1
|
Wang R, Remsing RC, Klein ML, Borguet E, Carnevale V. On the role of α-alumina in the origin of life: Surface-driven assembly of amino acids. SCIENCE ADVANCES 2025; 11:eadt4151. [PMID: 40215313 PMCID: PMC11988445 DOI: 10.1126/sciadv.adt4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
We investigate the hypothesis that mineral/water interfaces played a crucial catalytic role in peptide formation by promoting the self-assembly of amino acids. Using classical molecular dynamics simulations, we demonstrate that the α-alumina(0001) surface exhibits an affinity of 4 kBT for individual glycine or GG dipeptide molecules due to hydrogen bonds. In simulations with multiple glycine molecules, surface-bound glycine enhances further adsorption, leading to the formation of long chains connected by hydrogen bonds between the carboxyl and amine groups of glycine molecules. We find that the likelihood of observing chains longer than 10 glycine units increases by at least five orders of magnitude at the surface compared to the bulk. This surface-driven assembly is primarily due to local high density and alignment with the alumina surface pattern. Together, these results propose a model for how mineral surfaces can induce configuration-specific assembly of amino acids, thereby promoting condensation reactions.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Richard C. Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Niemöller H, Ingenmey J, Hollóczki O, Kirchner B. Ab Initio Molecular Dynamics Simulations of Amino Acids and Their Ammonia-Based Analogues in Ammonia. J Phys Chem B 2025; 129:3007-3017. [PMID: 40108983 DOI: 10.1021/acs.jpcb.4c06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
α-Amino acids are the fundamental building blocks for complex molecular structures within the water-based biochemistry of Earth. In a hypothetical ammonia-based biochemistry, α-amino amidines may serve an equivalent role. In this study, we explore the basic properties of α-amino amidines in comparison to α-amino acids solvated in ammonia, utilizing ab initio molecular dynamics simulations. The investigation of the time-resolved molecular dipole moment reveals, in intricate detail, the relationship among the conformation, state, and magnitude of the dipole moment. Moreover, it allows for the tracking of proton-transfer reactions. In ammonia, α-amino acids tend to adopt an anionic state, with the zwitterionic state still being accessible. In contrast, the α-amino amidines remain neutral. Grotthuss diffusion is induced by the deprotonation of zwitterionic alanine. The charge transferred upon solvation serves as an indicator for the interaction strength between the solute and solvent. It is much stronger for α-amino acids, while, on average, the α-amino amidines exchange no charge with ammonia. The analyses reveal that in terms of structure, anionic α-amino acids behave very similarly to neutral α-amino amidines.
Collapse
Affiliation(s)
- Henrik Niemöller
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, Bonn D-53115, Germany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, Bonn D-53115, Germany
| | - Oldamur Hollóczki
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, Bonn D-53115, Germany
| |
Collapse
|
3
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
4
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Gonçalves D. Rethinking life and predicting its origin. Theory Biosci 2024; 143:205-215. [PMID: 38922566 DOI: 10.1007/s12064-024-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/24/2024] [Indexed: 06/27/2024]
Abstract
The definition, origin and recreation of life remain elusive. As others have suggested, only once we put life into reductionist physical terms will we be able to solve those questions. To that end, this work proposes the phenomenon of life to be the product of two dissipative mechanisms. From them, one characterises extant biological life and deduces a testable scenario for its origin. The proposed theory of life allows its replication, reinterprets ecological evolution and creates new constraints on the search for life.
Collapse
Affiliation(s)
- Diogo Gonçalves
- Centro de Química Estrutural and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001, Lisbon, Portugal.
| |
Collapse
|
6
|
Cockell CS, Hallsworth JE, McMahon S, Kane SR, Higgins PM. The Concept of Life on Venus Informs the Concept of Habitability. ASTROBIOLOGY 2024; 24:628-634. [PMID: 38800952 DOI: 10.1089/ast.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen R Kane
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Peter M Higgins
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Sánchez IE, Galpern EA, Ferreiro DU. Solvent constraints for biopolymer folding and evolution in extraterrestrial environments. Proc Natl Acad Sci U S A 2024; 121:e2318905121. [PMID: 38739787 PMCID: PMC11127021 DOI: 10.1073/pnas.2318905121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
We propose that spontaneous folding and molecular evolution of biopolymers are two universal aspects that must concur for life to happen. These aspects are fundamentally related to the chemical composition of biopolymers and crucially depend on the solvent in which they are embedded. We show that molecular information theory and energy landscape theory allow us to explore the limits that solvents impose on biopolymer existence. We consider 54 solvents, including water, alcohols, hydrocarbons, halogenated solvents, aromatic solvents, and low molecular weight substances made up of elements abundant in the universe, which may potentially take part in alternative biochemistries. We find that along with water, there are many solvents for which the liquid regime is compatible with biopolymer folding and evolution. We present a ranking of the solvents in terms of biopolymer compatibility. Many of these solvents have been found in molecular clouds or may be expected to occur in extrasolar planets.
