1
|
Khamineh Y, Ghiasvand M, Panahi-Alanagh S, Rastegarmand P, Zolghadri S, Stanek A. A Narrative Review of Quercetin's Role as a Bioactive Compound in Female Reproductive Disorders. Nutrients 2025; 17:1118. [PMID: 40218878 PMCID: PMC11990684 DOI: 10.3390/nu17071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Lifestyle, nutrition, and metabolic status are central to maintaining women's reproductive health. With the rising prevalence of infertility, the need for effective strategies to preserve and enhance women's reproductive well-being has become increasingly urgent. Quercetin, a plant-derived polyphenol, has attracted growing interest for its potential to support reproductive health, regulate the hormonal balance, and improve fertility. This narrative review examines Quercetin's role in women's reproductive health and delineates its possible mechanisms of action in female reproductive system disorders, including polycystic ovary syndrome, recurrent miscarriage, and cervical, ovarian, and endometrial cancer (EC). By highlighting the biological pathways through which quercetin may exert its effects, this article underscores the need for further research and clinical trials to validate its therapeutic potential and its applications as a bioactive compound in foods aimed at enhancing women's reproductive health.
Collapse
Affiliation(s)
- Yasaman Khamineh
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; (Y.K.); (M.G.)
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; (Y.K.); (M.G.)
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 3365166571, Iran
| | - Sanaz Panahi-Alanagh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 817467344, Iran;
| | - Parisa Rastegarmand
- Department of Microbiology, College of Science, Shiraz Branch, Islamic Azad University, Shiraz 1477893780, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Metabolic Diseases and Angiology, Faculty of Health Sciences in Katowice, Medical University of Silesia, Ziolowa 45/47 St., 40-635 Katowice, Poland
| |
Collapse
|
2
|
Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM, Hanna DH. Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J 2025; 48:100714. [PMID: 38452973 PMCID: PMC11743316 DOI: 10.1016/j.bj.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to ensure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mitochondrial DNA (mtDNA), reactive oxygen species (ROS) production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting (ROS), metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.
Collapse
Affiliation(s)
- Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia, Alexandria, Egypt
| | - Hayat Zagloul
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gehan M Nabil
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Sharma D, Panchaksaram M, Muniyan R. Advancements in understanding the role and mechanism of sirtuin family (SIRT1-7) in breast cancer management. Biochem Pharmacol 2025; 232:116743. [PMID: 39761875 DOI: 10.1016/j.bcp.2025.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Breast cancer (BC) is the most prevalent type of cancer in women worldwide and it is classified into a few distinct molecular subtypes based on the expression of growth factor and hormone receptors. Though significant progress has been achieved in the search for novel medications through traditional and advanced approaches, still we need more efficacious and reliable treatment options to treat different types and stages of BC. Sirtuins (SIRT1-7) a class III histone deacetylase play a major role in combating various cancers including BC. Studies reveal thateach sirtuin has a unique and well-balanced biology, indicating that it regulates a variety of biological processes that result in the initiation, progression,and metastasis of BC. SIRT also plays a major role in numerous vital biological functions, including apoptosis, axonal protection, transcriptional silencing, DNA recombination and repair, fat mobilization, and aging. As per the current demand, we wish to outline the structural insights into sirtuin's catalytic site, substantial variations among all SIRT types, and their mechanism in BC management. Additionally, this review will focus on the application of SIRT modulators along with their clinical significance, hurdles, and future perspective to develop successful SIRT-based drug candidates to conquer the BC problem.
Collapse
Affiliation(s)
- Deepak Sharma
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Muthukumaran Panchaksaram
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
4
|
Wei R, Pan X, Cai D, Pan L. Synergistic Inhibition of Breast Carcinoma Cell Proliferation by Quercetin and Sulforaphane via Activation of the ERK/MAPK Pathway. Cell Biochem Biophys 2025:10.1007/s12013-024-01662-6. [PMID: 39760839 DOI: 10.1007/s12013-024-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems. The cells were assessed for several studies after being subjected to different concentrations (0-70 µM) of QT and SFN (QT + SFN) for duration of 24 h. We investigated the combination that QT + SFN generated cytotoxicity using the MTT assay. The DCFH-DA staining technique was utilized to assess ROS. The protein spectra of survival of cells, cell cycle progression, and apoptosis were evaluated employing flow cytometry and western blotting. The consequences illustrated that the relative cytotoxicity of QT and SFN was roughly 28.74 μM and 39.87 μM for MDA-MB-231 cells, respectively. Following the 24-h incubation period, MDA-MB-231 cells exhibit considerable cytotoxicity when QT and SFN are combined, with IC50 values of 19.48 μM. Moreover, MCF-7 and MDA-MB-231 cells treated with QT and SFN concurrently showed substantial production of ROS and increased apoptotic signals. Consequently, because QT + SFN inhibit the production of ERK/MAPK/JNK/p38-based control of proliferation and cell cycle-regulating proteins, it has been considered a chemotherapeutic medication. To determine the extent to which the co-treatment induces apoptosis, more in vivo study will be required before they can be used commercially.
Collapse
Affiliation(s)
- Ranmei Wei
- Department of Breast Diseases, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, Heilongjiang, China
| | - Xingchen Pan
- Department of the 0perating Room,Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Danni Cai
- Outpatient Department, General hospital of the western theater command of Chinese people's liberation army, Chengdu, Sichuan, China
| | - Lili Pan
- Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Saeed L, Sajjad S, Zubair M, Jabeen F. Therapeutic potential of silica nanoparticles, cisplatin, and quercetin on ovarian cancer: In vivo model. Biochem Biophys Res Commun 2025; 742:151121. [PMID: 39657355 DOI: 10.1016/j.bbrc.2024.151121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The present study evaluated the effect of silica nanoparticles, quercetin, and cisplatin against ovarian cancer. Cisplatin is a potent antineoplastic agent but has greater toxicity against cancer. Quercetin is a powerful flavonoid with remarkable anti-cancer activity due to its anti-apoptotic nature. Forty female albino rats were randomly divided into eight groups, with five rats per group. Group 1 (G1) was normal control, G2 received Carboxymethylcellulose; G3 was the normal control and treated with quercetin, G4 was given silica nanoparticles, G5 was treated with cisplatin. G6 was the tumor control. Tumor induction was done by 7, 12-dimethylbenz (a) anthracene (DMBA), G7 was treated with quercetin-cisplatin-silica nanoparticles, and in G8 quercetin-cisplatin silica nanoparticles were used to treat the induced tumor. Chemically synthesized silica nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Fourier Transform Infrared (FTIR). After the treatment, animals were sacrificed and tested for biochemical and hormonal assays. G6 displayed increased body weight and a significant rise in CA125 as compared to G1. G6 also exhibited an altered hormonal profile, with a particular increase in estrogen, FSH, and testosterone, along with reduced LH and progesterone levels. Lipid profile, liver enzymes, and renal parameters (urea and creatinine) increased in G6, but G8 significantly ameliorated all damaging effects of DMBA as observed in G6. The current study revealed that silica nanoparticles combined with cisplatin and quercetin demonstrated greater protection against drastic changes induced by carcinogens in ovarian cancer mice models.
