - Thozhukat Sathyapalan
- Honorary Consultant Endocrinologist at Hull University Teaching Hospital NHS Trust, UK; Chair in Academic Diabetes, Endocrinology and metabolism in Hull York Medical School, University of Hull, UK.
| |
Collapse
|
25
|
Dehghan Z, Mohammadi-Yeganeh S, Salehi M. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation. Biol Reprod 2020; 103:548-559. [DOI: 10.1093/biolre/ioaa098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract
Numerous oocytes are retrieved during in vitro fertilization from patients with polycystic ovary syndrome (PCOS). The poor quality of these oocytes leads to lower fertilization and decreases in cleavage and implantation. MiR-155 is one of the microRNA (miRNA) that is increased in serum and granulosa cells of PCOS patients. In this study, we investigate the effects of miR-155 expression and its target genes on oocyte maturation and embryo development. We used the calcium phosphate protocol to transfect vectors that contained miR-155 or miR-off 155 and alone eGFP into cumulus oophorus complex (COCs) of B6D2F1 female mice for in vitro maturation. Cumulus expansion, nuclear, and cytoplasmic maturation, as well as cleavage rates were determined in groups transfected and compared with the control groups. Quantitative real-time polymerase chain reaction was performed to analyze expression levels of miR-155 and the target genes in the cumulus cells, oocytes, and blastocysts. MiR-155 overexpression in COCs suppressed cumulus expansion, oocyte maturation, and inhibition of endogenous miR-155 by miR-off 155 improved cumulus expansion and oocyte maturation by downregulation and expression increase of the Smad2 and Bcl2 genes. On the other hand, overexpression and downregulation of miR-155 in the COCs led to increase and decrease in cleavage rates by changes in expressions of the Mecp2, Jarid2, and Notch1 genes, respectively (P < 0.05). These results suggested that miR-155 overexpression in granulosa cells of PCOS patients can negatively affect nuclear and cytoplasmic maturation, but this miRNA expression has a positive impact on embryo development.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Zhang X, Xiao H, Zhang X, E Q, Gong X, Li T, Han Y, Ying X, Cherrington BD, Xu B, Liu X, Zhang X. Decreased microRNA-125b-5p disrupts follicle steroidogenesis through targeting PAK3/ERK1/2 signalling in mouse preantral follicles. Metabolism 2020; 107:154241. [PMID: 32304754 DOI: 10.1016/j.metabol.2020.154241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hyperandrogenism is one of the major characteristics of polycystic ovary syndrome (PCOS). Abnormal miR-125b-5p expression has been documented in multiple diseases, but whether miR-125b-5p is associated with aberrant steroidogenesis in preantral follicles remains unknown. METHODS Steriod hormone concentrations and miR-125b-5p expression were measured in clinical serum samples from PCOS patients. Using a mouse preantral follicle culture model and a letrozole-induced PCOS mouse model, we investigated the mechanism underlying miR-125b-5p regulation of androgen and oestrogen secretion. RESULTS The decreased miR-125b-5p expression was observed in the sera from hyperandrogenic PCOS (HA-PCOS) patients. In mouse preantral follicles, inhibiting miR-125b-5p increased the expression of androgen synthesis-related genes and stimulated the secretion of testosterone, while simultaneously downregulating oestrogen synthesis-related genes and decreasing oestradiol release. Ectopically expressed miR-125b-5p reversed the effects on steroidogenesis-related gene expression and hormone release. Mechanistic studies identified Pak3 as a direct target of miR-125b-5p. Furthermore, inhibiting miR-125b-5p facilitated the activation of ERK1/2 in mouse preantral follicles, while inhibiting Pak3 abrogated this activating effect. These results were recapitulated in letrozole-induced PCOS mouse ovaries. Of note, inhibiting PAK3 antagonised the positive effect of miR-125b-5p siRNA on the expressions of androgen synthesis-related enzymes and testosterone secretion. Luteinizing hormone (LH) inhibited miR-125b-5p expression, and stimulated Pak3 expression. CONCLUSION High serum LH concentrations in PCOS patients repress miR-125b-5p expression, which further increases Pak3 expression, leading to activation of ERK1/2 signalling, thus stimulating the expression of androgen synthesis-related enzymes and testosterone secretion in HA-PCOS.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Zhang
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiukai E
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuefeng Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Han
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, Nantong First People's Hospital, Nantong, China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Boqun Xu
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynaecology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, China.
