1
|
Aedo JE, Aravena-Canales D, Valdés JA, Molina A. Participation of membrane-initiated cortisol effects on the rapid acclimation of rainbow trout (Oncorhynchus mykiss) to increased salinity. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111866. [PMID: 40222682 DOI: 10.1016/j.cbpa.2025.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Cortisol, a fundamental slow-acting hormone in teleosts, plays a crucial role in acclimating to changes in saline environments. Cortisol effects are associated with its interaction with intracellular glucocorticoid (GR) and mineralocorticoid (MR) receptors, which subsequently regulate gene expression through the cortisol-receptor complex. This mechanism is known as a genomic cortisol signaling and has been studied extensively. However, recent studies have begun to explore a membrane-initiated cortisol pathway that is initiated on the cellular surface, revealing its critical role in the initial metabolic adjustments during the physiological stress response. Nevertheless, the role of this novel membrane-mediated cortisol action during acclimatization to saline environments remain to be elucidated. To investigate this, an in vivo assay was performed in which juvenile rainbow trout were maintained in freshwater (FW) (0.1 ppt), intraperitoneally injected with vehicle, cortisol or cortisol-BSA (three hours of treatment), and transferred to saline water (15 ppt) for one additional hour. Samples of blood and gills were obtained from each fish in order to measure the plasma cortisol, glucose and chloride concentrations, as well as the expression levels of the gr1, gr2, mr, and key osmoregulatory genes. Membrane-initiated cortisol action increased plasma glucose and chloride levels in fish after one hour of saline transfer in comparison with the vehicle group. Furthermore, cortisol exerts a novel regulatory influence on the expression of gr2, as well as tight junction proteins claudin10e and cldn30 in the gills. In contrast, other osmoregulation-related genes, such as cftr and nkcc1, are exclusively mediated by genomic cortisol signaling. These results suggest that membrane-initiated cortisol action plays a significant role in the rapid acclimation of fish to changes in salinity environments.
Collapse
Affiliation(s)
- Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Daniela Aravena-Canales
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Esbaugh AJ. Physiological responses of euryhaline marine fish to naturally-occurring hypersalinity. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111768. [PMID: 39454936 DOI: 10.1016/j.cbpa.2024.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Hypersaline habitats are generally defined as those with salinities in excess of 40 ppt. Well-known hypersaline regions (e.g. salt and soda lakes) have a well-earned reputation for being among the most inhospitable habitats in the world, and fish endemic to these areas have been the subject of much research related to extremophile physiology. Yet, marine coastal hypersalinity is both a common occurrence and a growing consideration in many marine coastal ecosystems, in part owing to human influence (e.g. evaporation, river diversion, desalination effluent). Importantly, any increase in salinity will elevate the osmoregulatory challenges experienced by a fish, which must be overcome by increasing the capacity to imbibe and absorb water and excrete ions. While great attention has been given to dynamic osmoregulatory processes with respect to freshwater to seawater transitions, and to the extreme hypersalinity tolerance that is associated with the adoption of an osmo-conforming strategy, relatively little focus has been placed on the physiological implications of moderate hypersalinity exposures (e.g. ≤ 60 ppt). Importantly, these exposures often represent the threshold of osmoregulatory performance owing to energetic constraints on ion excretion and efficiency limitations on water absorption. This review will explore the current state of knowledge with respect to hypersalinity exposure in euryhaline fishes, while placing a particular focus on the physiological constraints, plasticity and downstream implications of long-term exposure to moderate hypersalinity.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Department of Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
3
|
Wilson EJ, Barts N, Coffin JL, Johnson JB, Rodríguez Peña CM, Kelley JL, Tobler M, Greenway R. Gene expression signatures between Limia perugiae (Poeciliidae) populations from freshwater and hypersaline habitats, with comparisons to other teleosts. PLoS One 2024; 19:e0315014. [PMID: 39637050 PMCID: PMC11620662 DOI: 10.1371/journal.pone.0315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insights into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell-cycle and protein-folding processes between the hypersaline and freshwater L. perugiae. Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. Therefore, we compared transcriptomic variation in L. perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results-in conjunction with other recent studies-suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.