Collapse
Affiliation(s)
- Laiba Saeed
- Department of Zoology, Lahore College for Women University, Pakistan
| | - Sumera Sajjad
- Department of Zoology, Lahore College for Women University, Pakistan.
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Dean of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
8
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
9
|
Jian X, Shi C, Luo W, Zhou L, Jiang L, Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed Pharmacother 2024; 173:116418. [PMID: 38461683 DOI: 10.1016/j.biopha.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Quercetin is a representative flavonoid that is widely present in fruits, herbs, and vegetables. It is also an important active core component in traditional Chinese medicines. As an important flavonoid, quercetin has various properties and exerts antioxidant, anti-inflammatory, and cardioprotective effects. The public interest in quercetin is increasing, and quercetin has been used to prevent or treat numerous of diseases, such as polycystic ovary syndrome (PCOS), cancer, autoimmune diseases and chronic cardiovascular diseases, in clinical experiments and animal studies due to its powerful antioxidant properties and minimal side effects. Quercetin exerts marked pharmacological effects on gynecological disorders; however, there have been no reviews about the potential health benefits of quercetin in the context of gynecological disorders, including PCOS, premature ovary failure (POF), endometriosis (EM), ovarian cancer (OC), cervical cancer (CC) and endometrial carcinoma (EC). Thus, this review aimed to summarize the biological effects of quercetin on gynecological disorders and its mechanisms.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Weichen Luo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Homayoonfal M, Aminianfar A, Asemi Z, Yousefi B. Application of Nanoparticles for Efficient Delivery of Quercetin in Cancer Cells. Curr Med Chem 2024; 31:1107-1141. [PMID: 36856173 DOI: 10.2174/0929867330666230301121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 03/02/2023]
Abstract
Quercetin (Qu, 3,5,7,3', 4'-pentahydroxyflavanone) is a natural polyphenol compound abundantly found in health food or plant-based products. In recent decades, Qu has gained significant attention in the food, cosmetic, and pharmaceutic industries owning to its wide beneficial therapeutic properties such as antioxidant, anti-inflammatory and anticancer activities. Despite the favorable roles of Qu in cancer therapy due to its numerous impacts on the cell signaling axis, its poor chemical stability and bioavailability, low aqueous solubility as well as short biological half-life have limited its clinical application. Recently, drug delivery systems based on nanotechnology have been developed to overcome such limitations and enhance the Qu biodistribution following administration. Several investigations have indicated that the nano-formulation of Qu enjoys more remarkable anticancer effects than its free form. Furthermore, incorporating Qu in various nano-delivery systems improved its sustained release and stability, extended its circulation time, enhanced its accumulation at target sites, and increased its therapeutic efficiency. The purpose of this study was to provide a comprehensive review of the anticancer properties of various Qu nano-formulation to augment their effects on different malignancies. Various targeting strategies for improving Qu delivery, including nanoliposomes, lipids, polymeric, micelle, and inorganic nanoparticle NPs, have been discussed in this review. The results of the current study illustrated that a combination of appropriate nano encapsulation approaches with tumor-oriented targeting delivery might lead to establishing QU nanoparticles that can be a promising technique for cancer treatment.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Singh B, Semwal BC. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr Top Med Chem 2024; 24:2093-2116. [PMID: 39108008 DOI: 10.2174/0115680266316032240718050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.
Collapse
Affiliation(s)
- Bhoopendra Singh
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| | - Bhupesh Chander Semwal
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| |
Collapse
|
12
|
Bai Y, Chen R, Sun J, Guo Y. Evaluation of Therapeutic Mechanism of Hedyotis Diffusa Willd (HDW)‒ Scutellaria Barbata (SB) in Clear Cell Renal Cell Carcinoma via Singlecell RNA Sequencing and Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:910-921. [PMID: 37526191 DOI: 10.2174/1386207326666230731155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE The present study aimed to investigate the therapeutic mechanism of Hedyotis diffusa Willd (HDW) and Scutellaria barbata (SB) in ccRCC using a combination of single-cell RNA sequencing (scRNA-seq) and network pharmacology. METHODS The active ingredients and potential molecular targets of HDW-SB were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Gene expression data (GSE53757) were obtained from the Gene Expression Omnibus database. The hub genes of HDW-SB against ccRCC were identified via the protein-protein interaction network, and further analyzed by molecular complex detection. The roles of these genes in the diagnosis and immune infiltration of ccRCC were analyzed. The clinical significance of hub genes was verified using scRNA-seq data (GSE121638) and molecular docking. RESULTS Following the PPI network analysis, 29 hub genes of HDW-SB against ccRCC were identified. All hub genes, except for CENPE, had significantly different expressions in tumor tissue and a more accurate diagnosis of ccRCC. Fifteen cell clusters were defined based on the scRNA-seq dataset, and the clusters were annotated as six cell types using marker genes. TYMS and KIAA0101 from hub genes were highly expressed in NK cells. Three active compounds, quercetin, luteolin, and baicalein, were found to target TYMS and KIAA0101 from the compound-target interaction network. CONCLUSION 29 hub genes of HDW-SB against ccRCC were identified and showed good performance in terms of diagnosis and prognosis. Moreover, among these hub genes docking with the main ingredients of HDW-SB, TYMS and KIAA0101 exerted anti-ccRCC effects through NK cells.
Collapse
Affiliation(s)
- Yangyang Bai
- Department of Urology, Henan Province Hospital of TCM, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruiting Chen
- Department of Urology, Henan Province Hospital of TCM, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jijian Sun
- Department of Urology, Henan Province Hospital of TCM, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yilin Guo
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Tecchio Borsoi F, Ferreira Alves L, Neri-Numa IA, Geraldo MV, Pastore GM. A multi-omics approach to understand the influence of polyphenols in ovarian cancer for precision nutrition: a mini-review. Crit Rev Food Sci Nutr 2023; 65:1037-1054. [PMID: 38091344 DOI: 10.1080/10408398.2023.2287701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The impact of polyphenols in ovarian cancer is widely studied observing gene expression, epigenetic alterations, and molecular mechanisms based on new 'omics' technologies. Therefore, the combination of omics technologies with the use of phenolic compounds may represent a promising approach to precision nutrition in cancer. This article provides an updated review involving the current applications of high-throughput technologies in ovarian cancer, the role of dietary polyphenols and their mechanistic effects in ovarian cancer, and the current status and challenges of precision nutrition and their relationship with big data. High-throughput technologies in different omics science can provide relevant information from different facets for identifying biomarkers for diagnosis, prognosis, and selection of specific therapies for personalized treatment. Furthermore, the field of omics sciences can provide a better understanding of the role of polyphenols and their function as signaling molecules in the prevention and treatment of ovarian cancer. Although we observed an increase in the number of investigations, there are several approaches to data acquisition, analysis, and integration that still need to be improved, and the standardization of these practices still needs to be implemented in clinical trials.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia Ferreira Alves
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
14
|
Betts Z, Deveci Ozkan A, Yuksel B, Alimudin J, Aydin D, Aksoy O, Yanar S. Investigation of the combined cytotoxicity induced by sodium butyrate and a flavonoid quercetin treatment on MCF-7 breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:833-845. [PMID: 37668343 DOI: 10.1080/15287394.2023.2254807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Quercetin (QUE) belonging to the flavonoid class is a common phytochemical present in the daily diet of some individuals. Quercetin is an important source of free radical scavengers. This property makes this flavonoid a reliable antioxidant with the following properties: anti-inflammatory, anti-diabetic, antimicrobial and anti-carcinogenic. Sodium butyrate (NaBu) acts as a histone deacetylase inhibitor (HDACi) and is known to regulate apoptosis in cancer cells. Combining natural flavonoids such as QUE with different substances may synergistically enhance their anti-carcinogenic capacity. Thus, the aim of this study was to examine the combined treatment effects of QUE and NaBu in hormone-sensitive breast cancer cells in vitro. MCF-7 breast cancer cells were treated with QUE alone, NaBu alone, as well as QUE and NaBu combined to determine the following: cell proliferation, levels of protein annexin A5 (ANXA5) and reactive oxygen species (ROS), mRNA protein expression, as well as cell and nuclear morphology. Data demonstrated that either QUE or NaBu alone inhibited cell proliferation, and reduced levels protein ANXA5, ROS and mRNA protein expression, The combination of QUE and NaBu produced a significant synergistic inhibitory effect compared to treatment groups of QUE or NaBu alone. In conclusion, our findings showed that the combination treatment of QUE and NaBu may constitute a promising therapeutic approach to breast cancer treatment but this needs further molecular and in vivo investigations.
Collapse
Affiliation(s)
- Zeynep Betts
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | - Burcu Yuksel
- Department of Medical Services and Techniques, Kocaeli Vocational School of Health Services, Kocaeli University, Kocaeli, Turkiye
| | - Janiah Alimudin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Duygu Aydin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Ozlem Aksoy
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Sevinc Yanar
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| |
Collapse
|
15
|
Singla M, Smriti, Gupta S, Behal P, Singh SK, Preetam S, Rustagi S, Bora J, Mittal P, Malik S, Slama P. Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment. Front Nutr 2023; 10:1258516. [PMID: 38045808 PMCID: PMC10691498 DOI: 10.3389/fnut.2023.1258516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Prateek Behal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Department of Biotechnology, University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemedelska, Brno, Czechia
| |
Collapse
|
16
|
Mihal M, Roychoudhury S, Sirotkin AV, Kolesarova A. Sea buckthorn, its bioactive constituents, and mechanism of action: potential application in female reproduction. Front Endocrinol (Lausanne) 2023; 14:1244300. [PMID: 38027169 PMCID: PMC10662087 DOI: 10.3389/fendo.2023.1244300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a flowering shrub, and its berries have been utilized for decades as a raw ingredient in cuisines and herbal remedies. This evidence-based study focuses on its key bioactive constituents, and mechanism of protective effects with a focus on female reproductive processes. Parts of the plant contain phenols, carotenoids (lycopene, carotene, lutein, and zeaxanthin), flavonoids (isorhamnetin, quercetin, glycosides, and kaempferol), tocopherols, sterols, polyunsaturated fatty acids, minerals, vitamins, omega 3, 6, 9 and rare omega 7 fatty acids etc. Key polyphenolic flavonoids such as isorhamnetin and quercetin are believed to be mainly responsible behind its health benefits (against cardiovascular diseases, metabolic syndrome, obesity etc.) through properties including anti-cancer, antioxidant, and anti-inflammatory activities. These sea buckthorn constituents appear to mediate healthy ovarian cell proliferation, death, and hormone release, as well as decrease ovarian cancer possibly through apoptosis, and hormonal (estrogen) release. Thus, sea buckthorn and its bioactive ingredients may have potential in the management of gynecological problems such as uterine inflammation, endometriosis, and easing symptoms of vulvovaginal atrophy in postmenopausal women (by targeting inflammatory cytokines and vascular endothelial growth factor - VEGF). Apigenin, myricetin, and luteolin have also been recommended as prospective ovarian cancer preventative and adjuvant therapy options as they can inhibit ovarian cancerogenesis by triggering apoptosis and halting the cell cycle in ovarian tumors. Furthermore, its oil (containing carotenoid, sterol, and hypericin) has been speculated as an alternative to estrogen replacement therapy for postmenopausal women particularly to improve vaginal epithelial integrity. However, it is uncertain whether steroid hormone receptors, reactive oxygen species (ROS), and inflammatory regulators are actually behind sea buckhorn's actions. Sea buckthorn, and its compounds' health promoting potential warrants further validation not just in vitro and in animal research, but also in clinical trials to identify and/or standardize optimal methods of delivery of biologically active molecules.
Collapse
Affiliation(s)
- Michal Mihal
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | - Alexander V. Sirotkin
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Adriana Kolesarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
17
|
Zhou Y, Qian C, Tang Y, Song M, Zhang T, Dong G, Zheng W, Yang C, Zhong C, Wang A, Zhao Y, Lu Y. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytother Res 2023; 37:4999-5016. [PMID: 37491826 DOI: 10.1002/ptr.7966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Numerous pharmacological effects of quercetin have been illustrated, including antiinflammation, antioxidation, and anticancer properties. In recent years, the antioxidant activity of quercetin has been extensively reported, in particular, its impacts on glutathione, enzyme activity, signaling transduction pathways, and reactive oxygen species (ROS). Quercetin has also been demonstrated to exert a striking antiinflammatory effect mainly by inhibiting the production of cytokines, reducing the expression of cyclooxygenase and lipoxygenase, and preserving the integrity of mast cells. By regulating oxidative stress and inflammation, which are regarded as two critical processes involved in the defense and regular physiological operation of biological systems, quercetin has been validated to be effective in treating a variety of disorders. Symptoms of these reactions have been linked to degenerative processes and metabolic disorders, including metabolic syndrome, cardiovascular, neurodegeneration, cancer, and nonalcoholic fatty liver disease. Despite that evidence demonstrates that antioxidants are employed to prevent excessive oxidative and inflammatory processes, there are still concerns regarding the expense, accessibility, and side effects of agents. Notably, natural products, especially those derived from plants, are widely accessible, affordable, and generally safe. In this review, the antioxidant and antiinflammatory abilities of the active ingredient quercetin and its application in oxidative stress-related disorders have been outlined in detail.
Collapse
Affiliation(s)
- Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chongjin Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Das P, Ghosh S, Ashashainy V, Nayak B. Augmentation of anti-proliferative efficacy of quercetin encapsulated chitosan nanoparticles by induction of cell death via mitochondrial membrane permeabilization in oral cancer. Int J Biol Macromol 2023; 250:126151. [PMID: 37544568 DOI: 10.1016/j.ijbiomac.2023.126151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Quercetin (QCT), an antioxidant plant flavonoid, is known to impart prominent anti-cancer properties. However, its clinical application as a potential drug is hindered owing to its hydrophobicity, extensive metabolism, low absorption, and rapid elimination. The drawbacks of these phytochemical-based therapies can be addressed using nanotechnology-based drug delivery systems. In this study, we sought to develop chitosan nanoparticles (CSNPs) as the drug vehicle for encasing quercetin (QCT-CSNPs) and further investigate its anti-tumor potential against human oral cancer cell line Cal33. Our findings indicate that the average particle diameter of the formulated chitosan nanoparticles was around 100 nm, and they had a spherical structure, as per the TEM and FESEM images. The efficient entrapment of quercetin inside the CSNPs matrix is confirmed by XRD, UV-Vis spectrophotometry, FTIR, and DSC analysis. The in vitro cell cytotoxicity study against Cal33 oral cancer cells revealed that QCT-CSNPs exhibited superior toxicity compared to free QCT post-24-hour treatment. The improved anti-cancer efficacy of QCT-CSNPs was further confirmed by enhanced cellular apoptosis, colony formation inhibition, migration inhibition, and chromatin condensation. Moreover, the mitochondrial dysfunction and enhanced ROS (Reactive oxygen species) production indicated mitochondrial-mediated cell death in QCT-CSNPs treated Cal33 cells. In conclusion, our data suggest that quercetin-encapsulated chitosan nanoparticles may serve as a potential drug candidate against oral cancer.
Collapse
Affiliation(s)
- Puja Das
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sayantan Ghosh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Vadlamuri Ashashainy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
19
|
Sirotkin AV. Quercetin action on health and female reproduction in mammals. Crit Rev Food Sci Nutr 2023; 64:12670-12684. [PMID: 37698182 DOI: 10.1080/10408398.2023.2256001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This paper reviews the current information concerning availability, metabolism of quercetin, its effects on physiological processes and illnesses with focus on the effects, mechanisms of action and areas of possible application of quercetin in control of female reproductive processes, prevention and treatment of their disorders in mammals.The available information demonstrated the ability of quercetin and its analogues to inhibit proliferation and to promote apoptosis, to activate regenerative processes, to treat immune, inflammatory, cardiovascular, neurodegenerative, gastric and metabolic disorders and cancer, to suppress microorganisms, to protect bones and liver, to relieve pain, to improve physical and mental performance, and to prolong life span.The positive influences of quercetin on mammalian female reproductive processes are well documented. It can promote ovarian follicullo- and oogenesis, improve quality of oocytes and embryos, increase fecundity in various species. These effects can be mediated by changes in pituitary and ovarian hormones, growth factors and cytokines, in their receptors and post-receptory signaling pathways. Due to these effect, quercetin can be applicable as biostimulator of reproduction, for prevention, mitigation and treatment of several female reproductive disorders, as well as to increase resistance of female reproductive system to adverse effect of chemotherapy, temperature stress and environmental contaminants.
Collapse
|
20
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
21
|
Li C, Xu Y, Zhang J, Zhang Y, He W, Ju J, Wu Y, Wang Y. The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice. Sci Rep 2023; 13:13278. [PMID: 37587146 PMCID: PMC10432483 DOI: 10.1038/s41598-023-39279-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
Resveratrol, curcumin, and quercetin are the secondary metabolites from medicinal food homology plants, that have been proven their potency in cancer treatment. However, the antitumor effect of a single component is weak. So, herein, we designed an antitumor compound named RCQ composed of resveratrol, curcumin, and quercetin. This study examined the effect on tumorigenesis and development of 4T1 breast cancer-bearing mice following administering RCQ by intragastric administration. RCQ increased the recruitment of T cells and reduced the accumulation of neutrophils and macrophages in the tumor microenvironment. Meanwhile, RCQ suppressed the development of tumor-infiltrating lymphocytes into immunosuppressive cell subpopulations, including CD4+ T cells to T helper Type 2 type (Th2), tumor-associated neutrophils (TANs) to the N2 TANs, and tumor-associated macrophages (TAMs) cells to M2 TAMs. RCQ reversed the predominance of immunosuppressive infiltrating cells in the tumor microenvironment and tipped the immune balance toward an immune activation state. In vitro the study showed that RCQ significantly increased reactive oxygen species (ROS), reduce mitochondrial membrane potentials in cancer cells, and modulate pro-apoptotic Bcl-2 family members. In conclusion, RCQ can promote the ROS apoptosis mechanism of tumor cells and alleviate immunosuppression of the tumor microenvironment to enhance the anti-tumor effect.
Collapse
Affiliation(s)
- Chenchen Li
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Associated Research Center for Intelligent Human Computer Collaboration on Tumor Precision Medicine, School of Pharmacy and The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yajun Xu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Junfeng Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuxi Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Wen He
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiale Ju
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yinghua Wu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yanli Wang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
22
|
Li K, Cai X, Fan Y, Jin M, Xie Y, Jing Z, Zang X, Han Y. Codelivery of Que and BCL-2 siRNA with Lipid-Copolymer Hybrid Nanocomplexes for Efficient Tumor Regression. ACS Biomater Sci Eng 2023; 9:4805-4820. [PMID: 37463126 DOI: 10.1021/acsbiomaterials.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The efficacy of chemotherapy is often reduced due to the chemotherapy resistance of tumor cells, which is usually caused by abnormal gene overexpression. Herein, multifunctional nanocomplexes (Que/siBCL2@BioMICs) were developed to deliver quercetin (Que) and BCL-2 siRNA (siBCL2) to synergistically inhibit tumor growth. The nanocomplexes were composed of an amphiphilic triblock copolymer of poly(ethylene glycol) methyl ether methacrylate-poly[2-(dimethylamino) ethyl acrylate]-polycaprolactone (PEGMA-PDMAEA-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-biotin (DSPE-PEG-biotin). Que was encapsulated into the cores through hydrophobic interactions, while negatively charged siBCL2 was loaded through electrostatic interactions. The nanocomplexes could effectively facilitate cellular uptake via biotin-mediated active targeting and cytosolic release of cargos by the "proton sponge effect" of PDMAEA. Que/siBCL2@BioMICs achieved enhanced cytotoxicity and anti-metastasis activity due to a synergistic effect of Que and siBCL2 in vitro. More importantly, superior anti-tumor efficacy was observed in orthotopic 4T1 tumor-bearing mice with reduced primary tumor burden and lung metastatic nodules, while no obvious side effects to major organs were observed. In conclusion, the biotin-targeted nanocomplexes with chemotherapeutic and nucleotide agent entrapment provide a promising strategy for efficient triple-negative breast cancer (TNBC) therapy.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xiaohua Cai
- Department of Pharmacy, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266032, China
| | - Meng Jin
- Department of Positron Emission Tomography-Computed Tomography (PET-CT) Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| |
Collapse
|
23
|
Choi JY, Jeong M, Lee K, Kim JO, Lee WH, Park I, Kwon HC, Choi JH. Sedum middendorffianum Maxim Induces Apoptosis and Inhibits the Invasion of Human Ovarian Cancer Cells via Oxidative Stress Regulation. Antioxidants (Basel) 2023; 12:1386. [PMID: 37507925 PMCID: PMC10376315 DOI: 10.3390/antiox12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Sedum middendorffianum Maxim (SMM) is a Korean endemic plant belonging to the Crassulaceae family. This study aimed to investigate the antitumor effects of the SMM extract on human ovarian cancer cells. Among five endemic plants grown in Korea, the SMM extract showed the most potent cytotoxicity in ovarian cancer cells and had little effect on normal ovarian surface epithelial cells. Furthermore, we revealed that the SMM extract dose-dependently induced apoptosis in human ovarian cancer A2780 and SKOV3 cells. The SMM extract markedly stimulated the activation of caspase-3/8, while the broad-spectrum caspase inhibitor and caspase-8 selective inhibitor significantly reversed SMM extract-induced apoptosis. In addition, the SMM extract significantly inhibited cell invasion and the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 in ovarian cancer cells. Notably, the SMM extract increased the generation of intracellular ROS, and pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed SMM-induced cytotoxicity and anti-invasive activity. Moreover, NAC treatment reversed the SMM-induced inhibition of MMP-2/9 expression. Taken together, these data suggest that the SMM extract induces caspase-dependent apoptotic cell death and inhibits MMP-dependent invasion via ROS regulation.
Collapse
Affiliation(s)
- Ju-Yeon Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Miran Jeong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kijun Lee
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Ok Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wan Hee Lee
- Hantaek Botanical Garden, Yongin 17183, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Hantaek Botanical Garden, Yongin 17183, Republic of Korea
| |
Collapse
|
24
|
Zhang X, Tang Y, Lu G, Gu J. Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients 2023; 15:2231. [PMID: 37432408 DOI: 10.3390/nu15092231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Quercetin is a natural flavonoid widely found in natural fruits and vegetables. Recent studies have shown that quercetin mediates multiple beneficial effects in a variety of organ damage and diseases, and is considered a healthcare supplement with health-promoting potential. Male infertility is a major health concern, and testicular damage from multiple causes is an important etiology. Previous studies have shown that quercetin has a protective effect on reproductive function. This may be related to the antioxidant, anti-inflammatory, and anti-apoptotic biological activities of quercetin. Therefore, this paper reviews the mechanisms by which quercetin exerts its pharmacological activity and its role in testicular damage induced by various etiologies. In addition, this paper compiles the application of quercetin in clinical trials, demonstrating its practical effects in regulating blood pressure and inhibiting cellular senescence in human patients. However, more in-depth experimental studies and clinical trials are needed to confirm the true value of quercetin for the prevention and protection against testicular injury.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
25
|
Homayoonfal M, Gilasi H, Asemi Z, Mahabady MK, Asemi R, Yousefi B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal 2023; 107:110667. [PMID: 37023996 DOI: 10.1016/j.cellsig.2023.110667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
In recent decades, various investigations have indicated that natural compounds have great potential in the prevention and treatment of different chronic disorders including different types of cancer. As a bioactive flavonoid, Quercetin (Qu) is a dietary ingredient enjoying high pharmacological values and health-promoting effects due to its antioxidant and anti-inflammatory characterization. Conclusive in vitro and in vivo evidence has revealed that Qu has great potential in cancer prevention and development. Qu exerts its anticancer influences by altering various cellular processes such as apoptosis, autophagy, angiogenesis, metastasis, cell cycle, and proliferation. In this way, Qu by targeting numerous signaling pathways as well as non-coding RNAs regulates several cellular mechanisms to suppress cancer occurrence and promotion. This review aimed to summarize the impact of Qu on the molecular pathways and non-coding RNAs in modulating various cancer-associated cellular mechanisms.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Gilasi
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
27
|
Li T, Li Y. Quercetin acts as a novel anti-cancer drug to suppress cancer aggressiveness and cisplatin-resistance in nasopharyngeal carcinoma (NPC) through regulating the yes-associated protein/Hippo signaling pathway. Immunobiology 2023; 228:152324. [PMID: 36608594 DOI: 10.1016/j.imbio.2022.152324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Quercetin has been proven to be effective for cancer treatment, including nasopharyngeal carcinoma (NPC). Also, Quercetin sensitizes cancer cells to current chemical drugs to improve their therapeutic efficacy. However, up until now, the molecular mechanisms that quercetin exerted its therapeutic effects on NPC have not been fully delineated. METHODS Cell proliferation abilities were examined by CCK-8 assay and colony formation assay. Real-Time qPCR and Western Blot analysis were used to detect gene expressions at RNA and protein levels. Cell mobility was determined by wound scratch assay and transwell assay. Cell death was detected using flow cytometry (FCM). Tumorigenesis of the NPC cells was determined by in vivo tumor-bearing mice models. Hematoxylin and eosin (H&E) and TUNEL staining were used to detect the tumor metastasis to lung tissues and dead cells, respectively. RESULTS Here, we validated that quercetin exerted its anti-tumor effects and increased cisplatin-sensitivity in NPC in vitro and in vivo. Specifically, quercetin inhibited NPC cell proliferation, viability, mobility, epithelial-mesenchymal transition (EMT), and tumorigenesis, and induced cell death, resulting in the inhibition of NPC progression. In addition, the NPC cells were subjected to a continuously increasing doses of cisplatin to generate cisplatin-resistant NPC (NPC/CDDP) cells. Interestingly, quercetin significantly enhanced the cytotoxic effects of high-dose cisplatin on NPC/CDDP cells. Furthermore, the potential underlying mechanisms were uncovered, and the results evidenced that quercetin inhibited Yes-associated protein (YAP) expression and its translocation to the nucleus, leading to the recovery of the Hippo pathway, inhibition of cancer progression, and increase in cisplatin-resistance. Mechanistically, upregulation of YAP by its gene manipulating vectors abrogated the inhibiting effects of quercetin on NPC malignant phenotypes, which also made NCP/CDDP cells irresponsive to high-dose cisplatin-quercetin co-treatments. CONCLUSION Collectively, our data evidenced that quercetin inhibited YAP to recover the Hippo pathway, which further inhibited NPC pathogenesis and increased susceptibility of NCP/CDDP cells to cisplatin treatment.
Collapse
Affiliation(s)
- Tao Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Yujie Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province 450052, China.
| |
Collapse
|
28
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
30
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
31
|
Aleissa MS, AL-Zharani M, Alneghery LM, Aleissa AM. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm J 2023; 31:110-118. [PMID: 36685297 PMCID: PMC9845113 DOI: 10.1016/j.jsps.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Berberine, a well-known isoquinoline alkaloid derivative, has a varied range of pharmacological effects. Herein, we notice the radio-modulatory outcome of berberine in cultured ovarian cancer (SKOV-3) cells exposed to γ-rays as radiotherapy (RT). Cells pre-treated with berberine were irradiated by γ-irradiation and the liberation of reactive oxygen species (ROS) was analyzed by flow cytometry. Apoptotic cell death along with the DNA damage associated with protein expressions was projected by flow cytometry and confocal microscopy. Experimental findings established that berberine might be a capable radiosensitizer for treating SKOV-3, because of oxidative DNA damage. Moreover, the in-silico study of the compound, berberine suggests free energy of binding (ΔG) -7.5 kcal/mol with SKOV-3 and -8.8 kcal/mol of PALB/BRCA2, which proves an effective and compact binding of the complex and is safe for future clinical trials. Thus, our approach is probably to widen the field of study of SKOV-3 and PALB/BRCA2 from the inhibition of these targets as a prospective nutraceutical for the anti-cancer theragnostic candidate.
Collapse
Affiliation(s)
- Mohammed S. Aleissa
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Corresponding author at: Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Mohammed AL-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Lina M. Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | |
Collapse
|
32
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
33
|
Pharmacological Activity of Quercetin: An Updated Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3997190. [PMID: 36506811 PMCID: PMC9731755 DOI: 10.1155/2022/3997190] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.
Collapse
|
34
|
Foudah AI, Devi S, Alqarni MH, Alam A, Salkini MA, Kumar M, Almalki HS. Quercetin Attenuates Nitroglycerin-Induced Migraine Headaches by Inhibiting Oxidative Stress and Inflammatory Mediators. Nutrients 2022; 14:nu14224871. [PMID: 36432556 PMCID: PMC9695045 DOI: 10.3390/nu14224871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the antimigraine potential of quercetin in migraine pain induced by nitroglycerin (NTG), 10 mg/kg, intraperitoneal injection in rats. Quercetin was administered orally for 1 week, and behavioral parameters associated with pain were assessed 30 min after NTG injection. At the end of the study, the rats were killed so that immunohistochemical examination of their brains could be performed. The time and frequency of rearing and sniffing in the category of exploratory behavior, walking in the category of locomotor behavior, and total time spent in the light chamber were reduced in the disease control group compared with the normal group during the assessment of behavioral parameters. Pathologic migraine criteria, such as increased levels of calcitonin gene-related peptide and increased release of c-fos cells, were more prominent in the caudal nucleus triceminalis of the NTG control group. In the treatment groups, behavioral and pathological measures were less severe after pretreatment with quercetin at doses of 250 and 500 mg/kg. Therefore, it was concluded that quercetin improved the pain behavior of migraine patients in the NTG-induced migraine rat model. Quercetin is thought to have antimigraine effects due to its antioxidant and anti-inflammatory potential. Quercetin may therefore be a novel agent that can treat or prevent migraine pain and associated avoidance behaviors.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.I.F.); (A.A.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.I.F.); (A.A.)
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Department of Neurosurgery, College of Medicine, Penn State Health Milton S. Hershey Medical Center, The Pennsylvania State University, State College, PA 17033-0850, USA
| | - Husam Saad Almalki
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
35
|
Ramalingam V, Muthukumar Sathya P, Srivalli T, Mohan H. Synthesis of quercetin functionalized wurtzite type zinc oxide nanoparticles and their potential to regulate intrinsic apoptosis signaling pathway in human metastatic ovarian cancer. Life Sci 2022; 309:121022. [DOI: 10.1016/j.lfs.2022.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
|
36
|
Synergism Potentiates Oxidative Antiproliferative Effects of Naringenin and Quercetin in MCF-7 Breast Cancer Cells. Nutrients 2022; 14:nu14163437. [PMID: 36014942 PMCID: PMC9412616 DOI: 10.3390/nu14163437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed type of cancer as of 2020. Quercetin (Que) and Naringenin (Nar) are predominantly found in citrus fruits and vegetables and have shown promising antiproliferative effects in multiple studies. It is also known that the bioactive effects of these flavonoids are more pronounced in whole fruit than in isolation. This study investigates the potential synergistic effects of Que and Nar (CoQN) in MCF-7 BC cells. MCF-7 cells were treated with a range of concentrations of Que, Nar or CoQN to determine cell viability. The IC50 of CoQN was then used to investigate caspase 3/7 activity, Bcl-2 gene expression, lipid peroxidation and mitochondrial membrane potential to evaluate oxidative stress and apoptosis. CoQN treatment produced significant cytotoxicity, reduced Bcl-2 gene expression and increased caspase 3/7 activity compared to either Nar or Que. Furthermore, CoQN significantly increased lipid peroxidation and reduced mitochondrial membrane potential (MMP) compared to either Nar or Que. Therefore, CoQN treatment has potential pharmacological application in BC chemotherapy by inducing oxidative stress and apoptosis in MCF-7 BC cells. The results of this study support the increased consumption of whole fruits and vegetables to reduce cell proliferation in cancer.
Collapse
|
37
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
38
|
Michala AS, Pritsa A. Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases 2022; 10:37. [PMID: 35892731 PMCID: PMC9326669 DOI: 10.3390/diseases10030037] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin belongs to the broader category of polyphenols. It is found, in particular, among the flavonols, and along with kaempferol, myricetin and isorhamnetin, it is recognized as a foreign substance after ingestion in contrast to vitamins. Quercetin occurs mainly linked to sugars with the most common compounds being quercetin-3-O-glucoside or as an aglycone, especially in the plant population. The aim of this review is to present a recent bibliography on the mechanisms of quercetin absorption and metabolism, bioavailability, and antioxidant and the clinical effects in diabetes and cancer. The literature reports a positive effect of quercetin on oxidative stress, cancer, and the regulation of blood sugar levels. Moreover, research-administered drug dosages of up to 2000 mg per day showed mild to no symptoms of overdose. It should be noted that quercetin is no longer considered a carcinogenic substance. The daily intake of quercetin in the diet ranges 10 mg-500 mg, depending on the type of products consumed. This review highlights that quercetin is a valuable dietary antioxidant, although a specific daily recommended intake for this substance has not yet been determined and further studies are required to decide a beneficial concentration threshold.
Collapse
Affiliation(s)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University (IHU), P.O. 141 Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|
39
|
Cao H, Högger P, Prieto M, Simal‐Gandara J, Xiao J. Stability of quercetin in DMEM and cell culture with A549 cells. EFOOD 2022. [DOI: 10.1002/efd2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie Universität Würzburg Würzburg Germany
| | - Miguel‐Angel Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| | - Jesus Simal‐Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| |
Collapse
|
40
|
Hipólito-Reis M, Neto AC, Neves D. Impact of curcumin, quercetin, or resveratrol on the pathophysiology of endometriosis: A systematic review. Phytother Res 2022; 36:2416-2433. [PMID: 35583746 DOI: 10.1002/ptr.7464] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Endometriosis, a gynecological disease that affects reproductive age women is difficultly controlled in the long term by currently available treatments, prompting patients to adopt self-controlled interventions including dietary changes. The aim of this review is to provide evidence of how curcumin, quercetin, and resveratrol can act as natural interventions to control endometriosis. The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search was carried out in PubMed, Scopus, and Web of Science to gather together all the articles that study the specific actions of curcumin, resveratrol, or quercetin in endometriosis pathophysiology. All types of study designs including experimental data were considered. Thirty articles, including a clinical trial, were included. For the assessment of the quality of the selected studies that globally have "good quality", the GRADE (Grading of Recommendations Assessment, Development and Evaluation) and the SYRCLE ROB tool criteria were used. By acting on mechanisms of inflammation, oxidative stress, cell proliferation, invasion and adhesion, apoptosis, angiogenesis and glucose and lipid metabolism, curcumin, quercetin, and resveratrol showed to have beneficial effects, evidencing their potential application in the endometriosis treatment. However, future clinical studies are necessary to determine the real efficacy of these compounds in human endometriosis.
Collapse
Affiliation(s)
- Mariana Hipólito-Reis
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| |
Collapse
|
41
|
Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5634724. [PMID: 35498135 PMCID: PMC9045977 DOI: 10.1155/2022/5634724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
The mitochondrion is a very versatile organelle that participates in some important cancer-associated biological processes, including energy metabolism, oxidative stress, mitochondrial DNA (mtDNA) mutation, cell apoptosis, mitochondria-nuclear communication, dynamics, autophagy, calcium overload, immunity, and drug resistance in ovarian cancer. Multiomics studies have found that mitochondrial dysfunction, oxidative stress, and apoptosis signaling pathways act in human ovarian cancer, which demonstrates that mitochondria play critical roles in ovarian cancer. Many molecular targeted drugs have been developed against mitochondrial dysfunction pathways in ovarian cancer, including olive leaf extract, nilotinib, salinomycin, Sambucus nigra agglutinin, tigecycline, and eupatilin. This review article focuses on the underlying biological roles of mitochondrial dysfunction in ovarian cancer progression based on omics data, potential molecular relationship between mitochondrial dysfunction and oxidative stress, and future perspectives of promising biomarkers and therapeutic targets based on the mitochondrial dysfunction pathway for ovarian cancer.
Collapse
|
42
|
Drețcanu G, Știrbu I, Leoplold N, Cruceriu D, Danciu C, Stănilă A, Fărcaș A, Borda IM, Iuhas C, Diaconeasa Z. Chemical Structure, Sources and Role of Bioactive Flavonoids in Cancer Prevention: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091117. [PMID: 35567117 PMCID: PMC9101215 DOI: 10.3390/plants11091117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 05/12/2023]
Abstract
There has been a major shift in the collective mindset around the world in recent decades, both in terms of food and in terms of the treatment of chronic diseases. Increasing numbers of people are choosing to prevent rather than treat, which is why many consumers are choosing plant-based diets, mainly due to their bioactive compounds. A significant case of bioactive compound is flavonoids-a wide subclass of an even wider class of phytochemicals: polyphenols. Flavonoids are a broad topic of study for researchers due to their potential in the prevention and treatment of a broad range of cancers. The aim of this review is to inform/update the reader on the diversity, accessibility and importance of flavonoids as biomolecules that are essential for optimal health, focusing on the potential of these compounds in the prevention of various types of cancer. Along with conventional sources, this review presents some of the possible methods for obtaining significant amounts of flavonoids based on a slightly different approach, genetic manipulation.
Collapse
Affiliation(s)
- Georgiana Drețcanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ioana Știrbu
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Nicolae Leoplold
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Anca Fărcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ileana Monica Borda
- Sixth Department of Medical Specialties, Medical Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristian Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-596893
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| |
Collapse
|
43
|
Li K, Zang X, Meng X, Li Y, Xie Y, Chen X. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment. Drug Deliv 2022; 29:970-985. [PMID: 35343862 PMCID: PMC8967198 DOI: 10.1080/10717544.2022.2055225] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer death world-wide and its treatment remains a challenge in clinic, especially for non-small cell lung cancer (NSCLC). Thus, more effective therapeutic strategies are required for NSCLC treatment. Quercetin (Que) as a natural flavonoid compound has gained increasing interests due to its anticancer activity. However, poor water solubility, low bioavailability, short half-life, and weak tumor accumulation hinder in vivo applications and antitumor effects of Que. In this study, we developed Que-loaded mixed micelles (Que-MMICs) assembled from 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–poly(ethylene glycol)–biotin (DSPE–PEG–biotin) and poly(ethylene glycol) methyl ether methacrylate–poly[2-(dimethylamino) ethyl acrylate]–polycaprolactone (PEGMA–PDMAEA–PCL) for NSCLC treatment. The results showed that Que was efficiently encapsulated into the mixed micelles and the encapsulation efficiency (EE) was up to 85.7%. Cellular uptake results showed that biotin conjugation significantly improved 1.2-fold internalization of the carrier compared to that of non-targeted mixed micelles. In vitro results demonstrated that Que-MMICs could improve cytotoxicity (IC50 = 7.83 μg/mL) than Que-MICs (16.15 μg/mL) and free Que (44.22 μg/mL) to A549 cells, which efficiently induced apoptosis and arrested cell cycle. Furthermore, Que-MMICs showed satisfactory tumor targeting capability and antitumor efficacy possibly due to the combination of enhanced permeability and retention (EPR) and active targeting effect. Collectively, Que-MMICs demonstrated high accumulation at tumor site and exhibited superior anticancer activity in NSCLC bearing mice model.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University,Qingdao, China
| | | | - Yanfeng Li
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University,Qingdao, China
| |
Collapse
|
44
|
Wang ZL, Sun HH, Liu HY, Ji QX, Niu YT, Ma P, Hao G, Zhang JX, Yuan YY, Chai XL, Han J, Wang W. The water extracts of Euonymus alatus (Thunb.) Siebold attenuate diabetic retinopathy by mediating angiogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114782. [PMID: 34728316 DOI: 10.1016/j.jep.2021.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euonymus alatus (Thunb.) Siebold (family Celastraceae) is a deciduous woody shrub that is recorded in ShenNong BenCaoJing. It has been widely used for diabetes in traditional Chinese medicine. AIM OF THE STUDY This study aimed to identify the most effective extract of Euonymus alatus (EA) against high glucose-induced endothelial cells in vitro, evaluate its pharmacological effect on retinopathy in diabetic mice and explore its underlying mechanism by RNA sequencing. METHODS Retinal vascular endothelial cells (RF/6A) were treated with normal glucose (5.5 mmol/L glucose), high glucose (25 mmol/L glucose) or high glucose plus methanol extracts of EA (MEA), ethyl acetate extracts of EA (EEA) or water extracts of EA (WEA). The cytotoxicity and cell viability were determined by Cell Counting Kit-8 (CCK-8) assay. Cell migration was examined using the Transwell assay, and tube formation ability was measured using the Matrigel assay. Then, the KK-Ay mice were administered WEA or water for 12 weeks. The velocities of ocular blood flow were determined by Doppler ultrasound. RNA sequencing and reverse transcription quantitative PCR (RT-qPCR) were performed on WEA-stimulated RF/6A cells to reveal the underlying mechanism. RESULTS The cytotoxicity assay found that 30 μg/mL MEA, 20 μg/mL EEA and 30 μg/mL WEA had no toxic effect on RF/6A cells. The cell viability results showed that MEA, EEA and WEA all decreased cell viability. Compared with the high-glucose group, both MEA and WEA decreased the number of migrated cells, while the inhibition rate of WEA was higher. The Matrigel results showed that 30 μg/mL WEA effectively reduced the total tube length. Moreover, WEA improved the haemodynamics of the central retinal artery. RNA sequencing coupled with RT-qPCR verified that WEA regulated angiogenesis-related factors in high glucose-stimulated RF/6A cells. CONCLUSIONS WEA inhibits the migration and tube formation of RF/6A cells and improves diabetic retinopathy (DR) by mediating angiogenesis.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Hui-Hui Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Han-Ying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Qing-Xuan Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Yi-Ting Niu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Pan Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jing-Xuan Zhang
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yue-Ying Yuan
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xin-Lou Chai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Jing Han
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China.
| |
Collapse
|
45
|
Ankit, Malviya R, Sharma A. Sources, Properties and Pharmacological Effects of Quercetin. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220127140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The present review aims to describe an overview of quercetin with its various pharmacological effects. Quercetin is used as antioxidant, anticancer, antibacterial and antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, antifungal, anti-allergic and antiproliferative agents, which are described in the manuscript. It is mainly obtained from plant resources, which is also described in the manuscript. The manuscript also focuses on describing the various studies related to quercetin which shows various pharmacological activities. It is concluded from the study that quercetin has shown an efficacious effect on various diseases.
Collapse
Affiliation(s)
- Ankit
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| | - Akanksha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| |
Collapse
|
46
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
47
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
48
|
Xu X, Chen F, Zhang L, Liu L, Zhang C, Zhang Z, Li W. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114343. [PMID: 34147618 DOI: 10.1016/j.jep.2021.114343] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa Willd and Scutellaria barbata D.Don (HD-SB) pairing were widely used as traditional medicine known for their anti-tumor effects. However, the inhibitory effect of HD-SB on ovarian cancer and its potential mechanisms were still not clear. AIM OF THE STUDY Our study identified the anti-tumor effect of HD-SB on ovarian cancer and analyzed the potential mechanisms by the network pharmacology and molecular docking method. MATERIALS AND METHODS The inhibitory effect of HD-SB combination on the growth and migration of ovarian cancer was detected by MTT and transwell assays. The effective ingredients of HD-SB and their potential targets were obtained from the Traditional Chinese Medicines for Systems Pharmacology Database (TCMSP), the GeneCards database, and the UniProt database. The relationships between active ingredients of HD-SB and potential targets or pathways of ovarian cancer were analyzed by String database, Cytoscape 3.7.2 software, and David 6.7 online database. The anti-ovarian cancer targets of HD-SB in the focal adhesion pathway were identified by RT-qPCR and molecular docking. RESULTS HD-SB combination significantly inhibited the proliferation and migration of ovarian cancer cells. We observed that the 1:2 ratio of HD-SB had the lowest IC50 value. 60 gene targets of 33 active ingredients in HD-SB were selected by pharmacokinetic parameters. The network pharmacological analysis showed that quercetin, luteolin, and baicalein might be the important anti-ovarian cancer ingredients in HD-SB, and the inhibitory effects of these three ingredients on the proliferation of ovarian cancer cells were verified respectively. Functional enrichment results suggested that HD-SB inhibited ovarian cancer growth and migration mainly through the focal adhesion pathway and the potential targets were EGFR, MAPK1, VEGFA, and PIK3CG. CONCLUSIONS HD-SB pairing significantly inhibited the proliferation and migration of ovarian cancer. Using network pharmacological methods and validation experiments, we found that HD-SB might, at least partially, inhibit ovarian cancer through the focal adhesion pathway. We believed that the HD-SB combination could be a potential therapeutic drug for the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Biotechnology, Dalian Medical University, Dalian, China.
| | - Fenglin Chen
- Department of Biotechnology, Dalian Medical University, Dalian, China.
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian, China.
| | - Cuili Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, China.
| | - Zhiwei Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian, China.
| |
Collapse
|
49
|
Adami BS, Diz FM, Oliveira Gonçalves GP, Reghelin CK, Scherer M, Dutra AP, Papaléo RM, de Oliveira JR, Morrone FB, Wieck A, Xavier LL. Morphological and mechanical changes induced by quercetin in human T24 bladder cancer cells. Micron 2021; 151:103152. [PMID: 34607251 DOI: 10.1016/j.micron.2021.103152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023]
Abstract
Quercetin is a flavonoid found in a great variety of foods such as vegetables and fruits. This compound has been shown to inhibit the proliferation of various types of cancer cells, as well as the growth of tumors in animal models. In the present study, we analyze morphological and mechanical changes produced by quercetin in T24 bladder cancer cells. Decreased cell viability and cell number were observed following quercetin treatment at 40 μM and 60 μM, respectively, as observed by the MTT assay and trypan blue exclusion test, supporting the hypothesis of quercetin anticancer effect. These assays also allowed us to determine the 40, 60, and 80 μM quercetin concentrations for the following analyses, Lactate Dehydrogenase assay (LDH); Nuclear Morphometric Analysis (NMA); and atomic force microscopy (AFM). The LDH assay showed no cytotoxic effect of quercetin on T24 cancer cells. The AFM showed morphological changes following quercetin treatment, namely decreased cell body, cytoplasmic retraction, and membrane condensation. Following quercetin treatment, the NMA evidenced an increased percentage of nuclei characteristic to the apoptotic and senescence processes. Cells also presented biophysical alterations consistent with cell death by apoptosis, as increased roughness and aggregation of membrane proteins, in a dose-dependent manner. Cellular elasticity, obtained through force curves, showed increased stiffness after quercetin treatment. Data presented herein demonstrate, for the first time, in a quantitative and qualitative form, the morphological and mechanical alterations induced by quercetin on bladder cancer cells.
Collapse
Affiliation(s)
- Bruno Silveira Adami
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Fernando Mendonça Diz
- Pós-Graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil; Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Gustavo Petry Oliveira Gonçalves
- Laboratório Central de Microscopia e Microanálise (LabCeMM), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Camille Kirinus Reghelin
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Matheus Scherer
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Artur Pereira Dutra
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Ricardo Meurer Papaléo
- Centro Interdisciplinar de Nanociências e Micro-Nanotecnologia - NanoPUCRS, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil.
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil; Laboratório Central de Microscopia e Microanálise (LabCeMM), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| |
Collapse
|
50
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|