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Wang Y, Xu S, Wang Y, Qi G, Hou Y, Sun C, Wu X. Identification and potential value of candidate microRNAs in granulosa cells of polycystic ovary syndrome. Technol Health Care 2020; 27:579-587. [PMID: 30932905 DOI: 10.3233/thc-181510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a major cause of anovulatory infertility. Some studies showed that miRNAs were used as diagnostic/prognostic biomarkers for various diseases. OBJECTIVE To identify candidate miRNAs in Granulosa Cells (GCs) of PCOS and evaluate their potential values for PCOS diagnosis. METHODS We screened differentially expressed miRNAs in GCs between PCOS and controls by the microarray data from the GEO database. GCs were collected from 21 controls and 24 PCOS. The candidate miRNAs were verified by qRT-PCR. The correlation was investigated between candidate miRNAs and clinical characteristics in participants. Diagnostic value of candidate miRNAs was analyzed by receiver operating characteristic (ROC) curve. RESULTS Seven miRNAs were differentially expressed in PCOS compared with controls. Furthermore, the validation results demonstrated that hsa-miR-3188 and hsa-miR-3135b showed higher levels in GCs with PCOS patients (p< 0.05). In addition, the expressions of hsa-miR-3188 and hsa-miR-3135b were negative correlated with FSH and hsa-miR-3188 was positive correlated with BMI (p< 0.05). ROC analysis indicated that hsa-miR-3188 and hsa-miR-3135b could differentiate PCOS from controls, and the hsa-miR-3188/3135b improved the predictive accuracy for PCOS. CONCLUSIONS The expressions of hsa-miR-3188 and hsa-miR-3135b in human GCs were significantly associated with PCOS. Moreover, the hsa-miR-3188/3135b has certain diagnostic value for distinguishing PCOS.
Collapse
Affiliation(s)
- Yaoqin Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Suming Xu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Yonglian Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Gaimei Qi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Yan Hou
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chunqing Sun
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| |
Collapse
|
28
|
Sun X, Ma X, Yang X, Zhang X. Exosomes and Female Infertility. Curr Drug Metab 2020; 20:773-780. [PMID: 31749422 DOI: 10.2174/1389200220666191015155910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Exosomes are small Extracellular Vesicles (EVs) (40-100 nm) secreted by living cells and mediate the transmission of information between cells. The number and contents of exosomes are associated with diseases such as inflammatory diseases, cancer, metabolic diseases and what we are focusing in this passage-female infertility. OBJECTIVE This review focused on the role of exosomes in oocyte development, declined ovarian function, PCOS, uterine diseases, endometrial receptivity and fallopian tube dysfunction in the female. METHODS We conducted an extensive search for research articles involving relationships between exosomes and female infertility on the bibliographic database. RESULTS It has been reported that exosomes can act as a potential therapeutic device to carry cargoes to treat female infertility. However, the pathophysiological mechanisms of exosomes in female infertility have not been entirely elucidated. Further researches are needed to explore the etiology and provide evidence for potential clinical treatment. CONCLUSIONS This review systematically summarized the role exosomes play in female infertility and its potential as drug delivery.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Ma
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Yang
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xuehong Zhang
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Sui M, Wang Z, Xi D, Wang H. miR‐142‐5P regulates triglyceride by targeting
CTNNB1
in goat mammary epithelial cells. Reprod Domest Anim 2020; 55:613-623. [DOI: 10.1111/rda.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Affiliation(s)
- MeiXia Sui
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - ZongWei Wang
- Administrative Examination and Approval Service Bureau of Shouguang Weifang China
| | - Dan Xi
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - HanHai Wang
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| |
Collapse
|
30
|
Chappell NR, Zhou B, Schutt AK, Gibbons WE, Blesson CS. Prenatal androgen induced lean PCOS impairs mitochondria and mRNA profiles in oocytes. Endocr Connect 2020; 9:261-270. [PMID: 32101528 PMCID: PMC7159265 DOI: 10.1530/ec-19-0553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common ovulatory defect in women. Although most PCOS patients are obese, a subset of PCOS women are lean but show similar risks for adverse fertility outcomes. A lean PCOS mouse model was created using prenatal androgen administration. This developmentally programmed mouse model was used for this study. Our objective was to investigate if mitochondrial structure and functions were compromised in oocytes obtained from lean PCOS mouse. The lean PCOS mouse model was validated by performing glucose tolerance test, HbA1c levels, body weight and estrous cycle analyses. Oocytes were isolated and were used to investigate inner mitochondrial membrane potential, oxidative stress, lipid peroxidation, ATP production, mtDNA copy number, transcript abundance and electron microscopy. Our results demonstrate that lean PCOS mice have similar weight to that of the controls but exhibit glucose intolerance and hyperinsulinemia along with dysregulated estrus cycle. Analysis of their oocytes show impaired inner mitochondrial membrane function, elevated reactive oxygen species (ROS) and increased RNA transcript abundance. Electron microscopy of the oocytes showed impaired mitochondrial ultrastructure. In conclusion, the lean PCOS mouse model shows a decreased oocyte quality related to impaired mitochondrial ultrastructure and function.
Collapse
Affiliation(s)
- Neil R Chappell
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Beth Zhou
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Amy K Schutt
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA
| | - William E Gibbons
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
31
|
Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J Mol Endocrinol 2020; 64:R21-R43. [PMID: 31671401 PMCID: PMC7202133 DOI: 10.1530/jme-19-0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
miRNAs are endogenous noncoding single-stranded small RNAs of ~22 nucleotides in length that post-transcriptionally repress the expression of their various target genes. They contribute to the regulation of a variety of physiologic processes including embryonic development, differentiation and proliferation, apoptosis, metabolism, hemostasis and inflammation. In addition, aberrant miRNA expression is implicated in the pathogenesis of numerous diseases including cancer, hepatitis, cardiovascular diseases and metabolic diseases. Steroid hormones regulate virtually every aspect of metabolism, and acute and chronic steroid hormone biosynthesis is primarily regulated by tissue-specific trophic hormones involving transcriptional and translational events. In addition, it is becoming increasingly clear that steroidogenic pathways are also subject to post-transcriptional and post-translational regulations including processes such as phosphorylation/dephosphorylation, protein‒protein interactions and regulation by specific miRNAs, although the latter is in its infancy state. Here, we summarize the recent advances in miRNA-mediated regulation of steroidogenesis with emphasis on adrenal and gonadal steroidogenesis.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| |
Collapse
|
32
|
Identification of microRNAs that Regulate the MAPK Pathway in Human Cumulus Cells from PCOS Women with Insulin Resistance. Reprod Sci 2020; 27:833-844. [PMID: 32046427 DOI: 10.1007/s43032-019-00086-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynaecological endocrine disorders, and more than 60% of PCOS patients have varying degrees of insulin resistance (IR). The regulatory role of microRNAs (miRNAs) at post-transcriptional levels in human cumulus cells relating to IR in PCOS remains unclear. In this case-control study, 26 PCOS patients with IR (PCOS-IR) and 24 patients without IR (PCOS-control) were enrolled. We determined the differentially expressed miRNA and mRNA using next-generation sequencing technology, and these miRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (PCR). These miRNA regulating pathways (e.g., MAPK pathway) were analysed by bioinformatics analysis, and the Rap1b was demonstrated to be targeted by miR-612 based on quantitative real-time PCR, western blot and luciferase activity assay. A total of 59 known miRNAs and 617 differentially expressed genes were identified that differentially expressed between PCOS-IR and PCOS-control cumulus cells. Moreover, the potential regulating roles of miRNAs and their targeting genes in pathophysiology of IR and PCOS were analysed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and several key processes were enriched, such as MAPK activity. Furthermore, Rap1b, a regulator of the MAPK pathway, was demonstrated to be suppressed directly by miR-612 in PCOS-IR cumulus cells based on negative expression correlation validation, dual luciferase activity assay and reduction of Rap1b expression after miR-612 mimics transfection. Our results suggested that miRNAs and their targeted pathways in ovarian cumulus cells may play important roles in the aetiology and pathophysiology of PCOS with IR.
Collapse
|
33
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
34
|
Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep 2019; 9:16306. [PMID: 31705013 PMCID: PMC6841741 DOI: 10.1038/s41598-019-52856-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023] Open
Abstract
Several studies have shown the expression of small non-coding microRNA (miRNA) changes in PCOS and their expression in follicular fluid has been described, though the number of studies remains small. In this prospective cohort study, miRNA were measured using quantitative polymerase chain reaction (qPCR) in 29 weight and aged matched anovulatory women with PCOS and 30 women without from follicular fluid taken at the time of oocyte retrieval who were undergoing in vitro fertilization (IVF); miRNA levels were determined from a miRNA data set. 176 miRNA were detected, of which 29 differed significantly between normal women and PCOS women. Of these, the top 7 (p < 0.015) were miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p, miR-382-5p, miR-425-3p. In PCOS, miR-382-5p correlated with age and free androgen index (FAI), miR-199b-5p correlated with anti-mullerian hormone (AMH) and miR-93-3p correlated with C-reactive protein (CRP). In normal controls, miR-127-3p, miR-382-5p and miR-425-3p correlated with the fertilisation rate; miR-127-3p correlated with insulin resistance and miR-381-3p correlated with FAI. Ingenuity pathway assessment revealed that 12 of the significantly altered miRNA related to reproductive pathways, 12 miRNA related to the inflammatory disease pathway and 6 were implicated in benign pelvic disease. MiRNAs differed in the follicular fluid between PCOS and normal control women, correlating with age, FAI, inflammation and AMH in PCOS, and with BMI, fertilization rate (3 miRNA), insulin resistance, FAI and inflammation in control women, according to Ingenuity Pathway Analysis.
Collapse
|
35
|
Sørensen AE, Udesen PB, Maciag G, Geiger J, Saliani N, Januszewski AS, Jiang G, Ma RC, Hardikar AA, Wissing MLM, Englund ALM, Dalgaard LT. Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Front Med (Lausanne) 2019; 6:242. [PMID: 31737638 PMCID: PMC6839444 DOI: 10.3389/fmed.2019.00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS.
Collapse
Affiliation(s)
- Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Odense University Hospital, The Danish Diabetes Academy, Odense, Denmark
| | - Pernille B Udesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Grzegorz Maciag
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Julian Geiger
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Negar Saliani
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andrzej S Januszewski
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guozhi Jiang
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C Ma
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marie Louise M Wissing
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
36
|
Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci 2019; 236:116940. [PMID: 31604107 DOI: 10.1016/j.lfs.2019.116940] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common systemic reproductive endocrine diseases, which has a variety of effects on a woman's health. Because of the involvement of multiple pathways and the lack of common clues, PCOS demonstrates multifactorial properties and heterogeneity of symptoms. Recent studies have demonstrated that the core etiology and primary endocrine characteristics of PCOS are hyperandrogenemia (HA) and insulin resistance (IR). HA and IR are the main causes of PCOS and they can interplay each other in the occurrence and development of PCOS. Just because of this, the study about the effects of HA and IR on pathophysiology of various related symptoms of PCOS is very important to understand the pathogenesis of PCOS. This paper reviews the main symptoms of PCOS, including neuroendocrine disorders, reproductive processes, dyslipidemia, obesity, hypertension, nonalcoholic fatty liver disease (NAFLD), and sleep disordered breathing, which seriously affect the physical and mental health of PCOS women. The increasing knowledge of the development pattern of HA and IR in PCOS suggests that changes in diet and lifestyle, and the discovery of potential therapeutic agents may improve PCOS. However, further studies are needed to clarify the mutual influence and relation of HA and IR in development of PCOS. This review provides an overview of the current knowledge about the effects of HA and IR on PCOS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Hui Guo
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China.
| |
Collapse
|
37
|
Shah R. Emerging Topics in Cardiometabolic and Psychologic Sequelae, Pathogenesis, and Treatment of Polycystic Ovarian Syndrome: A Review. CHILDREN-BASEL 2019; 6:children6080089. [PMID: 31370287 PMCID: PMC6721393 DOI: 10.3390/children6080089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrine disorder, affecting 6–10% of reproductive age women and influences the reproductive, metabolic, dermatologic, and psychiatric health of affected girls and women. Despite its prevalence, the pathogenesis of the disease is largely unknown, and treatment options are limited. Thus, PCOS has been a ripe area for research in recent years, and novel etiologic pathways, diagnostic parameters, and treatment options are being explored. This review focuses on recent data suggesting pathogenic and therapeutic considerations, as well as the psychiatric and metabolic sequelae of PCOS.
Collapse
Affiliation(s)
- Rachana Shah
- Division of Pediatric Endocrinology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, 802F Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, Cerbón M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 2019; 158:R27-R40. [DOI: 10.1530/rep-18-0449] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the leading endocrine and metabolic disorder in premenopausal women characterized by hyperandrogenism and abnormal development of ovarian follicles. To date, the PCOS etiology remains unclear and has been related to insulin resistance, obesity, type 2 diabetes mellitus, cardiovascular disease and infertility, among other morbidities. Substantial evidence illustrates the impact of genetic, intrauterine and environmental factors on the PCOS etiology. Lately, epigenetic factors have garnered considerable attention in the pathogenesis of PCOS considering that changes in the content of DNA methylation, histone acetylation and noncoding RNAs have been reported in various tissues of women with this disease. DNA methylation is changed in the peripheral and umbilical cord blood, as well as in ovarian and adipose tissue of women with PCOS, suggesting the involvement of this epigenetic modification in the pathogenesis of the disease. Perhaps, these defects in DNA methylation promote the deregulation of genes involved in inflammation, hormone synthesis and signaling and glucose and lipid metabolism. Research on the role of DNA methylation in the pathogenesis of PCOS is just beginning, and several issues await investigation. This review aims to provide an overview of current research focused on DNA methylation and PCOS, as well as discuss the perspectives regarding this topic.
Collapse
|
39
|
Kong F, Du C, Wang Y. MicroRNA-9 affects isolated ovarian granulosa cells proliferation and apoptosis via targeting vitamin D receptor. Mol Cell Endocrinol 2019; 486:18-24. [PMID: 30794820 DOI: 10.1016/j.mce.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs or miRs)-9 expression was reported to be upregulated in the follicular fluid of patients with polycystic ovary syndrome (PCOS). However, whether miR-9 affects ovarian dysfunction of PCOS and the related mechanisms are still unclear. Here we detected miR-9 and vitamin D receptor (VDR) expression in women with PCOS and controls, and investigated whether miR-9 affects ovarian granulosa cells (GCs) proliferation and apoptosis by targeting VDR. We found increased miR-9 and decreased VDR in the blood and isolated ovarian GCs of women with PCOS compared with the controls. MiR-9 promoted GCs proliferation and inhibited GCs apoptosis in vitro, and these effects were attenuated by its target VDR. High concentrations of insulin upregulated miR-9 expression in GCs. In conclusion this study firstly proved miR-9 affects ovarian GCs proliferation and apoptosis through targeting VDR. MiR-9 might be a potential molecular target for improving the dysfunction of GCs in PCOS.
Collapse
Affiliation(s)
- Fanjing Kong
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Chenxiang Du
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
40
|
Huang X, She L, Luo X, Huang S, Wu J. MiR-222 promotes the progression of polycystic ovary syndrome by targeting p27 Kip1. Pathol Res Pract 2019; 215:918-923. [PMID: 30718101 DOI: 10.1016/j.prp.2019.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most complex and common reproductive and endocrinologic disorders in the child-bearing age of women. Recently, miR-222 were reported to be associated with the etiology of PCOS. However, the function of miR-222 during the pathogenesis of PCOS remains unclear. In the present study, we aimed to investigate the role of miR-222 in PCOS. Firstly, miR-222 expression was examined by quantitative real-time PCR (qRT-PCR) in PCOS. The effects of miR-222 on proliferation, apoptosis and cell cycle in KGN cells were analyzed by CCK-8 assay and flow cytometry analysis, respectively. In addition, bioinformatics analysis was used to predict the target genes of miR-222, and dual-luciferase reporter assay was applied to verified the interaction between miR-222 and p27 Kip1 in KGN cells. Moreover, the expressions of p27 Kip1 in KGN cells treated with miR-222 mimics or miR-222 inhibitor were evaluated by qRT-PCR and western blot assays. The results showed that the expression of miR-222 was remarkably upregulated in PCOS tissues compared with corresponding normal tissues. In the gain-of-function and loss-of-function assays, we revealed that miR-222 mimics significantly promoted cell proliferation, while miR-222 inhibitor induced cell apoptosis and cell cycle arrested. Furthermore, p27 Kip1 was identified as a target gene of miR-222, and could be negatively regulated by miR-222 mimics in KGN cells. In conclusion, our findings suggested that miR-222 may promote the progression of PCOS by targeting p27 Kip1.
Collapse
Affiliation(s)
- Xiaolan Huang
- Department of Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, PR China.
| | - Liping She
- Department of Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, PR China
| | - Xiangmin Luo
- Department of Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, PR China
| | - Shuzhen Huang
- Department of Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, PR China
| | - Jinxiang Wu
- Department of Reproductive Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, 362000, PR China
| |
Collapse
|
41
|
Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr 2018; 88:371-395. [PMID: 29156452 DOI: 10.1159/000479371] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
This paper represents an international collaboration of paediatric endocrine and other societies (listed in the Appendix) under the International Consortium of Paediatric Endocrinology (ICPE) aiming to improve worldwide care of adolescent girls with polycystic ovary syndrome (PCOS)1. The manuscript examines pathophysiology and guidelines for the diagnosis and management of PCOS during adolescence. The complex pathophysiology of PCOS involves the interaction of genetic and epigenetic changes, primary ovarian abnormalities, neuroendocrine alterations, and endocrine and metabolic modifiers such as anti-Müllerian hormone, hyperinsulinemia, insulin resistance, adiposity, and adiponectin levels. Appropriate diagnosis of adolescent PCOS should include adequate and careful evaluation of symptoms, such as hirsutism, severe acne, and menstrual irregularities 2 years beyond menarche, and elevated androgen levels. Polycystic ovarian morphology on ultrasound without hyperandrogenism or menstrual irregularities should not be used to diagnose adolescent PCOS. Hyperinsulinemia, insulin resistance, and obesity may be present in adolescents with PCOS, but are not considered to be diagnostic criteria. Treatment of adolescent PCOS should include lifestyle intervention, local therapies, and medications. Insulin sensitizers like metformin and oral contraceptive pills provide short-term benefits on PCOS symptoms. There are limited data on anti-androgens and combined therapies showing additive/synergistic actions for adolescents. Reproductive aspects and transition should be taken into account when managing adolescents.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Deu, Esplugues, Barcelona, Spain.,CIBERDEM, ISCIII, Madrid, Spain
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - R Jeffrey Chang
- Department of Reproductive Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, University of Chile, School of Medicine, Santiago, Chile
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Alessandra Gambineri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Garcia Rudaz
- Division of Women, Youth and Children, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathleen M Hoeger
- Department of OBGYN, University of Rochester Medical Center, Rochester, New York, USA
| | - Abel López-Bermejo
- Pediatric Endocrinology, Hospital de Girona Dr. Josep Trueta, Girona, Spain
| | - Ken Ong
- MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexia S Peña
- The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Thomas Reinehr
- University of Witten/Herdecke, Vestische Kinder- und Jugendklinik, Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Datteln, Germany
| | - Nicola Santoro
- Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Tao
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Bulent O Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Haya Alkhayyat
- Medical University of Bahrain, BDF Hospital, Riffa, Bahrein
| | - Asma Deeb
- Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Dipesalema Joel
- Department of Paediatrics and Adolescent Health, University of Botswana Teaching Hospital, Gaborone, Botswana
| | - Reiko Horikawa
- Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Francis de Zegher
- Department Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Peter A Lee
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
42
|
Ebrahimi SO, Reiisi S, Parchami Barjui S. Increased risk of polycystic ovary syndrome (PCOS) associated with CC genotype of miR-146a gene variation. Gynecol Endocrinol 2018; 34:793-797. [PMID: 29637801 DOI: 10.1080/09513590.2018.1460341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy in reproductive-age women believed to be affected by several genetics and environmental factors or both. Different miRNAs are one of such genetic factors that their associations with PCOS have been implicated. For instance, miR-146a that is well known for strongly regulating the immune response and inflammation was upregulated in serum plasma, follicular fluid and granulosa cells of PCOS patients. Different studies have shown that genetic changes in pre-miRNA can cause change in the expression or biological function of mature miRNA. Therefore, the main aim of this study was to investigate the association of miR-146a gene variation (rs2910164) with the susceptibility to PCOS. This study consists of 180 patients with PCOS and 192 healthy women matched by age and geographical region. Genotyping were determined by using PCR-RFLP in all subjects. The genotype frequency and allele distributions of all subjects were evaluated using Fisher's exact test directed by SPSS v.20. The genotype and allele frequencies of the miR-146a polymorphism (rs2910164) significantly differ between PCOS and healthy controls. The frequencies of CC genotype (p = .054) and 'C' allele (p = .0001) of the miR-146a variant indicated a significant incidence in cases compared to controls. Such association was obtained in co-dominant (OR = 3.16) and dominant (OR = 2.29) models. Result of this study can be proposed that women with miR-146a variation are at a higher risk for developing PCOS, which can be due to up-regulation of miR-146a.
Collapse
Affiliation(s)
- Seyed Omar Ebrahimi
- a Department of Genetics, Faculty of Basic Sciences , Shahrekord University , Shahrekord , Iran
| | - Somayeh Reiisi
- a Department of Genetics, Faculty of Basic Sciences , Shahrekord University , Shahrekord , Iran
| | - Shahrbanou Parchami Barjui
- b Cellular and Molecular Research Center, Basic Health Sciences Institute , Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
43
|
Liu Y, Chen J, Zhu X, Tang L, Luo X, Shi Y. Role of miR‑449b‑3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol Med Rep 2018; 18:3359-3365. [PMID: 30066926 PMCID: PMC6102748 DOI: 10.3892/mmr.2018.9341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common gynecological disease and the pathogenesis is not clearly understood. Previous studies have demonstrated via microarray techniques that microRNA (miR)-449b was significantly downregulated both in ectopic and eutopic endometrium in patients with endometriosis. In the present study, the aberrant expression of miR-449b was further confirmed by reverse transcription-quantitative polymerase chain reaction. It was demonstrated that miR-449b-3p was downregulated in ectopic and eutopic tissues from women with endometriosis, and the same expression pattern was observed in endometrial stromal cells (ESCs) of eutopic endometrium from women with endometriosis and normal endometrium from women without endometriosis. Functional analysis, including an MTT assay, apoptosis conducted by flow cytometry, capillary-like tube formation assay and invasion assay, indicated that the upregulated expression of miR-449b-3p inhibited the proliferation of ESCs and that the supernatants of miR-449b-overexpressing ESCs inhibited the formation of tubular structures in human umbilical vein endothelial cells, whereas it has no effect on ESC apoptosis and invasiveness. These results suggest that the aberrant expression of miR-449b-3p was involved in the development and progression of endometriosis.
Collapse
Affiliation(s)
- Yukai Liu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, P.R. China
| | - Jie Chen
- Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, P.R. China
| | - Lingli Tang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, P.R. China
| | - Xuezhen Luo
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, P.R. China
| | - Yingli Shi
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
44
|
Fu LL, Xu Y, Li DD, Dai XW, Xu X, Zhang JS, Ming H, Zhang XY, Zhang GQ, Ma YL, Zheng LW. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing. Gene 2018; 657:19-29. [PMID: 29505837 DOI: 10.1016/j.gene.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS.
Collapse
Affiliation(s)
- Lu-Lu Fu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Dan-Dan Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiao-Wei Dai
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing-Shun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ming
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xue-Ying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guo-Qing Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ya-Lan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
45
|
|