Collapse
Affiliation(s)
- Elizabeth J. Wilson
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - Nick Barts
- Department of Biology, University of Central Missouri, Warrensburg, MO, United States of America
| | - John L. Coffin
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - James B. Johnson
- Divison of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, NC, United States of America
| | - Carlos M. Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Michael Tobler
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO, United States of America
- Whitney R. Harris World Ecology Center, University of Missouri—St. Louis, St. Louis, MO, United States of America
- WildCare Institute, Saint Louis Zoo, St. Louis, MO, United States of America
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
4
|
Tao YT, Breves JP. Hypersalinity tolerance of mummichogs (Fundulus heteroclitus): A branchial transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101338. [PMID: 39413658 DOI: 10.1016/j.cbd.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Along the east coast of North America, mummichogs (Fundulus heteroclitus) are subjected to a broad range of salinities in their nearshore habitats. However, there is a paucity of information regarding the molecular and cellular processes that mummichogs (and other highly osmotolerant fishes) engage to survive environmental salinities greater than seawater (SW). To reveal branchial processes underlying their extraordinarily broad salinity tolerance, we performed an RNA-Seq analysis to identify differentially expressed genes (DEGs) in mummichogs residing in 3, 35, and 105 ppt conditions. We identified a series of DEGs previously associated with both freshwater (FW)- and SW-type ionocytes; however, the heightened expression of anoctamin 1a, a Ca2+-activated Cl- channel, in 35 and 105 ppt indicates that an undescribed Cl--secretion pathway may operate within the SW-type ionocytes of mummichogs. Concerning FW-adaptive branchial processes, we identified claudin 5a as a gene whose product may limit the diffusive loss of ions between cellular tight junctions. Further, in response to hypersaline conditions, we identified DEGs linked with myo-inositol synthesis and kinase signaling. This study provides new molecular targets for future physiological investigations that promise to reveal the mechanistic bases for how mummichogs and other euryhaline species tolerate hypersaline conditions.
Collapse
Affiliation(s)
- Yixuan T Tao
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
5
|
Koroleva AG, Vakhteeva EA, Epifantsev AA, Sukhanova LV, Yakhnenko VM, Glyzina OY, Tolstikova LI, Cherezova VM, Sidorova TV, Potapov SA, Kirilchik SV, Sapozhnikova YP. Acclimation during Embryogenesis Remodulates Telomerase Activity and Gene Expression in Baikal Whitefish Larvae, Mitigating the Effects of Acute Temperature Stress. Animals (Basel) 2024; 14:2839. [PMID: 39409788 PMCID: PMC11476280 DOI: 10.3390/ani14192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acclimation through the hormesis effect increases the plasticity of organisms, which has been shown for many ectothermic animals, including fish. We investigated the effect of temperature acclimation in Baikal whitefish Coregonus baicalensis (Dybowski, 1874). Telomere length, telomerase activity, and the expression of genes, whose products are involved in the regulation of telomere length and defense against reactive oxygen species, were selected to assess the state of the larvae. Acclimation and acute temperature stress (+12 °C) had no effect on telomere length, but altered telomerase activity (acclimation decreased it; stress increased it) and the levels of genes expression. Under stress, the expression of superoxide dismutase genes was increased in acclimated larvae and that of glutathione peroxidases in non-acclimated larvae, which may indicate lower reactive oxygen species formation and slower antioxidant responses in acclimated fish. The expression of some telomere-related genes was reduced under temperature stress, but the expression of the tzap and smg genes, whose products improve the control of telomere length by preventing them from lengthening or shortening, was increased in acclimated individuals. The data obtained indicate a positive effect of acclimation on the state of the Baikal whitefish larvae by remodulation of their telomerase activity and the transcriptional profile.
Collapse
Affiliation(s)
- Anastasiya G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia (L.V.S.)
| | | | | | | | | | | | | | | | | | | | | | - Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia (L.V.S.)
| |
Collapse
|
6
|
Sallam GR, Helal AM, Mabrouk HAH, Hermina AHFG, Habib YJ, Fayed WM, Dossou S, El Basuini MF, Shehata AI. Comparative impact of replacing fish meal with azolla on growth, water quality, and physiology of red tilapia fingerlings at varying salinities. J Anim Physiol Anim Nutr (Berl) 2024; 108:1370-1382. [PMID: 38689484 DOI: 10.1111/jpn.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
A 210-day experiment to assess the efficacy of substituting azolla plant powder at levels of 0, 20, 40, and 60% for fish meal on red tilapia fingerlings (RTF, initial weight of 18.23 ± 0.12 g) performance under salinity levels of 5, 18, and 28ppt. Among the various conditions, RTF-fed 20% azolla at 28 and 5ppt salinity showcased the highest specific growth rate (SGR), whereas the lowest SGR was observed in fish-fed 60% azolla at 5ppt salinity. Upon azolla incorporation, noteworthy elevations in phytoplankton, zooplankton, dissolved oxygen (DO), pH, NH3, and NO3 were noted and conversely, azolla introduction led to decreased NH4 and NO2 concentrations in all salinity levels. Further, a significant (p < 0.05) interaction between azolla levels and water salinity (S×A) significantly impacted the hematological parameters of RTF. The highest levels of superoxide dismutase (SOD), catalase (CAT), and total protein (TP) were found in RTF-fed 20% azolla at 28ppt salinity, while the lowest CAT and TP levels occurred in RTF-fed 60% azolla at 5ppt salinity. The highest aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were recorded in the RTF group fed 60% azolla at 5ppt salinity, with the lowest values seen in the group given 20% azolla at 28ppt salinity. RTF fed a 20% azolla diet at 18ppt salinity exhibited the highest lysozyme value, in contrast to the lowest value observed in the RTF group fed the control diet at 18ppt salinity. In conclusion, this study recommends the utilization of azolla at inclusion levels ranging from 20 to 40%, as it has the potential to notably enhance the immune system and elevate the survival rate of RTF.
Collapse
Affiliation(s)
- Ghada R Sallam
- Fish Rearing Lab., Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Amr M Helal
- Fish Rearing Lab., Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Hafez A H Mabrouk
- Fish Rearing Lab., Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Andrew H F G Hermina
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yusuf J Habib
- Department of Medical Analysis, Tishk International University, Erbil, Iraq
| | - Walied M Fayed
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Serge Dossou
- WorldFish, Jalan Batu Maung, Bayan Lepas, Malaysia
| | - Mohammed F El Basuini
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Akram I Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Gong J, Xu F, Li Y, He Y, Liang Z, Chen X, Zhang X, Liu L, Zhou L, Huang X. Metagenomic analysis of intestinal microbial function and key genes responsive to acute high-salinity stress in Nile tilapia (Oreochromis niloticus). Gene 2024; 913:148371. [PMID: 38485034 DOI: 10.1016/j.gene.2024.148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The intestinal microbiota is increasingly recognized as playing an important role in aquatic animals. To investigate the functional roles and mechanisms of the intestinal microbial genes/enzymes responding to salinity stress or osmotic pressure in fish, metagenomic analysis was carried out to evaluate the response of intestinal microbiota and especially their functional genes/enzymes from freshwater (the control group) to acute high salinity stress (the treatment group) in Nile tilapia. Our results showed that at the microbial community level, the intestinal microbiota in Nile tilapia generally underwent significant changes in diversity after acute high salinity stress. Among them, the shift in the bacterial community (mainly from Actinobacteria to Proteobacteria) dominated and had a large impact, the fungal community showed a very limited response, and other microbiota, such as phages, likely had a negligible response. At the functional level, the intestinal bacteriadecreased the normal physiological demand and processes, such as those of the digestive system and nervous system, but enhanced energy metabolism. Furthermore, at the gene level, some gene biomarkers, such as glutathione S-transferase, myo-inositol-1(or 4)-monophosphatase, glycine betaine/proline transport system permease protein, and some families of carbohydrate-active enzymes (GT4, GT2), were significantly enriched. However, GH15, GH23 and so on were significantly reduced. Exploring the functional details of the intestinal microbial genes/enzymes that respond to salinity stress in Nile tilapia sheds light on the mechanism of action of the intestinal microbiota with respect to the salinity adaptation of fish.
Collapse
Affiliation(s)
- Jiayi Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengmeng Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China
| | - Yao Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yiyong He
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhizheng Liang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiande Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
9
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Janes D, Suehs B, Gatlin DM. Dietary creatine and guanidinoacetic acid supplementation have limited effects on hybrid striped bass. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:399-407. [PMID: 37069332 DOI: 10.1007/s10695-023-01196-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
The effects of dietary supplementation of creatine and guanidinoacetic acid (GDA) have been studied to a limited extent in various fish species including red drum (Sciaenops ocellatus) and hybrid striped bass (HBS) (Morone saxatilis x M. chrysops). However, in HSB, there is a need to better understand the impact of creatine and GDA supplementation at elevated salinity which may be encountered by this euryhaline fish. Therefore, two separate feeding trials were conducted at a salinity ranging from 15 to 20 g/L with juvenile HSB for 9 and 8 weeks to evaluate the effects of dietary creatine and GDA. In each trial, four diets were formulated with either singular additions of creatine at 2% of dry weight, GDA at 1% of dry weight, or a combination of both. Fish grew adequately in both feeding trials but no significant (P > 0.05) effects of supplemental creatine or GDA were observed on weight gain, feed efficiency, survival, hepatosomatic index (HSI), intraperitoneal fat (IPF ratio), or protein conversion efficiency (PCE). However, fish fed diets supplemented with creatine had significantly (P < 0.05) increased ash and reduced lipid deposition in whole-body tissues in the first feeding trial. Supplemental creatine also resulted in significantly higher muscle yield in the second trial, but no other effects on growth performance or body composition were observed. The addition of GDA to the diet had little effect except for significantly increasing the creatine content in the liver of fish in both feeding trials due to its role as a precursor and a catalyst for synthesis of creatine within the body. Based on the results of these two trials, supplemental creatine and GDA had rather limited effects on HSB cultured in moderately saline water.
Collapse
Affiliation(s)
- Douglas Janes
- Department of Ecology and Conservation Biology, Texas A&M University System, College Station, TX, 77843-2258, USA
| | - Blaine Suehs
- Department of Ecology and Conservation Biology, Texas A&M University System, College Station, TX, 77843-2258, USA
| | - Delbert M Gatlin
- Department of Ecology and Conservation Biology, Texas A&M University System, College Station, TX, 77843-2258, USA.
| |
Collapse
|
11
|
Wallbom N, Zena LA, McArley TJ, Ekström A, Axelsson M, Gräns A, Sandblom E, Morgenroth D, Kallstenius N. Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout. J Exp Biol 2023; 226:286759. [PMID: 36700410 PMCID: PMC10088527 DOI: 10.1242/jeb.244733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.
Collapse
Affiliation(s)
- Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicklas Kallstenius
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| |
Collapse
|
12
|
Hieu DQ, Hang BTB, Lokesh J, Garigliany MM, Huong DTT, Yen DT, Liem PT, Tam BM, Hai DM, Son VN, Phuong NT, Farnir F, Kestemont P. Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles. Appl Microbiol Biotechnol 2022; 106:3245-3264. [PMID: 35366085 DOI: 10.1007/s00253-022-11895-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
In the present study, juvenile striped catfish (Pangasianodon hypophthalmus), a freshwater fish species, have been chronically exposed to a salinity gradient from freshwater to 20 psu (practical salinity unit) and were sampled at the beginning (D20) and the end (D34) of exposure. The results revealed that the intestinal microbial profile of striped catfish reared in freshwater conditions were dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Alpha diversity measures (observed OTUs (operational taxonomic units), Shannon and Faith's PD (phylogenetic diversity)) showed a decreasing pattern as the salinities increased, except for the phylogenetic diversity at D34, which was showing an opposite trend. Furthermore, the beta diversity between groups was significantly different. Vibrio and Akkermansia genera were affected differentially with increasing salinity, the former being increased while the latter was decreased. The genus Sulfurospirillium was found predominantly in fish submitted to salinity treatments. Regarding the host response, the fish intestine likely contributed to osmoregulation by modifying the expression of osmoregulatory genes such as nka1a, nka1b, slc12a1, slc12a2, cftr, and aqp1, especially in fish exposed to 15 and 20 psu. The expression of heat shock proteins (hsp) hsp60, hsp70, and hsp90 was significantly increased in fish reared in 15 and 20 psu. On the other hand, the expression of pattern recognition receptors (PRRs) were inhibited in fish exposed to 20 psu at D20. In conclusion, the fish intestinal microbiota was significantly disrupted in salinities higher than 10 psu and these effects were proportional to the exposure time. In addition, the modifications of intestinal gene expression related to ion exchange and stressful responses may help the fish to adapt hyperosmotic environment. KEY POINTS: • It is the first study to provide detailed information on the gut microbiota of fish using the amplicon sequencing method. • Salinity environment significantly modified the intestinal microbiota of striped catfish. • Intestinal responses may help the fish adapt to hyperosmotic environment.
Collapse
Affiliation(s)
- Dang Quang Hieu
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Jep Lokesh
- Université de Pau Et Des Pays de L'Adour, Saint-Pee-sur-Nivelle, E2S UPPA, INRAE, NuMéA, France
| | - Mutien-Marie Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Dao Minh Hai
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam.,Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Vo Nam Son
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frédéric Farnir
- Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| |
Collapse
|
13
|
Cao Q, Blondeau-Bidet E, Lorin-Nebel C. Intestinal osmoregulatory mechanisms differ in Mediterranean and Atlantic European sea bass: A focus on hypersalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150208. [PMID: 34798741 DOI: 10.1016/j.scitotenv.2021.150208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
European sea bass (Dicentrarchus labrax) migrate towards habitats where salinity can reach levels over 60‰, notably in Mediterranean lagoons. D. labrax are genetically subdivided in Atlantic and Mediterranean lineages and have evolved in slightly different salinities. We compared Atlantic and West-Mediterranean populations regarding their capacity to tolerate hypersalinity with a focus on the involvement of the intestine in solute-driven water reabsorption. Fish were analyzed following a two-week transfer from seawater (SW, 36‰) to either SW or hypersaline water (HW, 55‰). Differences among lineages were observed in posterior intestines of fish maintained in SW regarding NKA activities and mRNA expressions of nkaα1a, aqp8b, aqp1a and aqp1b with systematic higher levels in Mediterranean sea bass. High salinity transfer triggered similar responses in both lineages but at different magnitudes which may indicate slight different physiological strategies between lineages. High salinity transfer did not significantly affect the phenotypic traits measured in the anterior intestine. In the posterior intestine however, the size of enterocytes and NKA activity were higher in HW compared to SW. In this tissue, nka-α1a, nkcc2, aqp8ab and aqp8aa mRNA levels were higher in HW compared to SW as well as relative protein expression of AQP8ab. For aqp1a, 1b, 8aa and 8b, an opposite trend was observed. The sub-apical localization of AQP8ab in enterocytes suggests its role in transepithelial water reabsorption. Strong apical NKCC2/NCC staining indicates an increased Na+ and Cl- reuptake by enterocytes which could contribute to solute-coupled water reuptake in cells where AQP8ab is expressed.
Collapse
Affiliation(s)
- Quanquan Cao
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | - Eva Blondeau-Bidet
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | | |
Collapse
|
14
|
Zhou M, Zhao Z, Zhao J, Wu M, Chen X. Gene expression profiling of DNA methyltransferase genes in Siniperca chuatsi based on transcriptome sequencing. JOURNAL OF FISH BIOLOGY 2021; 99:1755-1760. [PMID: 34310718 DOI: 10.1111/jfb.14862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The mandarin fish (Siniperca chuatsi) DNA methyltransferase gene 1 (dnmt1) was highly expressed in the mesonephros, head kidney and gonad, whereas dnmt2 was expressed in most tissues. dnmt3a was highly expressed in the brain and spleen, but dnmt3b was mainly expressed in the brain and head kidney. The genes dnmt1 and dnmt2 were highly expressed in the early stages of embryonic development, and dnmt3a and dnmt3b were expressed later. These genes also showed certain changes after artificial diet acclimation, salinity adaptation and immune stress.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ziwei Zhao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Martin L, Esbaugh AJ. Osmoregulatory plasticity during hypersaline acclimation in red drum, Sciaenops ocellatus. J Comp Physiol B 2021; 191:731-740. [PMID: 33844043 DOI: 10.1007/s00360-021-01356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Prolonged drought and freshwater diversion are making periods of hypersalinity more common in coastal ecosystems. This is especially true in the Laguna Madre system along the Texas coast where salinities can exceed 60 g/kg. As such, the ability to tolerate hypersalinity is critical to the success of endemic species, such as the commercially important red drum (Sciaenops ocellatus). This study evaluated acclimation of red drum to hypersalinity (60 g/kg) using a direct transfer protocol. Hypersalinity exposure resulted in significant impacts on plasma osmolality and muscle water in the first 24 h, but returned to control values coincident with a significant increase in intestinal water volume. Hypersalinity acclimation resulted in significant branchial and intestinal plasticity. The gill showed significant elevated nka α1a, nkcc1 and vha (B subunit) mRNA abundance, as well as NKA enzyme activity. The posterior intestine showed a stronger plasticity signal than the anterior intestine, which included a 12-fold increase in nkcc2 mRNA abundance and significant increases in NKA and VHA enzyme activity. These changes were corroborated by a significant threefold increase in bumetanide-sensitive absorptive short circuit current. These data suggest that the dynamic regulation of NKCC2-mediated intestinal water absorption is an important compliment to HCO3--mediated water absorption during hypersalinity exposure and acclimation.
Collapse
Affiliation(s)
- Leighann Martin
- Department of Marine Science, Marine Science Institutem, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, Marine Science Institutem, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
16
|
Bi B, Gao Y, Jia D, Kong L, Su Y, Rong H, Wu X, Wang X, Hu Z, Hu Q. Growth influence of juvenile golden trout (Oncorhynchus mykiss) in different osmotic conditions: implications for tissue histology, biochemical indicators, and genes transcription involved in GH/IGF system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:583-597. [PMID: 33560477 DOI: 10.1007/s10695-021-00933-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The objectives of this study were to evaluate the effects of different salinity levels on tissue histology, blood biochemistry, and genes transcription of the GH/IGF system in juvenile golden trout (Oncorhynchus mykiss). Five experimental salinity levels (0, 8, 16, 24, and 32‰) were selected to domesticate juvenile O. mykiss for 7 days. Histological characteristics changed with salinity, including higher ionocites area and epithelium thickness in gills, narrow lumen of collecting tubules in kidneys, and high numbers of goblet cells in the intestines. Similarly, increments in slits, degenerate hepatocytes, and individualization of hepatocytes have been shown in fish reared in the 32‰ salinity group. The lowest triglyceride (TG) and the highest level of total protein (TP) were detected in fish reared at the 32‰ group. The genes transcription of the GH/IGF system altered in response to the increase of salinity. The present results add to the understanding of the physiological responses of O. mykiss on salinity stress and would be helpful in formulating strategies to optimize the aquaculture of this species in environments with fluctuating patterns of salinity.
Collapse
Affiliation(s)
- Baoliang Bi
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Yu Gao
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Dan Jia
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Lingfu Kong
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Yanhua Su
- College of Veterinary Medicine, Yunnan Agricultural University, Yunnan, 650201, China
| | - Hua Rong
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Xiangwei Wu
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Xiaowen Wang
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China
| | - Zhuoyong Hu
- Yunnan Institute of Tropical Crops, Yunnan, 666100, China
| | - Qing Hu
- Faculty of Animal Science and Technology, Plateau Aquacultural College, Yunnan Agricultural University, Yunnan, 650201, China.
| |
Collapse
|
17
|
Jin Y, Harvey TN, Bartosova Z, Hassani S, Bruheim P, Sandve SR, Vik JO. Diet and Life Stage-Associated Lipidome Remodeling in Atlantic Salmon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3787-3796. [PMID: 33754702 PMCID: PMC8041299 DOI: 10.1021/acs.jafc.0c07281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 05/07/2023]
Abstract
Salmon is an important source of long-chain highly unsaturated fatty acids (LC-HUFAs) such as 22:6n-3 [docosahexaenoic acid (DHA)]. In the present study, we conducted two identical experiments on salmon in freshwater (FW) and seawater (SW) stages, with a diet switch from fish oil (high in LC-HUFA) to vegetable oil (low in LC-HUFA) and vice versa. Our aim was to investigate the diet and life stage-specific features of lipid uptake (gut), processing (liver), and deposition (muscle). The lipid composition changed much faster in the gut of SW fish relative to FW fish, suggesting that the former had a higher rate of lipid absorption and transport. SW fish also had higher expression of phospholipid synthesis and lipoprotein formation genes in the gut, whereas FW fish had higher expression of lipid synthesis genes in the liver. All phospholipids except PC-44:12 and PE-44:12 were less abundant in SW, suggesting that SW fish have a higher requirement for DHA.
Collapse
Affiliation(s)
- Yang Jin
- Center
of Integrative Genetics (CIGENE), Norwegian
University of Life Sciences, 1430 Aas, Norway
| | - Thomas Nelson Harvey
- Center
of Integrative Genetics (CIGENE), Norwegian
University of Life Sciences, 1430 Aas, Norway
| | - Zdenka Bartosova
- Department
of Biotechnology and Food Science, Norwegian
University of Science and Technology, 7491 Trondheim, Norway
| | - Sahar Hassani
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Aas, Norway
| | - Per Bruheim
- Department
of Biotechnology and Food Science, Norwegian
University of Science and Technology, 7491 Trondheim, Norway
| | - Simen Rød Sandve
- Center
of Integrative Genetics (CIGENE), Norwegian
University of Life Sciences, 1430 Aas, Norway
| | - Jon Olav Vik
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Aas, Norway
| |
Collapse
|
18
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
19
|
Berdan EL, Fuller RC, Kozak GM. Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. J Evol Biol 2020; 34:157-174. [PMID: 33118222 PMCID: PMC7894299 DOI: 10.1111/jeb.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
20
|
Sun C, Li J, Dong J, Niu Y, Hu J, Lian J, Li W, Li J, Tian Y, Shi Q, Ye X. Chromosome-level genome assembly for the largemouth bass Micropterus salmoides provides insights into adaptation to fresh and brackish water. Mol Ecol Resour 2020; 21:301-315. [PMID: 32985096 DOI: 10.1111/1755-0998.13256] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Largemouth bass (LMB; Micropterus salmoides) has been an economically important fish in North America, Europe, and China. This study obtained a chromosome-level genome assembly of LMB using PacBio and Hi-C sequencing. The final assembled genome is 964 Mb, with contig N50 and scaffold N50 values of 1.23 Mb and 36.48 Mb, respectively. Combining with RNA sequencing data, we annotated a total of 23,701 genes. Chromosomal assembly and syntenic analysis proved that, unlike most Perciformes with the popular haploid chromosome number of 24, LMB has only 23 chromosomes (Chr), among which the Chr1 seems to be resulted from a chromosomal fusion event. LMB is phylogenetically closely related to European seabass and spotted seabass, diverging 64.1 million years ago (mya) from the two seabass species. Eight gene families comprising 294 genes associated with ionic regulation were identified through positive selection, transcriptome and genome comparisons. These genes involved in iron facilitated diffusion (such as claudin, aquaporins, sodium channel protein and so on) and others related to ion active transport (such as sodium/potassium-transporting ATPase and sodium/calcium exchanger). The claudin gene family, which is critical for regulating cell tight junctions and osmotic homeostasis, showed a significant expansion in LMB with 27 family members and 68 copies for salinity adaptation. In summary, we reported the first high-quality LMB genome, and provided insights into the molecular mechanisms of LMB adaptation to fresh and brackish water. The chromosome-level LMB genome will also be a valuable genomic resource for in-depth biological and evolutionary studies, germplasm conservation and genetic breeding of LMB.
Collapse
Affiliation(s)
- Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiang Li
- Biozeron Shenzhen Inc., Shenzhen, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
21
|
Liu B, Guo HY, Zhu KC, Guo L, Liu BS, Zhang N, Yang JW, Jiang SG, Zhang DC. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1879-1893. [PMID: 31396801 DOI: 10.1007/s10695-019-00684-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Golden pompano (Trachinotus ovatus) is a commercially important marine fish and is widely cultured in the coastal area of South China. Salinity is one of the most important environmental factors influencing the growth and survival of fish. The aims of this study are to investigate the growth, physiological, and molecular responses of juvenile golden pompano reared at different salinities. Juveniles reared at 15 and 25‰ salinity grew significantly faster than those reared at the other salinities. According to the final body weights, weight gain rate, and feed conversion ratio, the suitable culture salinity range was 15-25‰ salinity. The levels of branchial NKA activity showed a typical "U-shaped" pattern with the lowest level at 15‰ salinity, which suggested a lower energy expenditure on osmoregulation at this level of salinity. The results of this study showed that the alanine aminotransferase, aspartate aminotransferase, and cortisol of juveniles at 5‰ were higher than those of other salinity groups. Our results showed that glucose-6-phosphate dehydrogenase significantly increased at 5‰ and 35‰ salinity. Our study showed that osmolality had significant differences in each salinity group. GH, GHR1, and GHR2 had a wide range of tissue expression including the liver, intestine, kidneys, muscle, gills and brain. The expression levels of GH, GHR1 and GHR2 in the intestine, kidneys, and muscle at 15‰ salinity were significantly higher than those in other three salinity groups. Based on the growth parameters and physiological and molecular responses, the results of the present study indicated that the optimal salinity for rearing golden pompano was 21.36‰ salinity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 200090, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Wang M, Zhu Z. Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
- Department of Biotechnology, Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, P.R. China
- Aquatic Animal Genome Center, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| |
Collapse
|
23
|
Jia Y, Jing Q, Zhai J, Guan C, Huang B. Alternations in oxidative stress, apoptosis, and innate-immune gene expression at mRNA levels in subadult tiger puffer (Takifugu rubripes) under two different rearing systems. FISH & SHELLFISH IMMUNOLOGY 2019; 92:756-764. [PMID: 31288098 DOI: 10.1016/j.fsi.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Tiger puffer (Takifugu rubripes) is one of the major aquaculture fish species in China due to its high economic value. In this study, the transcriptions of hepatic antioxidant enzyme, stress, apoptosis, and immune-related genes of sub-adult tiger puffers (Takifugu rubripes) were evaluated under two different rearing systems [offshore sea cage aquaculture system (OSCS) and recirculating aquaculture system (RAS)]. Results showed that the mRNA expression levels of the antioxidant enzyme (mn-sod, cu/zn-sod, gpx, and gr) and stress-related (hsp70 and hsp90) genes of male tiger puffers reared in the OSCS were significantly higher than female fish reared in the OSCS and fish reared in the RAS. The anti-apoptotic gene bcl2 exhibited the similar results. By contrast, the mRNAs of the pro-apoptotic genes (p53, caspase8, caspase9, and caspase3) of male tiger puffers reared in the OSCS were significantly lower than female fish reared in the OSCS and fish reared in the RAS. