1
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2025; 43:3116-3129. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
2
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Ou J, Deng S, Ding C, Cai Z, Chen J, Huang Z, Xu X, Li J, Wu Z, Tang B, Zhang T, Wang Z, Zhou Y, Xuan L, Liu Q, Zhou H. Mutations of epigenetic modifier genes predict poor outcome in adult acute lymphoblastic leukemia. Ann Hematol 2024; 103:3639-3648. [PMID: 38451293 DOI: 10.1007/s00277-024-05681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Epigenetic modifier (EM) genes play important roles in the occurrence and progression of acute lymphoblastic leukemia (ALL). However, the prognostic significance of EM mutations in ALL has not yet been thoroughly investigated. This retrospective study included 205 adult patients with ALL engaged in a pediatric-type regimen. Based on targeted next-generation sequencing, they were divided into EM mutation group (EM-mut, n = 75) and EM wild-type group (EM-wt, n = 130). The EM-mut group showed a higher positive rate of minimal residual disease (MRD) on treatment day24 and before consolidation therapy (P = 0.026, 0.020). Multivariate Cox regression analysis showed that EM-mut was an independent adverse factor for overall survival (OS) and event-free survival (EFS) (HR = 2.123, 1.742; P = 0.009, 0.007). Survival analysis revealed that the OS and EFS rates were significantly lower in the EM-mut group than in the EM-wt group (3-year OS rate, 45.8% vs. 65.0%, P = 0.0041; 3-year EFS rate, 36.7% vs. 53.2%, P = 0.011). In conclusion, EM was frequently mutated in adult ALL and was characterized by poor response to induction therapy and inferior clinical outcomes.
Collapse
Affiliation(s)
- Jiawang Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenhao Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zicong Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengwei Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingqing Tang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Kikuchi Y, Shimada H, Yamasaki F, Yamashita T, Araki K, Horimoto K, Yajima S, Yashiro M, Yokoi K, Cho H, Ehira T, Nakahara K, Yasuda H, Isobe K, Hayashida T, Hatakeyama S, Akakura K, Aoki D, Nomura H, Tada Y, Yoshimatsu Y, Miyachi H, Takebayashi C, Hanamura I, Takahashi H. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 2024; 29:512-534. [PMID: 38493447 DOI: 10.1007/s10147-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Department of Surgery, Toho University, Tokyo, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Araki
- Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takuya Ehira
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazutoshi Isobe
- Division of Respiratory Medicine, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | - Daisuke Aoki
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuji Tada
- Department of Pulmonology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Hayato Miyachi
- Faculty of Clinical Laboratory Sciences, Nitobe Bunka College, Tokyo, Japan
| | - Chiaki Takebayashi
- Division of Hematology and Oncology, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
5
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
6
|
Onaciu A, Toma V, Moldovan C, Țigu AB, Cenariu D, Culic C, Borșa RM, David L, Știufiuc GF, Tetean R, Tomuleasa C, Știufiuc RI. Nanoscale Investigation of DNA Demethylation in Leukemia Cells by Means of Ultrasensitive Vibrational Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 23:346. [PMID: 36616944 PMCID: PMC9823440 DOI: 10.3390/s23010346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation is a crucial epigenetic hallmark of cancer development but the experimental methods able to prove nanoscale modifications are very scarce. Over time, Raman and its counterpart, surface-enhanced Raman scattering (SERS), became one of the most promising techniques capable to investigate nanoscale modifications of DNA bases. In our study, we employed Raman/SERS to highlight the differences between normal and leukemia DNA samples and to evaluate the effects of a 5-azacytidine treatment on leukemia cells. To obtain spectral information related to DNA base modifications, a DNA incubation step of 4 min at 94 °C, similar to the one performed in the case of RT-PCR experiments, was conducted prior to any measurements. In this way, reproducible Raman/SERS spectra were collected for all genomic DNA samples. Our Raman results allowed discrimination between normal and cancer DNAs based on their different aggregation behavior induced by the distinct methylation landscape present in the DNA samples. On the other hand, the SERS spectra collected on the same DNA samples show a very intense vibrational band located at 1008 cm-1 assigned to a rocking vibration of 5-methyl-cytosine. The intensity of this band strongly decreases in cancer DNA due to the modification of the methylation landscape occurring in cancers. We believe that under controlled experimental conditions, this vibrational band could be used as a powerful marker for demonstrating epigenetic reprogramming in cancer by means of SERS.
Collapse
Affiliation(s)
- Anca Onaciu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Valentin Toma
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Cenariu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carina Culic
- Department of Odontology, Endodontics, Oral Pathology, Faculty of Dental Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania
| | - Rareș Mario Borșa
- Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Luca David
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | | | - Romulus Tetean
- Faculty of Physics, “Babes-Bolyai” University, 400084 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
- Department of Hematology, “Ion Chiricuta” Clinical Cancer Center, 400015 Cluj-Napoca, Romania
| | - Rareș Ionuț Știufiuc
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Al-Rawashde FA, Al-wajeeh AS, Vishkaei MN, Saad HKM, Johan MF, Taib WRW, Ismail I, Al-Jamal HAN. Thymoquinone Inhibits JAK/STAT and PI3K/Akt/ mTOR Signaling Pathways in MV4-11 and K562 Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091123. [PMID: 36145344 PMCID: PMC9504933 DOI: 10.3390/ph15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Constitutive activation of Janus tyrosine kinase-signal transducer and activator of transcription (JAK/STAT) and Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathways plays a crucial role in the development of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Thymoquinone (TQ), one of the main constituents of Nigella sativa, has shown anti-cancer activities in several cancers. However, the inhibitory effect mechanism of TQ on leukemia has not been fully understood. Therefore, this study aimed to investigate the effect of TQ on JAK/STAT and PI3K/Akt/mTOR pathways in MV4-11 AML cells and K562 CML cells. FLT3-ITD positive MV4-11 cells and BCR-ABL positive K562 cells were treated with TQ. Cytotoxicity assay was assessed using WSTs-8 kit. The expression of the target genes was evaluated using RT-qPCR. The phosphorylation status and the levels of proteins involved in JAK/STAT and PI3K/Akt/mTOR pathways were investigated using Jess western analysis. TQ induced a dose and time dependent inhibition of K562 cells proliferation. TQ significantly downregulated PI3K, Akt, and mTOR and upregulated PTEN expression with a significant inhibition of JAK/STAT and PI3K/Akt/mTOR signaling. In conclusion, TQ reduces the expression of PI3K, Akt, and mTOR genes and enhances the expression of PTEN gene at the mRNA and protein levels. TQ also inhibits JAK/STAT and PI3K/Akt/mTOR pathways, and consequently inhibits proliferation of myeloid leukemia cells, suggesting that TQ has potential anti-leukemic effects on both AML and CML cells.
Collapse
Affiliation(s)
- Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | | | | | - Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
8
|
Wu J, Xie Y, Han L. miR-144-3p Derived from Bone Marrow Mesenchymal Stem Cells (BMSCs) Restrains the Drug Resistance of Acute Myeloid Leukemia (AML). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed whether miR-144-3p derived from BMSCs restrains the drug resistance of AML. Our study intends to assess miR-144-3p’s role in AML drug resistance. Drug resistance AML cells were transfected with miR-144-3p mimic or NC followed by measuring miR-144-3p level,
relation of miR-144-3p with Wnt, cell activity and apoptosis by flow cytometry and the expression of signal proteins by Western Blot. The action of miR-144-3p in inducting drug resistance of K562/AND was more effective. Cell apoptosis and proliferative index was increased by overexpression
of miR-144-3p along with significantly down regulated Wnt. In conclusion, the malignant invasion of AML with drug resistance is increased by miR-144-3p derived from BMSCs through regulating the Wnt/β-catenin signal, indicating that miT-144-3p might be a new target for the treatment
of AML.
Collapse
Affiliation(s)
- Jun Wu
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| | - Yingying Xie
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| | - Limei Han
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| |
Collapse
|
9
|
Niu J, Peng D, Liu L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front Oncol 2022; 12:896426. [PMID: 35865470 PMCID: PMC9294245 DOI: 10.3389/fonc.2022.896426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological malignancy. Relapse and refractory after induction chemotherapy are still challenges for curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are dynamic derivations and possess various elusive resistance mechanisms. In this review, we summarized different primary resistance and remolding mechanisms of LSCs after chemotherapy, as well as the indispensable role of the bone marrow microenvironment on LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs resistance, it can provide better strategies for future researches on eradicating LSCs and clinical treatment of AML.
Collapse
Affiliation(s)
| | | | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Vitkevičienė A, Skliutė G, Žučenka A, Borutinskaitė V, Navakauskienė R. Potential Prognostic Markers for Relapsed/Refractory vs. Responsive Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14112752. [PMID: 35681732 PMCID: PMC9179343 DOI: 10.3390/cancers14112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common blood cancer in the elderly, which progresses rapidly and is often fatal. The prognosis for AML remains poor in most older patients: only about 15% of patients over 60 years of age can recover. Our aim is to determine new potential AML clinical treatment prognosis markers. We analyzed certain genes, proteins and the epigenome profile in therapy-resistant and responsive AML patients at diagnosis stage and after clinical treatment. We determined that MYC, WT1, IDH1, CDKN1A, HDAC2, TET1, KAT6A and GATAD2A gene expression changes might characterize refractory AML. Therefore, these genes could have an impact for AML prognosis. Abstract Acute myeloid leukemia (AML) is a heterogeneous disease. A significant proportion of AML patients is refractory to clinical treatment or relapses. Our aim is to determine new potential AML clinical treatment prognosis markers. We investigated various cell fate and epigenetic regulation important gene level differences between refractory and responsive AML patient groups at diagnosis stage and after clinical treatment using RT-qPCR. We demonstrated that oncogenic MYC and WT1 and metabolic IDH1 gene expression was significantly higher and cell cycle inhibitor CDKN1A (p21) gene expression was significantly lower in refractory patients’ bone marrow cells compared to treatment responsive patients both at diagnosis and after clinical treatment. Moreover, we determined that, compared to clinical treatment responsive patients, refractory patients possess a significantly higher gene expression of histone deacetylase 2 (HDAC2) and epigenetic DNA modulator TET1 and a significantly lower gene expression of lysine acetyltransferase 6A (KAT6A) and nucleosome remodeling and deacetylase (NuRD) complex component GATAD2A. We suggest that MYC, WT1, IDH1, CDKN1A, HDAC2, TET1, KAT6A and GATAD2A gene expression changes might characterize refractory AML. Thus, they might be useful for AML prognosis. Additionally, we suggest that epigenetic modulation might be beneficial in combination with standard treatment.
Collapse
Affiliation(s)
- Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Andrius Žučenka
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Santariskiu str. 2, LT-08661 Vilnius, Lithuania;
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania; (A.V.); (G.S.); (V.B.)
- Correspondence: ; Tel.: +370-5-223-4409
| |
Collapse
|
11
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
12
|
Su N, Wang Y, Lu X, Xu W, Wang H, Mo W, Pang H, Tang R, Li S, Yan X, Li Y, Zhang R. Methylation of SPRED1: A New Target in Acute Myeloid Leukemia. Front Oncol 2022; 12:854192. [PMID: 35359401 PMCID: PMC8960233 DOI: 10.3389/fonc.2022.854192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sprouty-related, EVH1 domain-containing protein 1 (SPRED1) has been identified as a novel tumor suppressor gene in acute myeloid leukemia (AML). Previous studies showed that SPRED1 methylation levels were significantly increased in AML patients, making it an interesting candidate for further investigations. To confirm the association of SPRED1 methylation, clinical parameters, and known molecular prognosticators and to identify the impact of methylation level on treatment outcome, we conducted this study in a larger cohort of 75 AML patients. Significantly increased methylation levels of SPRED1 were detected at four of ten CpG units by quantitative high-resolution mass spectrometry-based approach (MassARRAY) in AML patients. Whereas overall survival (OS) and relapse-free survival (RFS) showed no statistical difference between hypermethylation and hypomethylation subgroups, the relationship between methylation level and treatment response was indicated in paired samples from pre- and post-induction. To determine the possible mechanism of SPRED1 methylation in AML, we performed in vitro experiments using THP-1 cells, as the latter showed the highest methylation level (determined by utilizing bisulfite modification) among the three AML cell lines we tested. When treated with 5-AZA and lentivirus transfection, upregulated SPRED1 expression, decreased cell proliferation, increased cell differentiation and apoptosis, and inactivated phosphorylated extracellular signal-regulated kinase (p-ERK) were detected in THP-1 cells. These results show that demethylation of SPRED1 can inhibit the proliferation of AML cells and promote their differentiation and apoptosis, possibly by the ERK pathway. The hypermethylation of SPRED1 is a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Nan Su
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujiao Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Weihong Xu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - He Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rurong Tang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
|
14
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
15
|
Zhang J, Gao X, Yu L. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Front Oncol 2021; 11:741746. [PMID: 34540702 PMCID: PMC8440836 DOI: 10.3389/fonc.2021.741746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate orchestration of gene expression is critical for the process of normal hematopoiesis, and dysregulation is closely associated with leukemogenesis. Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia (AML), where chromosomal rearrangements are frequently found. Increasing evidences have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling, which are involved in stemness maintenance, cell fate determination, proliferation and differentiation, via mastering the transcriptional switch of key genes. In abnormal, these functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are appealing targets for drug exploration, many of which have been deployed to the AML treatment. As the majority of AML events are associated with chromosomal translocation resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the process of leukemogenesis and roles of HDAC members acting in this progress, providing an insight for the target anchoring, investigation of hyperacetylated-agents, and how the current knowledge could be applied in AML treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
16
|
Gębarowska K, Mroczek A, Kowalczyk JR, Lejman M. MicroRNA as a Prognostic and Diagnostic Marker in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:5317. [PMID: 34070107 PMCID: PMC8158355 DOI: 10.3390/ijms22105317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a biologically and genetically heterogeneous disease with a poor prognosis overall and several subtypes. The neoplastic transformation takes place through the accumulation of numerous genetic and epigenetic abnormalities. There are only a few prognostic factors in comparison to B cell precursor acute lymphoblastic leukemia, which is characterized by a lower variability and more homogeneous course. The microarray and next-generation sequencing (NGS) technologies exploring the coding and non-coding part of the genome allow us to reveal the complexity of the genomic and transcriptomic background of T-ALL. miRNAs are a class of non-coding RNAs that are involved in the regulation of cellular functions: cell proliferations, apoptosis, migrations, and many other processes. No miRNA has become a significant prognostic and diagnostic factor in T-ALL to date; therefore, this topic of investigation is extremely important, and T-ALL is the subject of intensive research among scientists. The altered expression of many genes in T-ALL might also be caused by wide miRNA dysregulation. The following review focuses on summarizing and characterizing the microRNAs of pediatric patients with T-ALL diagnosis and their potential future use as predictive factors.
Collapse
Affiliation(s)
- Katarzyna Gębarowska
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Mroczek
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Jerzy R. Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
17
|
Bi L, Ma T, Li X, Wei L, Liu Z, Feng B, Dong B, Chen X. New progress in the study of germline susceptibility genes of myeloid neoplasms. Oncol Lett 2021; 21:317. [PMID: 33692849 PMCID: PMC7933751 DOI: 10.3892/ol.2021.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
In 2016, the World Health Organization incorporated ‘myeloid neoplasms with germline predisposition’ into its classification of tumors of hematopoietic and lymphoid tissues, revealing the important role of germline mutations in certain myeloid neoplasms, particularly myelodysplastic syndrome and acute myeloid leukemia. The awareness of germline susceptibility has increased, and some patients with myeloid neoplasms present with a preexisting disorder or organ dysfunction. In such cases, mutations in genes including CCAAT enhancer binding protein α (CEBPA), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), RUNX family transcription factor 1 (RUNX1), GATA binding protein 2 (GATA2), Janus kinase 2 (JAK2) and ETS variant transcription factor 6 (ETV6) have been recognized. Moreover, with the application of advanced technologies and reports of more cases, additional germline mutations associated with myeloid neoplasms have been identified and provide insights into the formation, prognosis and therapy of myeloid neoplasms. The present review discusses the well-known CEBPA, DDX41, RUNX1, GATA2, JAK2 and ETV6 germline mutations, and other mutations including those of lymphocyte adapter protein/SH2B adapter protein 3 and duplications of autophagy related 2B, GSK3B interacting protein αnd RB binding protein 6, ubiquitin ligase, that remain to be confirmed or explored. Recommendations for the management of diseases associated with germline mutations are also provided.
Collapse
Affiliation(s)
- Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianyuan Ma
- Department of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Li
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lai Wei
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zinuo Liu
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bingyue Feng
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Hematology and Oncology Center, Affiliated Hospital of Northwest University and Xian No. 3 Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
18
|
Hassan NM, Refaat LA, Ismail GN, Abdellateif M, Fadel SA, AbdelAziz RS. Diagnostic, prognostic and predictive values of miR-100 and miR-210 in pediatric acute lymphoblastic Leukemia. ACTA ACUST UNITED AC 2021; 25:405-413. [PMID: 33191875 DOI: 10.1080/16078454.2020.1843753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND : microRNAs are playing important roles in the diagnosis and prognosis of pediatric acute lymphoblastic leukemia (ALL). METHODS Expression levels of miR-100 and miR-210 were assessed in bone marrow aspirate of 85 pediatric ALL patients compared to 12 healthy control using quantitative real-time polymerase chain reaction. Data were correlated with relevant clinico-pathological features of the patients, response to treatment, disease-free survival (DFS), and overall survival (OS). RESULTS miR-100 was significantly downregulated in ALL patients [median: 1.21, range: 0-434.3] compared to the control group [median: 8.41, range; 0-840.3, P = 0.035]. miR-210 was significantly upregulated in ALL patients [median: 6.34, range: 1.16-1088.7] compared to the control group [median: 2.57, range: 0.11-709.2, P = 0.025]. The sensitivity, specificity, and area under curve of miR-100 were (64.7%, 62.5%, and 0.642; respectively, P = 0.035) at a cut-off 2.6 and that of miR-210 were (60%, 58.3% and 0.650; respectively, P = 0.025) at a cut-off 3.5. miR-100 overexpression associated with shorter DFS and OS (P = 0.033 and 0.046; respectively). Patients with miR-100 lowexpression showed a significant incidence of late death ( P = 0.024). There was no significant association between miR-210 expression and DFS, OS, incidence of early or late death. CONCLUSION : miR-100 and miR-210 could be used as potential diagnostic markers for pediatric ALL. miR-100 is a useful prognostic and predictive biomarker for childhood ALL.
Collapse
Affiliation(s)
- Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna A Refaat
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ghada N Ismail
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sayed A Fadel
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rania S AbdelAziz
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Li R, Guo C, Li Y, Liang X, Su M. Functional benefit and molecular mechanism of vitamin C against perfluorooctanesulfonate-associated leukemia. CHEMOSPHERE 2021; 263:128242. [PMID: 33297189 DOI: 10.1016/j.chemosphere.2020.128242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a persistent pollutant that can induce toxic effects, including leukemia, on blood cells. Vitamin C (VC), a functional nutrient, has been found to possess potent cytoprotective effects. However, there are currently no reports on its ability to treat PFOS-associated leukemia. This study used a molecular networking analysis to reveal the functional action and pharmacological mechanism of VC against PFOS-associated leukemia. The biological informatics findings revealed a total of 17 intersection targets against PFOS-associated leukemia. In addition, seven core-functional targets, including tumor protein p53 (TP53), mitogen-activated protein kinase 1 (MAPK1), estrogen receptor 1 (ESR1), sirtuin 1 (SIRT1), nitric oxide synthase 3 (NOS3), myeloid cell leukemia-1 (MCL1), and telomerase reverse transcriptase (TERT), were screened and identified. Notably, the molecular docking findings indicated that TP53, MAPK1, and ESR1 were potent pharmacological targets of VC against PFOS-associated leukemia. Moreover, the pharmacological functions including biological processes, cell components, and molecular pathways of VC against PFOS-associated leukemia were determined. According to the computational findings, we conclude that VC protects against PFOS-associated leukemia action by suppressing leukemia-associated cell proliferation and tumor growth. The validated genes of TP53, MAPK1, ESR1 may become potential biomarkers for monitoring and treating PFOS-associated leukemia.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Yu Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xiao Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Min Su
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.
| |
Collapse
|
20
|
Moujir LM, Llanos GG, Araujo L, Amesty A, Bazzocchi IL, Jiménez IA. Withanolide-Type Steroids from Withania aristata as Potential Anti-Leukemic Agents. Molecules 2020; 25:E5744. [PMID: 33291428 PMCID: PMC7731379 DOI: 10.3390/molecules25235744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Leukemia is a blood or bone marrow cancer with increasing incidence in developed regions of the world. Currently, there is an ongoing need for novel and safe anti-leukemic agents, as no fully effective chemotherapy is available to treat this life-threatening disease. Herein, are reported the isolation, structural elucidation, and anti-leukemic evaluation of twenty-nine withanolide-type steroids (1-29) from Withania aristata. Among them, the new isolated withanolides, withaperoxidins A-D (1-4) have an unusual six-membered cyclic peroxide moiety on the withasteroid skeleton as a structural novelty. Their structures have been elucidated by means of spectroscopic analyses, including 2D NMR experiments. In addition, extensive structure-activity relationships and in silico ADME studies were employed to understand the pharmacophore and pharmacokinetic properties of this series of withasteroids. Compounds 15, 16, and 22 together with withaferin A (14) were identified as having improved antiproliferative effect (IC50 ranging from 0.2 to 0.7 μM) on human leukemia HL-60 cell lines compared with the reference drug, etoposide. This cytotoxic potency was also coupled with good selectivity index (SI 33.0-9.2) on non-tumoral Vero cell line and in silico drug likeness. These findings revealed that these natural withasteroids are potential candidates as chemotherapeutic agents in the treatment of leukemia.
Collapse
Affiliation(s)
- Laila M. Moujir
- Department of Biochemistry, Microbiology, Cell Biology and Genetic, Faculty of Pharmacy, Universidad de La Laguna, Avenida Astrofisico Francisco Sánchez s/n, 38206 La Laguna, Spain; (L.M.M.); (L.A.)
| | - Gabriel G. Llanos
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Liliana Araujo
- Department of Biochemistry, Microbiology, Cell Biology and Genetic, Faculty of Pharmacy, Universidad de La Laguna, Avenida Astrofisico Francisco Sánchez s/n, 38206 La Laguna, Spain; (L.M.M.); (L.A.)
- Clinical Laboratory Career, Faculty of Health Sciences, Universidad Nacional de Chimborazo, Avenida Antonio José de Sucre, Riobamba 060150, Ecuador
| | - Angel Amesty
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Isabel L. Bazzocchi
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| | - Ignacio A. Jiménez
- Institute of Bio-Orgánica Antonio González and Organic Chemistry Department, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (G.G.L.); (A.A.); (I.L.B.)
| |
Collapse
|