1
|
Zhao X, Li Y, Gu D, Wang X, Han G, Yao Y, Ren L, Yao Q, Li X, Qi Y. The up-regulated expression level of deubiquitinating enzyme USP46 induces the apoptosis of A549 cells by TRAF6. Invest New Drugs 2025:10.1007/s10637-025-01532-9. [PMID: 40263244 DOI: 10.1007/s10637-025-01532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigates the function of Ubiquitin-specific protease 46 (USP46), a deubiquitinase, in the context of lung cancer, particularly its role in regulating cell proliferation via the ubiquitination of TRAF6. In A549 lung cancer cells, analysis revealed a significant downregulation of USP46 expression, while TRAF6 levels were notably elevated. These findings were corroborated by Western blotting, which confirmed the altered expression patterns. To further assess the implications of these changes, several experimental assays, including the Cell Counting Kit-8, transwell migration assays, and flow cytometry, were conducted to evaluate cell viability and apoptosis rates. Co-immunoprecipitation experiments demonstrated a direct interaction between USP46 and TRAF6, implicating USP46 in the modulation of TRAF6 ubiquitination, a process that is fundamental to tumor physiology. The results indicated that decreased USP46 expression led to an increase in the levels of the anti-apoptotic protein Bcl-2, while there was a corresponding decrease in key pro-apoptotic proteins such as caspase-3, caspase-9, and Bax. Additionally, the study found elevated levels of phosphorylated AKT and mTOR, which suggest the activation of survival signaling pathways in the cancer cells. These findings collectively suggest that the up-regulated USP46 promotes apoptosis in lung cancer cells through the regulation of TRAF6. Therefore, targeting the USP46/TRAF6 signaling pathway presents a promising therapeutic strategy for lung cancer treatment, potentially offering new avenues for intervention in cancer progression and cell survival mechanisms.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yanan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dandan Gu
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaoru Wang
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Guangxin Han
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yasen Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Limei Ren
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Qingguo Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaobing Li
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yonghao Qi
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Innovative Drug Research and Evaluation in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
2
|
Bhardwaj V, Thakur N, Kumari P. Harnessing bee venom for inflammatory diseases management: from traditional medicine to nanotechnology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03991-6. [PMID: 40072552 DOI: 10.1007/s00210-025-03991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
This review investigates the anti-inflammatory potential of bee venom, a natural compound comprising peptides, enzymes, biogenic amines other bioactive amines, and other bioactive components. It aims to elucidate how bee venom mitigates inflammatory responses caused by tissue injury, infections, and trauma. This study also explores the advancements in nanotechnology to enhance bee venom's therapeutic effects. A systematic review of studies from Google Scholar and PubMed, up to 2025, was conducted. Both in vitro and in vivo research focusing on bee venom's effects on proinflammatory mediators were analyzed. Specific attention was given to its molecular mechanisms, therapeutic impact on inflammatory conditions, and the role of nanotechnology in improving drug delivery and stability. Bee venom and its components, including melittin, apamin, and phospholipase A2 demonstrate robust anti-inflammatory properties by inhibiting key proinflammatory mediators. These effects have been observed in the treatment of chronic inflammatory conditions such as rheumatoid arthritis and skin disorders. Studies show bee venom's capacity to reduce excessive inflammatory responses effectively. Moreover, incorporating nanotechnology significantly enhances its therapeutic benefits by improving delivery, stability, and bioavailability, paving the way for advanced applications. Bee venom offers a natural, powerful approach to combating the inflammation and related chromic disorders. Its ability to regulate inflammatory pathways is promising for therapeutic use. The integration of nanotechnology further amplifies its potential, providing innovative solutions for efficient and targeted treatments. This study also highlights the need for more clinical trials to establish bee venom as a mainstream therapeutic agent in modern medicine.
Collapse
Affiliation(s)
- Vandna Bhardwaj
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Naresh Thakur
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanka Kumari
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
3
|
Li Z, Qin F, Liu C, Zhao Z, Wu H, Li J, Zhang Z, Qin Q. Alleviating heat stress-induced immune organ damage in ducks: Role of melittin. Trop Anim Health Prod 2025; 57:57. [PMID: 39939510 DOI: 10.1007/s11250-025-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Heat stress, one of the major challenges facing the global livestock industry, can adversely affect the immune system. The present study explored the mechanisms by which melittin alleviates heat stress-induced immune organ damage. Three hundred 20-day-old male Huainan sheldrakes were randomly assigned to four groups: heat stress group (basal diet), heat stress + melittin group (I, II, III group, basal diet + 0.08, 0.12, 0.16 g/kg melittin, respectively). The ducks were subjected to heat stress for 4 h per day (temperature 36-38 °C, relative humidity 60-70%) for 15 consecutive days. The results showed that compared with the heat-stress group, melittin improved the production performance of heat-stressed ducks, significantly increased serum immune indices (immunoglobulin G and interferon-gamma) and antioxidant indices (total antioxidant capacity, superoxide dismutase (SOD), and glutathione) (P < 0.05), and significantly decreased malondialdehyde (MDA) levels (P < 0.05). Additionally, melittin increased antioxidant function (nuclear factor-erythroid 2 p45-related factor 2, glutathione peroxidase, SOD, and catalase), and immune index (interleukin-10). Meanwhile, melittin significantly reduced immune indices (inducible nitric oxide synthase and cyclooxygenase-2), heat shock protein 70 expression, and apoptosis levels (P < 0.05) in heat-stressed ducks. Consequently, supplementing heat-stressed ducks with 0.12 g/kg melittin increases serum immune function and antioxidants, alleviate heat stress-induced immune organ damage, and improve growth performance.
Collapse
Affiliation(s)
- Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Feng Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Chang Liu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zhimin Zhao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Jianzhu Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China
| | - Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, No. 1 Beihuan Road, Pingqiao District, Xinyang City, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Nasser S, El-Abhar HS, El-Maraghy N, Abdallah DM, Wadie W, Mansour S. Neuroprotective role of mirabegron: Targeting beta-3 adrenergic receptors to alleviate ulcerative colitis-associated cognitive impairment. Biomed Pharmacother 2025; 183:117816. [PMID: 39809125 DOI: 10.1016/j.biopha.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
While cognitive impairment has been documented in ulcerative colitic patients, the possible influence of central β3-adrenergic receptor (β3-AR) signaling on this extraintestinal manifestation remains unclear. Previously, we identified an imperative role for mirabegron (MA) as an agonist of β3-AR, in decreasing the BACE-1/beta-amyloid (Aβ) cue in the colons of UC rats. Consequently, we investigated its therapeutic potential for alleviating cognitive impairment associated with UC. To fulfil our aim, rats administered iodoacetamide were treated with the β3-AR agonist (MA) alone, with the antagonist (SR59230A) for 8 days, or kept untreated. The animals' behavior (MWM and NOR tests) and hippocampal structure were assessed. Mechanistically, necroptosis, ER stress (ERS), Aβ-amyloidosis, inflammation/oxidative burden, and gut/BBB dysfunction were analyzed. Post-administration of MA improved weight gain, colon/hippocampal structures, and memory. Additionally, it inhibited serum levels of lipopolysaccharide and Annexin-1, indicating recovered gut and BBB integrity. MA turned off the pathogenic BACE-1/Aβ axis in the hippocampus, necroptosis trajectory (TNFR-1/RIPK1/RIPK3/MLKL), and the IRE-1α/JNK signal. Moreover, MA enhanced the transcription factor PPAR-γ, decreased NF-κΒ/TNF-α inflammatory hub, and modulated the redox imbalance by decreasing malondialdehyde and increasing catalase. Notably, MA's behavioral, structural, and molecular beneficial actions were hindered by the pre-administration of SR59230A. From a novel standpoint, we recognized the β3-AR as a therapeutic target for UC-associated cognitive impairment in the hippocampus. In this context, the aptitude of MA to inhibit UC-induced hippocampal amyloidogenesis, alongside its anti-necroptotic, anti-ERS, anti-inflammatory, and antioxidant effects, contribute to these central enhancements, while also regulating permeability in both gut and BBB barriers.
Collapse
Affiliation(s)
- Salma Nasser
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Hanan S El-Abhar
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Nabila El-Maraghy
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan Mansour
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Ma S, Wang Q, Wang H, Yang Q, Li C, Yu Y, Xie Y, Shi X, Wang S. Investigation of the mechanism of Bark of Ailanthus altissima in the treatment of ulcerative colitis based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118916. [PMID: 39393560 DOI: 10.1016/j.jep.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Ailanthus altissima (Mill.) Swingle (BAA), a widely used Chinese medicinal herb in traditional remedies for bowel disorders, has yet to be explored in the context of ulcerative colitis (UC), and its therapeutic mechanisms remain unclear. AIM OF THE STUDY This study integrated network pharmacology and experimental validation to investigate the effects and underlying mechanisms of BAA in treating UC. MATERIALS AND METHODS First, UPLC-MS/MS analysis was employed to identify the chemical constituents of BAA. Network pharmacology was then applied to analyze the potential mechanisms of BAA based on these identified compounds. Lastly, a dextran sulfate sodium (DSS)-induced UC mouse model was utilized to assess BAA's therapeutic efficacy, with Western blotting performed to examine changes in protein expression within the key pathway influenced by BAA. RESULTS UPLC-MS/MS and SwissADME analysis identified 223 active compounds in BAA. Network pharmacology suggested that the PI3K/AKT pathway may serve as a primary mechanism by which BAA exerts its anti-UC effects. In the DSS-induced UC mouse model, BAA significantly mitigated colonic injury, reduced DAI scores, and promoted weight recovery in mice. Additionally, BAA downregulated pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, thereby suppressing inflammatory responses in the colon. Western blot analysis further demonstrated that BAA primarily inhibited the PI3K/AKT pathway in UC mouse colon tissue. CONCLUSION This study highlights that BAA effectively reduces colonic inflammation and preserves intestinal mucosal integrity, likely through the inhibition of PI3K/AKT pathway activity, positioning it as a potential treatment for UC.
Collapse
Affiliation(s)
- Shanbo Ma
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qianru Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Haiqin Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Chengwen Li
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yuanyuan Yu
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Wu J, Yu G, Zhang X, Staiger MP, Gupta TB, Yao H, Wu X. A fructan-type garlic polysaccharide upregulates immune responses in macrophage cells and in immunosuppressive mice. Carbohydr Polym 2024; 344:122530. [PMID: 39218552 DOI: 10.1016/j.carbpol.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The anti-inflammatory effects of plant polysaccharides are well known. However, the stimulatory effects of polysaccharides under immunosuppressive conditions and their link with the polysaccharide structure is underexplored. In this work, the immune modulatory effects of a garlic polysaccharide (GP) are investigated via in vitro and vivo methods. It is observed that GP enhance the immune response of macrophages (RAW264.7) as indicated by the elevated levels of nitric oxide, TNF-α and IL-6. The observation that GP are able to stimulate the immune response in vitro was then explored with the use of an immunosuppressed mouse model. Surprisingly, GP exhibited dose-dependent up-regulatory impacts on the cyclophosphamide (CTX) suppressed levels of cytokines such as IFN-γ and IL-6 and immunoglobulins (e.g. IgA and IgG). The GP intervention reversed histopathological damage to the small intestine and spleen and increased fecal short-chain fatty acid levels. Moreover, GP modulates the gut microbiota dysbiosis by increasing the abundance of immunogenic bacteria such as g__norank_f__Erysipelotrichaceae, while inhibiting the over-abundance of g_Bacteroides. Functional predictions indicated that gut biomarkers of GP possessed the functions of glycoside hydrolase family 32 (GH32) and β-fructofuranosidase. It is concluded that GP is a promising immunostimulant for immune-compromised individuals.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Guoxing Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaosa Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Mark P Staiger
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Tanushree B Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch Ltd, Palmerston North 4474, New Zealand
| | - Hong Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
8
|
Qiu W, Wang Z, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Zhang X, Tu M. Structure and regulatory mechanisms of food-derived peptides in inflammatory bowel disease: A review. Food Sci Nutr 2024; 12:6055-6069. [PMID: 39554349 PMCID: PMC11561845 DOI: 10.1002/fsn3.4228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
The number of patients with inflammatory bowel disease (IBD) is increasing worldwide. Since IBD is a chronic disease that seriously affects patients' life quality, preventing and alleviating IBD with natural and less side effect substances has become a research hotspot. Food-derived bioactive peptides have been an attractive research focus due to their high efficiency and low toxicity. This paper comprehensively summarizes food-derived peptides with intestinal health effects, focusing on peptide sequences with IBD-regulatory effects and emphasizing the effects of their structure and physicochemical properties such as peptide length, amino acid composition, and net charge on their function. We also analyzed its regulatory mechanisms, mainly in 5 aspects: modulating the intestinal microbiota, decreasing intestinal epithelial permeability, increasing antioxidant ability, regulating the expression of inflammatory cytokines, and targeting signaling pathways. This review will help establish novel, efficient screening methods for IBD-regulatory peptides and contribute to further research and discovery of them.
Collapse
Affiliation(s)
- Wenpei Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | | | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| |
Collapse
|
9
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Xing X, Zhang X, Fan J, Zhang C, Zhang L, Duan R, Hao H. Neuroprotective Effects of Melittin Against Cerebral Ischemia and Inflammatory Injury via Upregulation of MCPIP1 to Suppress NF-κB Activation In Vivo and In Vitro. Neurochem Res 2024; 49:348-362. [PMID: 37812268 PMCID: PMC10787673 DOI: 10.1007/s11064-023-04030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.
Collapse
Affiliation(s)
- Xing Xing
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.
| | - Jingyi Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Ruisheng Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hongyu Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
11
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
12
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
13
|
Lian YZ, Liu YC, Chang CC, Nochi T, Chao JCJ. Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals (Basel) 2023; 16:1455. [PMID: 37895926 PMCID: PMC10610401 DOI: 10.3390/ph16101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The effects of Lycium barbarum polysaccharides (LBP) and plasmon-activated water (PAW) against IFN-γ/TNF-α induced inflammation in human colon Caco-2 cells were investigated. Cells were divided into the control, induction, LBP treatment (100-500 μg/mL), and combination groups with PAW. Inflammation was induced 24 h with 10 ng/mL IFN-γ when cell confluency reached >90%, and various doses of LBP with or without PAW were treated for 3 h, and subsequently 50 ng/mL TNF-α was added for another 24 h to provoke inflammation. Combination of LBP with PAW significantly decreased the secretion of IL-6 and IL-8. Cyclooxygenase-2 and inducible NO synthase expression was attenuated in all LBP-treated groups with or without PAW. NLRP3 inflammasome and related protein PYCARD expression were inhibited by LBP at the highest dose (500 μg/mL). All doses of LBP alone significantly decreased p-ERK expression, but combination with PAW increased p-ERK expression compared to those without PAW. Additionally, 250 and 500 μg/mL of LBP with or without PAW inhibited procaspase-3/caspase-3 expression. Therefore, LBP possesses anti-inflammation and anti-apoptosis by inhibiting the secretion of inflammatory cytokines and the expression of NLRP3 inflammasome-related protein. The combination with PAW exerts additive or synergistic effect on anti-inflammation.
Collapse
Affiliation(s)
- Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tomonori Nochi
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Master Program in Global Health and Health Security, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
14
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
15
|
Yin Z, Wang Q, Cheng H. Synergistic Protective Effect of Interactions of Quercetin with Lycopene Against Ochratoxin A-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2023; 195:5253-5266. [PMID: 36625989 DOI: 10.1007/s12010-022-04287-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease responsible for the inflammation of the innermost lining of the colon and rectum. The present study's objective is to determine the potential synergistic impact of quercetin (QR) and lycopene (LP) in ulcerative colitis (UC) induced in rats by ochratoxin A (OTA) by biochemical and morphological alterations. QR and LP were administered alone and in combination with the OTA for 7 days. OTA administration caused UC generation, resulting in significant changes in body weight percentage, disease activity index (DAI), macroscopic evaluation, colon weight/length ratio, and histological score. In addition to the above parameters, it also leads to elevated oxidative stress, i.e. increased malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), and hydroxyproline levels and decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels. Histological changes in the colon architecture were also observed suggestive of extensive mucosal damage. In addition, a high level of matrix metalloproteinase 7 (MMP7) was observed in immunohistochemistry, and a high level of gene expression of osteopontin (OPN), runt-related transcription factor 2 (RUNX2), MMP-7, and interleukin-6 (IL-6) was observed in OTA administered animals. The combination of QR and LP significantly restored the per cent body weight loss and DAI score and improved macroscopic and histological changes, colon weight/length ratio, and macroscopic damages. It also improved the biochemical parameters to near-normal levels, i.e. reduced MDA, NO, MPO, and hydroxyproline levels and increased SOD and GSH levels. In addition, OPN, Runx2, MMP-7, and IL-6 gene expression decreased compared to the OTA-induced UC group. Outcomes of the present study indicate the potential of QR + LP as anti-inflammatory and immunomodulatory agents against OTA-induced UC in rats.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Qian Wang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Hui Cheng
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China.
| |
Collapse
|
16
|
Liu C, Wang R, Jiao X, Zhang J, Zhang C, Wang Z. Oxysophocarpine suppresses TRAF6 level to ameliorate oxidative stress and inflammatory factors secretion in mice with dextran sulphate sodium (DSS) induced-ulcerative colitis. Microb Pathog 2023; 182:106244. [PMID: 37423495 DOI: 10.1016/j.micpath.2023.106244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Ulcerative colitis is an inflammation-related disease with a high recurrence risk. Oxysophocarpine (OSC) is a traditional Chinese medicine isolated from legumes and exerts vital functions on many human diseases. However, the OSC's role in ulcerative colitis has not been fully elucidated. This research aimed to investigate the OSC's impact on ulcerative colitis and its mechanisms. METHODS A mouse model of ulcerative colitis was induced by dextran sulphate sodium (DSS). The effect of OSC on ulcerative colitis was examined using Disease Activity Index detection, hematoxylin-eosin (HE) staining, and enzyme-linked immunosorbent assay (ELISA). Meanwhile, the mechanism of OSC in ulcerative colitis was assessed by immunohistochemistry assay, Western blot, HE staining, and ELISA. RESULTS For the OSC's function in ulcerative colitis, OSC increased the mice weight, decreased Disease Activity Index scores, and alleviated colitis cell infiltration and epithelial cell destruction in DSS-induced ulcerative colitis. Also, OSC mitigated oxidative stress (decreased PGE2, MPO levels, and increased SOD levels) and inflammation (decreased IL-6, TNF-α and IL-1β levels) in DSS-induced ulcerative colitis. For the OSC's mechanism in ulcerative colitis, OSC inhibited the level of tumor necrosis factor receptor-associated Factor 6 (TRAF6) and the phosphorylation of nuclear factor-κB (NF-κB). TRAF6 overexpression abolished the effect of OSC on DSS-induced colon injury and its associated oxidative stress and inflammatory properties in ulcerative colitis. CONCLUSION OSC decreased the TRAF6 level to reduce oxidative stress and inflammatory factors secretion in mice with DSS induced-ulcerative colitis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Proctology, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Rui Wang
- Department of Proctology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Xia Jiao
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Junfeng Zhang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Changbo Zhang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Zhenbiao Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China.
| |
Collapse
|
17
|
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023; 15:3821. [PMID: 37686853 PMCID: PMC10490373 DOI: 10.3390/nu15173821] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lycopene is a compound of colored origin that shows strong antioxidant activity. The positive effect of lycopene is the result of its pleiotropic effect. The ability to neutralize free radicals via lycopene is one of the foundations of its pro-health effect, including the ability to inhibit the development of many civilization diseases. Therefore, this study focuses on the importance of the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases, diseases within the nervous system, diabetes, liver diseases, and ulcerative colitis. According to the research mentioned, lycopene supplementation has significant promise for the treatment of illnesses marked by chronic inflammation and oxidative stress. However, the majority of the supporting data for lycopene's health benefits comes from experimental research, whereas the evidence from clinical studies is both scarcer and less certain of any health benefits. Research on humans is still required to establish its effectiveness.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
18
|
Patra R, Dey AK, Mukherjee S. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma. PLoS One 2023; 18:e0289064. [PMID: 37535606 PMCID: PMC10399749 DOI: 10.1371/journal.pone.0289064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.
Collapse
Affiliation(s)
- Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Amit Kumar Dey
- Biomedical Research Centre, Translational Geroproteomics Unit, National Institute on Aging, National Institute of Health (NIH), Baltimore, MD, United States of America
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
19
|
Elhefnawy EA, Zaki HF, El Maraghy NN, Ahmed KA, Abd El-Haleim EA. Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-γ/JAK1/STAT1/IRF-1, TLR-4/NF-κB/IL-6, and JAK2/STAT3/COX-2 crosstalk. Biochem Pharmacol 2023:115673. [PMID: 37414101 DOI: 10.1016/j.bcp.2023.115673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Ulcerative Colitis (UC) is a chronic idiopathic inflammatory bowel disease in which the colon's lining becomes inflamed. Exploring herbal remedies that can recover mucosal damage is becoming popular in UC. The study aims to investigate the probable colo-protective effect of a natural isoflavone, genistein (GEN), and/or a drug, sulfasalazine (SZ), against acetic acid (AA)-induced UC in rats, in addition to exploring the possible underlying mechanisms. UC was induced by the intrarectal installation of 1-2 ml of 5% diluted AA for 24 hours. Ulcerated rats were allocated into the disease group and three treated groups, with SZ (100 mg/kg), GEN (100 mg/kg), and their combination for 14 days, besides the control groups. The anti-colitic efficacy of GEN and/or SZ was evidenced by hindering the AA-induced weight loss, colon edema, and macroscopic scores, besides reduced disease activity index and weight/length ratio. Furthermore, treatments attenuated the colon histopathological injury scores, increased the number of goblet cells, and lessened fibrosis. Both treatments reduced the up-regulation of INF-γ/JAK1/STAT1 and INF-γ /TLR-4/ NF-κB signaling pathways and modulated the IRF-1/iNOS/NO and IL-6/JAK2/STAT3/COX-2 pathways and consequently, reduced the levels of TNF-α and IL-1β. Moreover, both treatments diminished oxidative stress, which appeared by reducing the MPO level and elevating the SOD activity, and hindered apoptosis; by decreasing the immunohistochemical expression of caspase-3. The current findings offer novel insights into the protective effects of GEN and suggest a superior benefit of combining GEN with SZ, over either drug alone, in the UC management.
Collapse
Affiliation(s)
- Esraa A Elhefnawy
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nabila N El Maraghy
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Ahmedy OA, Kamel MW, Abouelfadl DM, Shabana ME, Sayed RH. Berberine attenuates epithelial mesenchymal transition in bleomycin-induced pulmonary fibrosis in mice via activating A 2aR and mitigating the SDF-1/CXCR4 signaling. Life Sci 2023; 322:121665. [PMID: 37028546 DOI: 10.1016/j.lfs.2023.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
AIMS Berberine is endowed with anti-oxidant, anti-inflammatory and anti-fibrotic effects. This study explored the role of adenosine A2a receptor (A2aR) activation and SDF-1/CXCR4 signaling suppression in the protective effects of berberine in bleomycin-induced pulmonary fibrosis in mice. MAIN METHODS Pulmonary fibrosis was generated in mice by injecting bleomycin (40 U/kg, i.p.) on days 0, 3, 7, 10 and 14. Mice were treated with berberine (5 mg/kg, i.p.) from day 15 to day 28. KEY FINDINGS Severe lung fibrosis and increased collagen content were observed in the bleomycin-challenged mice. Pulmonary A2aR downregulation was documented in bleomycin-induced pulmonary fibrosis animals and was accompanied by enhanced expression of SDF-1/CXCR4. Moreover, TGF-β1elevation and pSmad2/3 overexpression were reported in parallel with enhanced epithelial mesenchymal transition (EMT) markers expression, vimentin and α-SMA. Besides, bleomycin significantly elevated the inflammatory and pro-fibrogenic mediator NF-κB p65, TNF-α and IL-6. Furthermore, bleomycin administration induced oxidative stress as depicted by decreased Nrf2, SOD, GSH and catalase levels. Interestingly, berberine administration markedly ameliorated the fibrotic changes in lungs by modulating the purinergic system through the inhibition of A2aR downregulation, mitigating EMT and effectively suppressing inflammation and oxidative stress. Strikingly, A2aR blockade by SCH 58261, impeded the pulmonary protective effect of berberine. SIGNIFICANCE These findings indicated that berberine could attenuate the pathological processes of bleomycin-induced pulmonary fibrosis at least partially via upregulating A2aR and mitigating the SDF-1/CXCR4 related pathway, suggesting A2aR as a potential therapeutic target for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Omaima A Ahmedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Marwa W Kamel
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Dalia M Abouelfadl
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
21
|
Elbaz EM, Essam RM, Ahmed KA, Safwat MH. Donepezil halts acetic acid-induced experimental colitis in rats and its associated cognitive impairment through regulating inflammatory/oxidative/apoptotic cascades: An add-on to its anti-dementia activity. Int Immunopharmacol 2023; 116:109841. [PMID: 36764270 DOI: 10.1016/j.intimp.2023.109841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory bowel disease (IBD) that is regarded as a risk factor for cognitive impairment. Donepezil (DON), a centrally acting acetylcholinesterase inhibitor (AChEI), is approved for the management of Alzheimer's disease (AD). We aimed to scrutinize the impact of DON on acetic acid (AA)-induced UC in rats and to evaluate its ability to attenuate inflammatory response, oxidative strain, and apoptosis in this model and its associated cognitive deficits. Rats were categorized into: normal, DON, AA, and AA + DON groups. DON (5 mg/kg/day) was administered orally for 14 days either alone or beginning with the day of UC induction. Colitis was evoked by a single transrectal injection of 1 ml of 4 % acetic acid. Results revealed that DON significantly improved the behavioral abnormalities with the mitigation of inflammation, apoptosis, and histopathological changes in the hippocampi of the colitis group. Moreover, DON significantly alleviated the macroscopic and microscopic changes associated with colitis. Interestingly, DON inhibited pro-inflammatory cytokines via suppression of AA-induced activation of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in the colon, along with serum IL-1β. DON inhibited colon lipid peroxidation, restored the antioxidants with a significant amelioration of the degree of neutrophil infiltration, and repressed colitis-induced matrix metalloproteinases-9 (MMP-9) production. Furthermore, DON decreased the Bax/Bcl-2 ratio and caspase-3 protein expressions. Eventually, in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells, DON suppressed nitric oxide (NO) release, demonstrating the ability of DON to significantly curtail inflammation in immune cells. Taken together, DON ameliorated experimental colitis and its linked cognitive dysfunction, possibly via its antioxidant effect and modulation of pro-inflammatory cytokines and apoptosis. Thereby, DON could be a therapeutic nominee for UC and associated neurological disorders.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
23
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, Md S, El-Moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. Enhanced healing efficacy of an optimized gabapentin-melittin nanoconjugate gel-loaded formulation in excised wounds of diabetic rats. Drug Deliv 2022; 29:1892-1902. [PMID: 35748413 PMCID: PMC9246110 DOI: 10.1080/10717544.2022.2086943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to design and optimize, a nanoconjugate of gabapentin (GPN)-melittin (MLT) and to evaluate its healing activity in rat diabetic wounds. To explore the wound healing potency of GPN-MLT nanoconjugate, an in vivo study was carried out. Diabetic rats were subjected to excision wounds and received daily topical treatment with conventional formulations of GPN, MLT, GPN-MLT nanoconjugate and a marketed formula. The outcome of the in vivo study showed an expedited wound contraction in GPN-MLT-treated animals. This was confirmed histologically. The nanoconjugate formula exhibited antioxidant activities as evidenced by preventing malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. Further, the nanoconjugate showed superior anti-inflammatory activity as it inhibited the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is in addition to enhancement of proliferation as indicated by increased expression of transforming growth factor-β (TGF- β), vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor receptor-β (PDGFRB). Also, nanoconjugate enhanced hydroxyproline concentration and mRNA expression of collagen type 1 alpha 1 (Col 1A1). In conclusion, a GPN-MLT nanoconjugate was optimized with respect to particle size. Analysis of pharmacokinetic attributes showed the mean particle size of optimized nanoconjugate as 156.9 nm. The nanoconjugate exhibited potent wound healing activities in diabetic rats. This, at least partly, involve enhanced antioxidant, anti-inflammatory, proliferative and pro-collagen activities. This may help to develop novel formulae that could accelerate wound healing in diabetes.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Li Z, Liu R, Wang X, Wu H, Yi X, Huang L, Qin Q. Effects of melittin on laying performance and intestinal barrier function of quails. Poult Sci 2022; 102:102355. [PMID: 36502563 PMCID: PMC9763859 DOI: 10.1016/j.psj.2022.102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and β diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.
Collapse
|
25
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
26
|
Nasser S, Abdallah DM, Ahmed KA, Abdel-Mottaleb Y, El-Abhar HS. The novel anti-colitic effect of β-adrenergic receptors via modulation of PS1/BACE-1/Aβ axis and NOTCH signaling in an ulcerative colitis model. Front Pharmacol 2022; 13:1008085. [PMID: 36386153 PMCID: PMC9641009 DOI: 10.3389/fphar.2022.1008085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2023] Open
Abstract
Although dysautonomia was documented in inflammatory bowel disease, with activation of the stress-related sympathetic system, the role of agonists/antagonists of the adrenergic receptors is not conclusive. Moreover, ulcerative colitis was recently linked to dementia, but the potential role of the presenilin 1(PS1)/BACE-1/beta-amyloid (Aβ) axis has not been evaluated. Hence, we investigated the impact of mirabegron (β3-agonist) and/or carvedilol (β1/β2 antagonist) on iodoacetamide-induced ulcerative colitis with emphasis on the novel pathomechanism of the PS1/BACE-1/Aβ axis in ulcerative colitis, and its relation to the inflammatory cascade, fibrotic processes, and the gut barrier dysfunction. Ulcerated rats were either left untreated or treated for 8 days with mirabegron and/or carvedilol. Besides minimizing colon edema and weight loss, and improving colon structure, mirabegron and/or carvedilol abated colonic PS1/BACE-1/Aβ axis and the NOTCH1/NICD/HES1 hub besides the inflammatory cascade GSK3-β/NF-κΒ/TNF-α, and the oxidative stress marker malondialdehyde. The anti-fibrotic effect was verified by boosting SMAD-7 and inhibiting TGF-β1, α-SMA immunoexpression, and MTC staining. Moreover, the drugs improved the gut barrier function, attested by the increased goblet cells and expression of E-cadherin, and the inhibited expression of p (Y654)-β-catenin to preserve the E-cadherin/β-catenin adherens junction (AJ). These signaling pathways may be orchestrated by the replenished PPAR-γ, a transcription factor known for its anti-colitic effect. Conclusion: Besides maintaining the gut barrier, mirabegron and/or carvedilol mediated their anti-colitic effect by their anti-oxidant, anti-inflammatory, and anti-fibrotic capacities. The therapeutic effect of these drugs depends partly on suppressing the harmful signaling pathways PS1/BACE-1/Aβ, NOTCH1/NICD/HES1, GSK3-β/NF-κΒ/TNF-α, and TGF-1β/α-SMA while enhancing PPAR-γ, SMAD-7, mucus, and AJ.
Collapse
Affiliation(s)
- Salma Nasser
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Dalaal M. Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yousra Abdel-Mottaleb
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Hanan S. El-Abhar
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
27
|
Shi P, Xie S, Yang J, Zhang Y, Han S, Su S, Yao H. Pharmacological effects and mechanisms of bee venom and its main components: Recent progress and perspective. Front Pharmacol 2022; 13:1001553. [PMID: 36238572 PMCID: PMC9553197 DOI: 10.3389/fphar.2022.1001553] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Bee venom (BV), a type of defensive venom, has been confirmed to have favorable activities, such as anti-tumor, neuroprotective, anti-inflammatory, analgesic, anti-infectivity effects, etc. This study reviewed the recent progress on the pharmacological effects and mechanisms of BV and its main components against cancer, neurological disorders, inflammatory diseases, pain, microbial diseases, liver, kidney, lung and muscle injury, and other diseases in literature during the years 2018-2021. The related target proteins of BV and its main components against the diseases include Akt, mTOR, JNK, Wnt-5α, HIF-1α, NF-κB, JAK2, Nrf2, BDNF, Smad2/3, AMPK, and so on, which are referring to PI3K/Akt/mTOR, MAPK, Wnt/β-catenin, HIF-1α, NF-κB, JAK/STAT, Nrf2/HO-1, TrkB/CREB/BDNF, TGF-β/Smad2/3, and AMPK signaling pathways, etc. Further, with the reported targets, the potential effects and mechanisms on diseases were bioinformatically predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease ontology semantic and enrichment (DOSE) and protein-protein interaction (PPI) analyses. This review provides new insights into the therapeutic effects and mechanisms of BV and its main components on diseases.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihui Xie
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiali Yang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Han
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songkun Su
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Yaghoubi A, Amel Jamehdar S, Reza Akbari Eidgahi M, Ghazvini K. Evaluation of the therapeutic effect of melittin peptide on the ulcerative colitis mouse model. Int Immunopharmacol 2022; 108:108810. [DOI: 10.1016/j.intimp.2022.108810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
|
29
|
Liu Z, Niu X, Wang J. Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: literature review and network-based pharmacology study. Crit Rev Food Sci Nutr 2022; 63:11026-11043. [PMID: 35776085 DOI: 10.1080/10408398.2022.2092054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
T cells, especially CD4+ T helper (Th) cells, play a vital role in the pathogenesis of specific autoimmune diseases. Naringenin, a citrus flavonoid, exhibits anti-inflammatory, anti-oxidant, and antitumor properties, which have been verified in animal autoimmune disease models. However, naringenin's possible effects and molecular mechanisms in T cell-mediated autoimmune diseases are unclear. This review summarizes the findings of previous studies and predicts the target of naringenin in T cell-mediated autoimmune disorders such as multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis through network pharmacology analysis. We performed DAVID enrichment analysis, protein-protein interaction analysis, and molecular docking to predict the positive effect of naringenin on T cell-mediated autoimmune disorders. Sixteen common genes were screened, among which the core genes were PTGS2, ESR1, CAT, CASP3, MAPK1, and AKT1. The possible molecular mechanism relates to HIF-1, estrogen, TNF, and NF-κB signaling pathways. Our findings have significance for future naringenin treatment of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
30
|
Meng H, Song J, Li Y, Li X, Li X, Gou J, Nie Z, Wang J, Zheng Y, Wang M. Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Zaghloul MS, Elshal M, Abdelmageed ME. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103833. [PMID: 35218923 DOI: 10.1016/j.etap.2022.103833] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic colon inflammation that is linked to exposure to environmental factors leading to improper immune responses to enteric microbes in genetically susceptible individuals. This study was designed to explore the possible protective impact of Empagliflozin (EMPA), an anti-diabetic sodium-glucose cotransporter-2 (SGLT2) inhibitor, on acetic acid (AA)-induced UC in rats. METHOD Intrarectal instillation of AA (2 ml, 3% v/v) was used to induce UC. EMPA (10 & 30 mg/kg) was administered orally for 11 days. RESULTS EMPA successfully counteracted AA-induced UC that was manifested by improving colonic histopathological architecture concomitant with a marked decrease in disease activity index (DAI), colon weight, weight/length ratio, serum lactate dehydrogenase (LDH) activity, and C-reactive protein (CRP) level. Additionally, EMPA successfully restored the disrupted oxidant/antioxidants balance induced by AA. Moreover, EMPA significantly induced silent information regulator-1(SIRT-1) expression along with a significant reduction in phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT), nuclear factor kappa B (NF-κB), tumor necrosis factor (TNF)-α and interleukins (IL-1β and IL-6) expression in colonic tissues. Furthermore, EMPA successfully improved the colonic barrier that was appeared from the marked induction of tight junction proteins level (occludin and claudin-1). CONCLUSION EMPA successfully counteracted AA-induced UC in rats via the modulation of SIRT1/PI3K/AKT/NF-κB inflammatory pathway, normalizing oxidant/antioxidants balance, and improving the integrity of colon barrier.
Collapse
Affiliation(s)
- Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
32
|
TLR4 promoted endoplasmic reticulum stress induced inflammatory bowel disease via the activation of p38 MAPK pathway. Biosci Rep 2022; 42:231095. [PMID: 35352794 PMCID: PMC9069439 DOI: 10.1042/bsr20220307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Endoplasmic reticulum (ER) stress contribute to inflammatory bowel disease (IBD). However, the mechanistic link between toll-like receptor 4 (TLR4) and ER stress in IBD remains elusive. This study aimed to investigate the mechanism by which ER stress and TLR4 promote inflammation in IBD. IBD mouse model was established by the induction of TNBS, and Grp78 and TLR4 in intestine tissues were detected by immunohistochemistry. THP-1 cells were treated with lipopolysaccharides (LPS), ER stress inducer or inhibitor tauroursodeoxycholic acid (TUDCA), or p38 MAPK inhibitor. The activation of MAPK signaling was detected by Western blot, and the production and secretion of inflammatory factors were detected by PCR and ELISA. We found that the expression levels of TLR4 and GRP78 were significantly higher in the intestine of IBD model mice compared with control mice but were significantly lower in the intestine of IBD model mice treated with ER stress inhibitor TUDCA. ER stress inducer significantly increased while ER stress inhibitor TUDCA significantly decreased the expression and secretion of TNF-α, IL-1β and IL-8 in THP-1 cells treated by LPS. Only p38 MAPK signaling was activated in THP-1 cells treated by ER stress inducer. Furthermore, p38 inhibitor SB203580 inhibited the production and secretion of TNF-α, IL-1β and IL-8 in THP-1 cells treated with LPS. In conclusion, TLR4 promotes ER stress induced inflammation in IBD, and the effects may be mediated by p38 MAPK signaling. TLR4 and p38 MAPK signaling are novel therapeutic targets for IBD.
Collapse
|
33
|
Naringenin affords protection against lipopolysaccharide/D-galactosamine-induced acute liver failure: Role of autophagy. Arch Biochem Biophys 2022; 717:109121. [DOI: 10.1016/j.abb.2022.109121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
|
34
|
Soares-Silva B, Beserra-Filho JIA, Morera PMA, Custódio-Silva AC, Maria-Macêdo A, Silva-Martins S, Alexandre-Silva V, Silva SP, Silva RH, Ribeiro AM. The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats. Neuropeptides 2022; 91:102209. [PMID: 34808488 DOI: 10.1016/j.npep.2021.102209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.
Collapse
Affiliation(s)
| | - José Ivo Araújo Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
35
|
Li M, Zhao X, Yong H, Shang B, Lou W, Wang Y, Bai J. FBXO22 Promotes Growth and Metastasis and Inhibits Autophagy in Epithelial Ovarian Cancers via the MAPK/ERK Pathway. Front Pharmacol 2021; 12:778698. [PMID: 34950036 PMCID: PMC8688818 DOI: 10.3389/fphar.2021.778698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
E3 ubiquitin ligase F-box only protein 22 (FBXO22), which targets the key regulators of cellular activities for ubiquitylation and degradation, plays an important role in tumorigenesis and metastasis. However, the function of FBXO22 in epithelial ovarian cancers has not been reported. This study aims to explore the biological function of FBXO22 in epithelial ovarian cancers progression and metastasis and its specific regulation mechanism. Immunohistochemistry analysis of tissue microarray was performed to evaluate the expression of FBXO22 in epithelial ovarian cancers patients. The proliferative ability of epithelial ovarian cancers cells was examined by the CCK8. The metastasis ability was detected by the wound healing assay, migration and invasion assays. Western blot was used to verify the relationship between FBXO22 expression and mitogen-activated protein kinase related proteins. Autophagic flux was detected by electron microscopy, mRFP-GFP-LC3 adenovirus, lysosomal tracker and western blot. For in vivo experiments, the effect of FBXO22 on epithelial ovarian cancers resistance was observed in a xenograft tumor model and a metastatic mice model. We found that FBXO22 expression was significantly increased in epithelial ovarian cancers tissues and was closely correlated with clinical pathological factors. As a result, we found that FBXO22 promoted the growth and metastasis, as well as inhibited the autophagy flux. In addition, we identified that FBXO22 performed these functions via the MAPK/ERK pathway. Our results first reported the function of FBXO22 in epithelial ovarian cancer and the correlation between FBXO22 and autophagy, suggesting FBXO22 as a novel target of epithelial ovarian cancers assessment and treatment.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Bingqing Shang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Weihua Lou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
36
|
El Sayed NS, Kandil EA, Ghoneum MH. Probiotics Fermentation Technology, a Novel Kefir Product, Ameliorates Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5525306. [PMID: 34306309 PMCID: PMC8282381 DOI: 10.1155/2021/5525306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.
Collapse
Affiliation(s)
- Nesrine S. El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| |
Collapse
|
37
|
Kreinest T, Volkmer I, Staege MS. Melittin Increases Cisplatin Sensitivity and Kills KM-H2 and L-428 Hodgkin Lymphoma Cells. Int J Mol Sci 2020; 22:ijms22010343. [PMID: 33396195 PMCID: PMC7795649 DOI: 10.3390/ijms22010343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Hodgkin lymphoma (HL) is neoplasia with high cure rates. However, not all patients can be cured with the current treatment. Chemo-resistance of tumor cells is one factor involved in treatment failure. In addition to its pore-forming activity on lipid bilayer membranes, the toxin melittin from bee venom is an inhibitor of several cancer-related signaling pathways. Moreover, melittin analogs have been shown to inhibit the activity of ATP binding cassette (ABC) transporters which are known to play important roles in the chemo-resistance of tumor cells. Therefore, we tested the toxicity of melittin for HL cell lines KM-H2 and L-428 and whether melittin can increase the chemo-sensitivity of cisplatin-resistant HL cells. We found high toxicity of melittin for KM-H2 and L-428 cells. In co-cultures with normal blood cells, melittin preferentially killed KM-H2 and L-428 cells. In addition, we observed increased cisplatin sensitivity of chemo-resistant L-428 cells after treatment with melittin. ABC transporter activity was not reduced after treatment with melittin. Our data suggest that melittin or melittin analogs might be promising agents for the future development of treatment strategies for HL patients with resistant disease.
Collapse
|