Collapse
Affiliation(s)
- Ignacio E. Sánchez
- Laboratorio de Fisiología de Proteínas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresCP1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos AiresCP1428, Argentina
| | - Ezequiel A. Galpern
- Laboratorio de Fisiología de Proteínas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresCP1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos AiresCP1428, Argentina
| | - Diego U. Ferreiro
- Laboratorio de Fisiología de Proteínas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresCP1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos AiresCP1428, Argentina
| |
Collapse
|
8
|
Williamson MP. Autocatalytic Selection as a Driver for the Origin of Life. Life (Basel) 2024; 14:590. [PMID: 38792611 PMCID: PMC11122578 DOI: 10.3390/life14050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Darwin's theory of evolution by natural selection was revolutionary because it provided a mechanism by which variation could be selected. This mechanism can only operate on living systems and thus cannot be applied to the origin of life. Here, we propose a viable alternative mechanism for prebiotic systems: autocatalytic selection, in which molecules catalyze reactions and processes that lead to increases in their concentration. Crucially, this provides a driver for increases in concentrations of molecules to a level that permits prebiotic metabolism. We show how this can produce high levels of amino acids, sugar phosphates, nucleotides and lipids and then lead on to polymers. Our outline is supported by a set of guidelines to support the identification of the most likely prebiotic routes. Most of the steps in this pathway are already supported by experimental results. These proposals generate a coherent and viable set of pathways that run from established Hadean geochemistry to the beginning of life.
Collapse
Affiliation(s)
- Mike P Williamson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Dergachev VD, Tran Tan HB, Varganov SA, Derevianko A. Effect of Extreme Variations of Fundamental Constants on the Structure of Atoms and Molecules. J Phys Chem Lett 2024; 15:4111-4116. [PMID: 38589052 DOI: 10.1021/acs.jpclett.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The fundamental constants (FCs) of physics are promoted to dynamic quantities in modern theories. So far most of the literature focused on small fractional variations in the values of FCs. In this paper, we investigate the novel regime of extreme but transient variations of FCs. We focus on the speed of light (c) and show that its variation can dramatically change the electronic structure and chemistry of atoms and molecules. These changes are induced by increased relativistic effects when c is reduced from its nominal value. To model these changes, we solve the fully relativistic Dirac equation at different values of c. We show that at extreme variations of c, the periodic table is truncated, the nominal ground states of atoms can change, water fails to serve as a universal solvent, and the ammonia molecule becomes planar.
Collapse
Affiliation(s)
- Vsevolod D Dergachev
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Hoang Bao Tran Tan
- Department of Physics, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Andrei Derevianko
- Department of Physics, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
10
|
Grefenstette N, Chou L, Colón-Santos S, Fisher TM, Mierzejewski V, Nural C, Sinhadc P, Vidaurri M, Vincent L, Weng MM. Chapter 9: Life as We Don't Know It. ASTROBIOLOGY 2024; 24:S186-S201. [PMID: 38498819 DOI: 10.1089/ast.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.
Collapse
Affiliation(s)
- Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | | | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | | | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Monica Vidaurri
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Howard University, DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
11
|
Miller KM, Tang F, Li S, Mullane KK, Shelton BR, Bui L, Bartlett DH, Nicholson WL. Carnobacterium Species Capable of Growth at Pressures Ranging Over 5 Orders of Magnitude, from the Surface of Mars (10 3 Pa) to Deep Oceans (10 7 Pa) in the Solar System. ASTROBIOLOGY 2023; 23:94-104. [PMID: 36450114 DOI: 10.1089/ast.2022.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several permanently cold solar system bodies are being investigated with regard to their potential habitability, including Mars and icy moons. In such locations, microbial life would have to cope with low temperatures and both high and low pressures, ranging from ∼102 to 103 Pa on the surface of Mars to upward of ∼108-109 Pa in the subsurface oceans of icy moons. The bacterial genus Carnobacterium consists of species that were previously shown to be capable of growth in the absence of oxygen at low temperatures and at either low pressure or high pressure, but to date the entire pressure range of the genus has not been explored. In the present study, we subjected 14 Carnobacterium strains representing 11 species to cultivation in a complex liquid medium under anaerobic conditions at 2°C and at a range of pressures spanning 5 orders of magnitude, from 103 to 107 Pa. Eleven of the 14 strains showed measurable growth rates at all pressures tested, representing the first demonstration of terrestrial life forms capable of growth under such a wide range of pressures. These findings expand the physical boundaries of the capabilities of life to occur in extreme extraterrestrial environments.
Collapse
Affiliation(s)
- Kathleen M Miller
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| | - Flora Tang
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sixuan Li
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Brontë R Shelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lam Bui
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| |
Collapse
|
12
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Production and Application of Polymer Foams Employing Supercritical Carbon Dioxide. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/8905115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymeric foams have characteristics that make them attractive for different applications. However, some foaming methods rely on chemicals that are not environmentally friendly. One of the possibilities to tackle the environmental issue is to utilize supercritical carbon dioxide ScCO2 since it is a “green” solvent, thus facilitating a sustainable method of producing foams. ScCO2 is nontoxic, chemically inert, and soluble in molten plastic. It can act as a plasticizer, decreasing the viscosity of polymers according to temperature and pressure. Most foam processes can benefit from ScCO2 since the methods rely on nucleation, growth, and expansion mechanisms. Process considerations such as pretreatment, temperature, pressure, pressure drop, and diffusion time are relevant parameters for foaming. Other variables such as additives, fillers, and chain extenders also play a role in the foaming process. This review highlights the morphology, performance, and features of the foam produced with ScCO2, considering relevant aspects of replacing or introducing a novel foam. Recent findings related to foaming assisted by ScCO2 and how processing parameters influence the foam product are addressed. In addition, we discuss possible applications where foams have significant benefits. This review shows the recent progress and possibilities of ScCO2 in processing polymer foams.
Collapse
|
14
|
Niemöller H, Blasius J, Hollóczki O, Kirchner B. How do alternative amino acids behave in water? A comparative ab initio molecular dynamics study of solvated α-amino acids and α-amino amidines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
von Hegner I. First principles of terrestrial life: exemplars for potential extra-terrestrial biology. Theory Biosci 2022; 141:279-295. [PMID: 35907130 DOI: 10.1007/s12064-022-00373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
The search for life elsewhere in the universe represents not only a potential expansion of our knowledge regarding life, but also a clarification of the first principles applicable to terrestrial life, which thus restrict the very search for extra-terrestrial life. Although there are no exact figures for how many species have existed throughout Earth's total history, we can still make inferences about how the distribution of this life has proceeded through a bell curve. This graph shows the totality of life, from its origin to its end. The system enclosing life contains a number of first principles designated the walls of minimal complexity and adaptive possibility, the fence of adaptation, and right-skewed extension. In this discussion of life, a framework will be formulated that, based on the dynamic relationship between mesophiles and extremophiles, will be imposed on exoworlds in order to utilize the graph's predictive power to analyze how extra-terrestrial life could unfold. In this framework the evolutionary variation does not depend on the specific biochemistry involved. Once life is 'up and running,' the various biochemical systems that can constitute terrestrial and extra-terrestrial life will have secondary significance. The extremophilic tail represents a range expansion in which all habitat possibilities are tested and occupied. This tail moves to the right not because of the biochemistry constitutions of organisms, but because it can do nothing else. Thus, it can be predicted that graphs of terrestrial and extra-terrestrial life will be similar overall. A number of other predictions can be made; for example, for worlds in which the atmospheric disequilibrium is approaching equilibrium, it is predicted that life may still be present because the extremophilic range expansion is stretched increasingly farther to the right. Because life necessarily arises at a left wall of minimal complexity, it is predicted that any origin of cellular life will have a close structural resemblance to that of the first terrestrial life. Thus, in principle, life may have originated more than once on Earth, and still exist. It is also predicted that there may be an entire subset of life existing among other domains that we do not see because, in an abstract sense, we are inside the graph. If we view the graph in its entirety, this subset appears very much like a vast supra-domain of life.
Collapse
Affiliation(s)
- Ian von Hegner
- Future Foundation Assoc., Egedal 21, 2690, Karlslunde, Denmark.
| |
Collapse
|
16
|
Hernández G. Schrödinger and the Possible Existence of Different Types of Life. Front Microbiol 2022; 13:902212. [PMID: 35711773 PMCID: PMC9194607 DOI: 10.3389/fmicb.2022.902212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Eighty years ago, Nobel Prize-winner physicist Erwin Schrödinger gave three lectures in Dublin’s Trinity College, titled What is Life? The physical aspect of the living cell to explain life in terms of the chemistry and physics laws. Life definitions rely on the cellular theory, which poses in the first place that life is made up of cells. The recent discovery of giant viruses, along with the development of synthetic cells at the beginning of century 21st, has challenged the current idea of what life is. Thus, rather than having arrived at a close answer to Schrödinger’s question, modern biology has touched down at a novel scenario in which several types of life—as opposed to only one—actually might exist on Earth and possibly the Universe. Eighty years after the Dublin lectures, the Schrödinger question could be: “What are lives”?
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| |
Collapse
|
17
|
Finding or Creating a Living Organism? Past and Future Thought Experiments in Astrobiology Applied to Artificial Intelligence. Acta Biotheor 2022; 70:13. [PMID: 35482102 DOI: 10.1007/s10441-022-09438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022]
Abstract
This is a digest of how various researchers in biology and astrobiology have explored questions of what defines living organisms-definitions based on functions or structures observed in organisms, or on systems terms, or on mathematical conceptions like closure, chirality, quantum mechanics and thermodynamics, or on biosemiotics, or on Darwinian evolution-to clarify the field and make it easier for endeavors in artificial intelligence to make progress. Current ideas are described to promote work between astrobiologists and computer scientists, each concerned with living organisms. A four-parameter framework is presented as a scaffold that is later developed into what machines lack to be considered alive: systems, evolution, energy and consciousness, and includes Jagers operators and the idea of dual closure. A novel definition of consciousness is developed which describes mental objects both with and without communicable properties, and this helps to clarify how consciousness in machines may be studied as an emergent process related to choice functions in systems. A perspective on how quantization, acting on nucleic acids, sets up natural limits to system behavior is offered as a partial address to the problem of biogenesis.
Collapse
|
18
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|
19
|
Baucon A, Neto de Carvalho C, Briguglio A, Piazza M, Felletti F. A predictive model for the ichnological suitability of the Jezero crater, Mars: searching for fossilized traces of life-substrate interactions in the 2020 Rover Mission Landing Site. PeerJ 2021; 9:e11784. [PMID: 34631304 PMCID: PMC8466086 DOI: 10.7717/peerj.11784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Ichnofossils, the fossilized products of life-substrate interactions, are among the most abundant biosignatures on Earth and therefore they may provide scientific evidence of potential life that may have existed on Mars. Ichnofossils offer unique advantages in the search for extraterrestrial life, including the fact that they are resilient to processes that obliterate other evidence for past life, such as body fossils, as well as chemical and isotopic biosignatures. The goal of this paper is evaluating the suitability of the Mars 2020 Landing Site for ichnofossils. To this goal, we apply palaeontological predictive modelling, a technique used to forecast the location of fossil sites in uninvestigated areas on Earth. Accordingly, a geographic information system (GIS) of the landing site is developed. Each layer of the GIS maps the suitability for one or more ichnofossil types (bioturbation, bioerosion, biostratification structures) based on an assessment of a single attribute (suitability factor) of the Martian environment. Suitability criteria have been selected among the environmental attributes that control ichnofossil abundance and preservation in 18 reference sites on Earth. The goal of this research is delivered through three predictive maps showing which areas of the Mars 2020 Landing Site are more likely to preserve potential ichnofossils. On the basis of these maps, an ichnological strategy for the Perseverance rover is identified, indicating (1) 10 sites on Mars with high suitability for bioturbation, bioerosion and biostratification ichnofossils, (2) the ichnofossil types, if any, that are more likely to be present at each site, (3) the most efficient observation strategy for detecting eventual ichnofossils. The predictive maps and the ichnological strategy can be easily integrated in the existing plans for the exploration of the Jezero crater, realizing benefits in life-search efficiency and cost-reduction.
Collapse
Affiliation(s)
- Andrea Baucon
- DISTAV, University of Genoa, Genova, Italy.,Geology Office of Idanha-a-Nova, Naturtejo UNESCO Global Geopark, Idanha-a-Nova, Portugal
| | - Carlos Neto de Carvalho
- Geology Office of Idanha-a-Nova, Naturtejo UNESCO Global Geopark, Idanha-a-Nova, Portugal.,Instituto D. Luiz, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Lisbon, Portugal
| | | | | | - Fabrizio Felletti
- Dipartimento di Scienze della Terra 'Ardito Desio', University of Milan, Milan, Italy
| |
Collapse
|
20
|
Bains W, Petkowski JJ, Zhan Z, Seager S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life (Basel) 2021; 11:400. [PMID: 33925658 PMCID: PMC8145300 DOI: 10.3390/life11050400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
The chemistry of life requires a solvent, which for life on Earth is water. Several alternative solvents have been suggested, but there is little quantitative analysis of their suitability as solvents for life. To support a novel (non-terrestrial) biochemistry, a solvent must be able to form a stable solution of a diverse set of small molecules and polymers, but must not dissolve all molecules. Here, we analyze the potential of concentrated sulfuric acid (CSA) as a solvent for biochemistry. As CSA is a highly effective solvent but a reactive substance, we focused our analysis on the stability of chemicals in sulfuric acid, using a model built from a database of kinetics of reaction of molecules with CSA. We consider the sulfuric acid clouds of Venus as a test case for this approach. The large majority of terrestrial biochemicals have half-lives of less than a second at any altitude in Venus's clouds, but three sets of human-synthesized chemicals are more stable, with average half-lives of days to weeks at the conditions around 60 km altitude on Venus. We show that sufficient chemical structural and functional diversity may be available among those stable chemicals for life that uses concentrated sulfuric acid as a solvent to be plausible. However, analysis of meteoritic chemicals and possible abiotic synthetic paths suggests that postulated paths to the origin of life on Earth are unlikely to operate in CSA. We conclude that, contrary to expectation, sulfuric acid is an interesting candidate solvent for life, but further work is needed to identify a plausible route for life to originate in it.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff CF24 3AA, UK
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.J.P.); (Z.Z.); (S.S.)
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Cockell CS, McMahon S, Biddle JF. When is Life a Viable Hypothesis? The Case of Venusian Phosphine. ASTROBIOLOGY 2021; 21:261-264. [PMID: 33337946 DOI: 10.1089/ast.2020.2390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Charles S Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Sean McMahon
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Abstract
Proteinaceous liquid-liquid phase separation (LLPS) occurs when a polypeptide coalesces into a dense phase to form a liquid droplet (i.e., condensate) in aqueous solution. In vivo, functional protein-based condensates are often referred to as membraneless organelles (MLOs), which have roles in cellular processes ranging from stress responses to regulation of gene expression. Late embryogenesis abundant (LEA) proteins containing seed maturation protein domains (SMP; PF04927) have been linked to storage tolerance of orthodox seeds. The mechanism by which anhydrobiotic longevity is improved is unknown. Interestingly, the brine shrimp Artemia franciscana is the only animal known to express such a protein (AfrLEA6) in its anhydrobiotic embryos. Ectopic expression of AfrLEA6 (AWM11684) in insect cells improves their desiccation tolerance and a fraction of the protein is sequestered into MLOs, while aqueous AfrLEA6 raises the viscosity of the cytoplasm. LLPS of AfrLEA6 is driven by the SMP domain, while the size of formed MLOs is regulated by a domain predicted to engage in protein binding. AfrLEA6 condensates formed in vitro selectively incorporate target proteins based on their surface charge, while cytoplasmic MLOs formed in AfrLEA6-transfected insect cells behave like stress granules. We suggest that AfrLEA6 promotes desiccation tolerance by engaging in two distinct molecular mechanisms: by raising cytoplasmic viscosity at even modest levels of water loss to promote cell integrity during drying and by forming condensates that may act as protective compartments for desiccation-sensitive proteins. Identifying and understanding the molecular mechanisms that govern anhydrobiosis will lead to significant advancements in preserving biological samples.
Collapse
|
23
|
Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator. Nat Chem 2020; 12:603-607. [PMID: 32591744 DOI: 10.1038/s41557-020-0494-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life's essential characteristics-replication, metabolism and compartmentalization-offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life.
Collapse
|
24
|
Petkowski JJ, Bains W, Seager S. On the Potential of Silicon as a Building Block for Life. Life (Basel) 2020; 10:E84. [PMID: 32532048 PMCID: PMC7345352 DOI: 10.3390/life10060084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Despite more than one hundred years of work on organosilicon chemistry, the basis for the plausibility of silicon-based life has never been systematically addressed nor objectively reviewed. We provide a comprehensive assessment of the possibility of silicon-based biochemistry, based on a review of what is known and what has been modeled, even including speculative work. We assess whether or not silicon chemistry meets the requirements for chemical diversity and reactivity as compared to carbon. To expand the possibility of plausible silicon biochemistry, we explore silicon's chemical complexity in diverse solvents found in planetary environments, including water, cryosolvents, and sulfuric acid. In no environment is a life based primarily around silicon chemistry a plausible option. We find that in a water-rich environment silicon's chemical capacity is highly limited due to ubiquitous silica formation; silicon can likely only be used as a rare and specialized heteroatom. Cryosolvents (e.g., liquid N2) provide extremely low solubility of all molecules, including organosilicons. Sulfuric acid, surprisingly, appears to be able to support a much larger diversity of organosilicon chemistry than water.
Collapse
Affiliation(s)
- Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; (W.B.); (S.S.)
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Kampmeyer C, Johansen JV, Holmberg C, Karlson M, Gersing SK, Bordallo HN, Kragelund BB, Lerche MH, Jourdain I, Winther JR, Hartmann-Petersen R. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth Biol 2020; 9:733-748. [PMID: 32142608 DOI: 10.1021/acssynbio.9b00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jens V. Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Christian Holmberg
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Magnus Karlson
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Sarah K. Gersing
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mathilde H. Lerche
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jakob R. Winther
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Lutz JF. 100th Anniversary of Macromolecular Science Viewpoint: Toward Artificial Life-Supporting Macromolecules. ACS Macro Lett 2020; 9:185-189. [PMID: 35638671 DOI: 10.1021/acsmacrolett.9b00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Terrestrial Life is based on polymers. In all known living organisms, DNA stores genetic information, mutates, self-replicates, and guides the synthesis of messenger molecules. Although the function of nucleic acids is well-understood, the development of artificial macromolecular mimics remains very limited. Laboratory-synthesized nucleic acids still support Life, and some nucleic acids analogues exhibit biological functions. Yet, after hundred years of polymer science, no other type of Life-supporting macromolecule (i.e., non-nucleic acids) has ever been reported. In this context, the aim of the present viewpoint is to discuss important challenges that shall be addressed by polymer chemists to achieve artificial Life. Similarly to DNA, an artificial Life-supporting macromolecule shall store information, transfer information, and mutate. Many tools, such as sequence-defined polymer synthesis, polymer modification, supramolecular polymer chemistry, and dynamic chemistry, are already available to chemists to attain these properties. However, the design of artificial Life-supporting macromolecules is hindered by two main factors. First, the chemical search space is enormous, and it is difficult to predict promising structures, even with the help of combinatorial and chemoinformatic tools. Second, rational design is probably a limited approach to achieve macromolecules that shall be involved in nonequilibrium metabolic systems. Hence, a synergic combination of classical polymer chemistry with the more recent field of systems chemistry is probably the key toward the emergence of artificial Life-supporting macromolecules.
Collapse
Affiliation(s)
- Jean-François Lutz
- Université de Strasbourg, CNRS - UPR 22, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
28
|
Abstract
There has been considerable attention on how to detect life on other worlds by searching for biomolecules. However, there has been much less clarity as to when it becomes warranted to focus a mission on the search for life on another world. At a minimum, a life-detection mission should follow convincing evidence of (1) Liquid water of suitable salinity, past or present; (2) Carbon in the water; (3) Biologically available N in the water; (4) Biologically useful energy in the water; (5) Organic material that can possibly be of biological origin and a plausible strategy for sampling this material. Based on these prerequisites, the most promising targets for a life search are currently the plume of Enceladus and the subsurface of Mars-in equatorial lake bed sediments and in polar ice-cemented ground. Neither the surface of Europa nor the clouds of Venus meet the criteria listed here but may with further exploration.
Collapse
|
29
|
Sandström H, Rahm M. Can polarity-inverted membranes self-assemble on Titan? SCIENCE ADVANCES 2020; 6:eaax0272. [PMID: 32042894 PMCID: PMC6981084 DOI: 10.1126/sciadv.aax0272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The environmental and chemical limits of life are two of the most central questions in astrobiology. Our understanding of life's boundaries has implications on the efficacy of biosignature identification in exoplanet atmospheres and in the solar system. The lipid bilayer membrane is one of the central prerequisites for life as we know it. Previous studies based on molecular dynamics simulations have suggested that polarity-inverted membranes, azotosomes, made up of small nitrogen-containing molecules, are kinetically persistent and may function on cryogenic liquid hydrocarbon worlds, such as Saturn's moon Titan. We here take the next step and evaluate the thermodynamic viability of azotosome formation. Quantum mechanical calculations predict that azotosomes are not viable candidates for self-assembly akin to lipid bilayers in liquid water. We argue that cell membranes may be unnecessary for hypothetical astrobiology under stringent anhydrous and low-temperature conditions akin to those of Titan.
Collapse
Affiliation(s)
- H. Sandström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | | |
Collapse
|
30
|
Affiliation(s)
- Jean‐François Lutz
- Université de Strasbourg, CNRSInstitut Charles Sadron, UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
31
|
Šponer JE, Šponer J, Di Mauro E. Structural and Energetic Compatibility: The Driving Principles of Molecular Evolution. ASTROBIOLOGY 2019; 19:1117-1122. [PMID: 31045430 DOI: 10.1089/ast.2018.1978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we provide an answer to the question formulated by Albert Eschenmoser: "How would you envisage the bridge between potentially primordial geochemistry that had been disordered and one that gradually became self-organizing?" Analysis of the free-energy profiles of some of the key reactions leading to formation of nucleotides and their oligomers shows that, whereas the first part of the pathway, up to nucleotides, is energy-driven, in the second low-energy part entropic control in the form of structural compatibility becomes more important. We suggest that the birth of modern metabolism requires structural compatibility, which is enabled by the commensurability of the thermodynamics of the synthetic steps with the stabilizing effect of those intermolecular interactions that play a key role in dictating entropic control of these reactions.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Ernesto Di Mauro
- Institute for Molecular Biology and Pathology, CNR, c/o Università Sapienza, Roma, Italy
| |
Collapse
|
32
|
Bains W, Petkowski JJ, Sousa-Silva C, Seager S. Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. ASTROBIOLOGY 2019; 19:885-902. [PMID: 30896974 DOI: 10.1089/ast.2018.1958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphorus is an essential element for all life on Earth, yet trivalent phosphorus (e.g., in phosphines) appears to be almost completely absent from biology. Instead phosphorus is utilized by life almost exclusively as phosphate, apart from a small contingent of other pentavalent phosphorus compounds containing structurally similar chemical groups. In this work, we address four previously stated arguments as to why life does not explore trivalent phosphorus: (1) precedent (lack of confirmed instances of trivalent phosphorus in biochemicals suggests that life does not have the means to exploit this chemistry), (2) thermodynamic limitations (synthesizing trivalent phosphorus compounds is too energetically costly), (3) stability (phosphines are too reactive and readily oxidize in an oxygen (O2)-rich atmosphere), and (4) toxicity (the trivalent phosphorus compounds are broadly toxic). We argue that the first two of these arguments are invalid, and the third and fourth arguments only apply to the O2-rich environment of modern Earth. Specifically, both the reactivity and toxicity of phosphines are specific to aerobic life and strictly dependent on O2-rich environment. We postulate that anaerobic life persisting in anoxic (O2-free) environments may exploit trivalent phosphorus chemistry much more extensively. We review the production of trivalent phosphorus compounds by anaerobic organisms, including phosphine gas and an alkyl phosphine, phospholane. We suggest that the failure to find more such compounds in modern terrestrial life may be a result of the strong bias of the search for natural products toward aerobic organisms. We postulate that a more thorough identification of metabolites of the anaerobic biosphere could reveal many more trivalent phosphorus compounds. We conclude with a discussion of the implications of our work for the origin and early evolution of life, and suggest that trivalent phosphorus compounds could be valuable markers for both extraterrestrial life and the Shadow Biosphere on Earth.
Collapse
Affiliation(s)
| | - Janusz Jurand Petkowski
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Sousa-Silva
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sara Seager
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 4Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
33
|
Taylor AI, Houlihan G, Holliger P. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics. Cold Spring Harb Perspect Biol 2019; 11:11/6/a032490. [PMID: 31160351 DOI: 10.1101/cshperspect.a032490] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The remarkable physicochemical properties of the natural nucleic acids, DNA and RNA, define modern biology at the molecular level and are widely believed to have been central to life's origins. However, their ability to form repositories of information as well as functional structures such as ligands (aptamers) and catalysts (ribozymes/DNAzymes) is not unique. A range of nonnatural alternatives, collectively termed xeno nucleic acids (XNAs), are also capable of supporting genetic information storage and propagation as well as evolution. This gives rise to a new field of "synthetic genetics," which seeks to expand the nucleic acid chemical toolbox for applications in both biotechnology and molecular medicine. In this review, we outline XNA polymerase and reverse transcriptase engineering as a key enabling technology and summarize the application of "synthetic genetics" to the development of aptamers, enzymes, and nanostructures.
Collapse
Affiliation(s)
- Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
34
|
Abstract
According to the 2015 Astrobiology Strategy, a central goal of astrobiology is to provide a definition of life. A similar claim is made in the 2018 CRC Handbook of Astrobiology. Yet despite efforts, there remains no consensus on a definition of life. This essay explores an alternative strategy for searching for extraterrestrial life: Search for potentially biological anomalies (as opposed to life per se) using tentative (vs. defining) criteria. The function of tentative criteria is not, like that of defining criteria, to provide an estimate (via a decision procedure) of the likelihood that an extraterrestrial phenomenon is the product of life. Instead, it is to identify phenomena that resist classification as living or nonliving as worthy of further investigation for novel life. For as the history of science reveals, anomalies are a driving force behind scientific discovery and yet (when encountered) are rarely recognized for what they represent because they violate core theoretical beliefs about the phenomena concerned. While the proposed strategy resembles that of current life-detection missions, insofar as it advocates the use of a variety of lines of evidence (biosignatures), it differs from these approaches in ways that increase the likelihood of noticing truly novel forms of life, as opposed to dismissing them as just another poorly understood abiological phenomenon. Moreover, the strategy under consideration would be just as effective at detecting forms of life closely resembling our own as a definition of life.
Collapse
Affiliation(s)
- Carol E Cleland
- Department of Philosophy, Center for Astrobiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
35
|
Vitas M, Dobovišek A. Towards a General Definition of Life. ORIGINS LIFE EVOL B 2019; 49:77-88. [PMID: 31222432 DOI: 10.1007/s11084-019-09578-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023]
Abstract
A new definition of life is proposed and discussed in the present article. It is formulated by modifying and extending NASA's working definition of life, which postulates that life is a "self-sustaining chemical system capable of Darwinian evolution". The new definition includes a thermodynamical aspect of life as a far from equilibrium system and considers the flow of information from the environment to the living system. In our derivation of the definition of life we have assumed the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. The new proposed definition of life is independent of the mode of evolution, regardless of whether Lamarckian or Darwinian evolution operated at the origins of life and throughout evolutionary history. The new definition of life presented herein is formulated in a minimal manner and it is general enough that it does not distinguish between individual (metabolic) network and the collective (ecological) one. The newly proposed definition of life may be of interest for astrobiology, research into the origins of life or for efforts to produce synthetic or artificial life, and it furthermore may also have implications in the cognitive and computer sciences.
Collapse
Affiliation(s)
- Marko Vitas
- , Laze pri Borovnici 38, 1353 Borovnica, Slovenia.
| | - Andrej Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 6b, 2000, Maribor, Slovenia
| |
Collapse
|
36
|
Ballesteros FJ, Fernandez-Soto A, Martínez VJ. Diving into Exoplanets: Are Water Seas the Most Common? ASTROBIOLOGY 2019; 19:642-654. [PMID: 30789285 DOI: 10.1089/ast.2017.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the basic tenets of exobiology is the need for a liquid substratum in which life can arise, evolve, and develop. The most common version of this idea involves the necessity of water to act as such a substratum, both because that is the case on Earth and because it seems to be the most viable liquid for chemical reactions that lead to life. Other liquid media that could harbor life, however, have occasionally been put forth. In this work, we investigate the relative probability of finding superficial seas on rocky worlds that could be composed of nine different, potentially abundant, liquids, including water. We study the phase space size of habitable zones defined for those substances. The regions where there can be liquid around every type of star are calculated by using a simple model, excluding areas within a tidal locking distance. We combine the size of these regions with the stellar abundances in the Milky Way disk and modulate our result with the expected radial abundance of planets via a generalized Titius-Bode law, as statistics of exoplanet orbits seem to point to its adequateness. We conclude that seas of ethane may be up to nine times more frequent among exoplanets than seas of water, and that solvents other than water may play a significant role in the search for extrasolar seas.
Collapse
Affiliation(s)
- F J Ballesteros
- 1 Observatori Astronòmic, Universitat de València, Paterna (València), Spain
| | - A Fernandez-Soto
- 2 Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
- 3 Unidad Asociada Observatori Astronòmic (IFCA-UV), Valencia, Spain
| | - V J Martínez
- 1 Observatori Astronòmic, Universitat de València, Paterna (València), Spain
- 3 Unidad Asociada Observatori Astronòmic (IFCA-UV), Valencia, Spain
- 4 Departament d'Astronomia i Astrofísica, Universitat de València, Burjassot (València), Spain
| |
Collapse
|
37
|
Petkowski JJ, Bains W, Seager S. An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both. ASTROBIOLOGY 2019; 19:579-613. [PMID: 30431334 DOI: 10.1089/ast.2018.1831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis. We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.
Collapse
Affiliation(s)
- Janusz J Petkowski
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Sara Seager
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
- 3 Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Saladino R, Di Mauro E, García‐Ruiz JM. A Universal Geochemical Scenario for Formamide Condensation and Prebiotic Chemistry. Chemistry 2019; 25:3181-3189. [PMID: 30230056 PMCID: PMC6470889 DOI: 10.1002/chem.201803889] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022]
Abstract
The condensation of formamide has been shown to be a robust chemical pathway affording molecules necessary for the origin of life. It has been experimentally demonstrated that condensation reactions of formamide are catalyzed by a number of minerals, including silicates, phosphates, sulfides, zirconia, and borates, and by cosmic dusts and meteorites. However, a critical discussion of the catalytic power of the tested minerals, and the geochemical conditions under which the condensation would occur, is still missing. We show here that mineral self-assembled structures forming under alkaline silica-rich solutions are excellent catalysts for the condensation of formamide with respect to other minerals. We also propose that these structures were likely forming as early as 4.4 billion years ago when the whole earth surface was a reactor, a global scale factory, releasing large amounts of organic compounds. Our experimental results suggest that the conditions required for the synthesis of the molecular bricks from which life self-assembles, rather than being local and bizarre, appears to be universal and geologically rather conventional.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Juan Manuel García‐Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaAv. De las Palmeras 4ArmillaGranadaSpain
| |
Collapse
|
39
|
Minkovich B, Ruderfer I, Kaushansky A, Bravo‐Zhivotovskii D, Apeloig Y. α‐Sila‐Dipeptides: Synthesis and Characterization. Angew Chem Int Ed Engl 2018; 57:13261-13265. [DOI: 10.1002/anie.201807027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Boris Minkovich
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | - Ilya Ruderfer
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | - Alexander Kaushansky
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | | | - Yitzhak Apeloig
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
40
|
Minkovich B, Ruderfer I, Kaushansky A, Bravo‐Zhivotovskii D, Apeloig Y. α‐Sila‐Dipeptides: Synthesis and Characterization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Boris Minkovich
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | - Ilya Ruderfer
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | - Alexander Kaushansky
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| | | | - Yitzhak Apeloig
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
41
|
Ziegler EW, Kim HJ, Benner SA. Molybdenum(VI)-Catalyzed Rearrangement of Prebiotic Carbohydrates in Formamide, a Candidate Prebiotic Solvent. ASTROBIOLOGY 2018; 18:1159-1170. [PMID: 30204496 DOI: 10.1089/ast.2017.1742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been four decades since formamide was first suggested to perform roles as a precursor and/or a solvent in prebiotic chemistry. However, little work has sought to integrate formamide into larger prebiotic schemes that might create prebiotic RNA, often proposed to have been the first Darwinian biopolymer. Here, we report that formamide can be used as a solvent to perform the Bílik reaction, which uses molybdenum(VI) oxo species as catalysts at near-neutral pH to rearrange branched carbohydrates to give linear carbohydrates; the branched carbohydrates are produced from formaldehyde (HCHO) in alkaline mixtures containing borate, whereas the linear carbohydrates are the precursors needed for ribonucleosides and ribonucleotides. Under conditions wherein the Bílik reaction does this rearrangement, carbohydrate reaction products do not require stabilization by borate. These results, therefore, connect aqueous and formamide-based processes for the prebiotic formation of RNA components. Based on data from Hadean zircons that show that the mantle of the early Earth was near the fayalite-quartz-magnetite fugacity, molybdenum in its 6+ oxidation state was likely available in the Hadean. Together, these allow us to conjecture a process that delivers ribonucleosides and ribonucleotides from hydrogen cyanide and HCHO from a Hadean atmosphere on a Hadean geosphere, without needing precisely timed transitions from one solvent system to the other.
Collapse
Affiliation(s)
- Eric W Ziegler
- 1 Firebird Biomolecular Sciences , Alachua, Florida
- 2 Department of Chemistry, Florida Institute of Technology , Melbourne, Florida
| | - Hyo-Joong Kim
- 1 Firebird Biomolecular Sciences , Alachua, Florida
- 3 Foundation for Applied Molecular Evolution , Alachua, Florida
| | - Steven A Benner
- 1 Firebird Biomolecular Sciences , Alachua, Florida
- 3 Foundation for Applied Molecular Evolution , Alachua, Florida
| |
Collapse
|
42
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
43
|
Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life (Basel) 2018; 8:life8020024. [PMID: 29925796 PMCID: PMC6027154 DOI: 10.3390/life8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Collapse
|
44
|
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life (Basel) 2018; 8:life8020018. [PMID: 29857564 PMCID: PMC6027145 DOI: 10.3390/life8020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Collapse
|
45
|
Saladino R, Botta L, Di Mauro E. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes. Life (Basel) 2018; 8:life8010006. [PMID: 29470412 PMCID: PMC5871938 DOI: 10.3390/life8010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 01/03/2023] Open
Abstract
Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth’s tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.
Collapse
Affiliation(s)
- Raffaele Saladino
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Lorenzo Botta
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
46
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
47
|
Adam ZR, Hongo Y, Cleaves HJ, Yi R, Fahrenbach AC, Yoda I, Aono M. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci Rep 2018; 8:265. [PMID: 29321594 PMCID: PMC5762809 DOI: 10.1038/s41598-017-18483-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Water creates special problems for prebiotic chemistry, as it is thermodynamically favorable for amide and phosphodiester bonds to hydrolyze. The availability of alternative solvents with more favorable properties for the formation of prebiotic molecules on the early Earth may have helped bypass this so-called "water paradox". Formamide (FA) is one such solvent, and can serve as a nucleobase precursor, but it is difficult to envision how FA could have been generated in large quantities or accumulated in terrestrial surface environments. We report here the conversion of aqueous acetonitrile (ACN) via hydrogen cyanide (HCN) as an intermediate into FA by γ-irradiation under conditions mimicking exposure to radioactive minerals. We estimate that a radioactive placer deposit could produce 0.1‒0.8 mol FA km-2 year-1. A uraninite fission zone comparable to the Oklo reactors in Gabon can produce 0.1‒1 mol m-2 year-1, orders of magnitude greater than other scenarios of FA production or delivery for which reaching sizeable concentrations of FA are problematic. Radioactive mineral deposits may be favorable settings for prebiotic compound formation through emergent geologic processes and FA-mediated organic chemistry.
Collapse
Affiliation(s)
- Zachary R Adam
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
| | - Yayoi Hongo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - H James Cleaves
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Isao Yoda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Masashi Aono
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan
| |
Collapse
|
48
|
From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe. J Mol Evol 2017; 86:1-10. [PMID: 29260254 PMCID: PMC5794832 DOI: 10.1007/s00239-017-9824-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022]
Abstract
Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.
Collapse
|
49
|
Lv KP, Norman L, Li YL. Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World? ASTROBIOLOGY 2017; 17:1173-1181. [PMID: 29135299 DOI: 10.1089/ast.2016.1574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies. Key Words: Oxygen-free biochemistry-Titan-Hydrocarbons-Hydrogen cyanide-Nitriles. Astrobiology 17, 1173-1181.
Collapse
Affiliation(s)
- Kong-Peng Lv
- Department of Earth Sciences, University of Hong Kong , Hong Kong
| | - Lucy Norman
- Department of Earth Sciences, University of Hong Kong , Hong Kong
| | - Yi-Liang Li
- Department of Earth Sciences, University of Hong Kong , Hong Kong
| |
Collapse
|
50
|
Abstract
Szent-Győrgi called water the "matrix of life" and claimed that there was no life without it. This statement is true, as far as we know, on our planet, but it is not clear whether it must hold throughout the cosmos. To evaluate that question requires a close consideration of the many varied and subtle roles that water plays in living cells-a consideration that must be free of both an assumed essentialism that gives water an almost mystical life-giving agency and a traditional tendency to see it as a merely passive solvent. Water is a participant in the "life of the cell," and here I describe some of the features of that active agency. Water's value for molecular biology comes from both the structural and dynamic characteristics of its status as a complex, structured liquid as well as its nature as a polar, protic, and amphoteric reagent. Any discussion of water as life's matrix must, however, begin with an acknowledgment that our understanding of it as both a liquid and a solvent is still incomplete.
Collapse
|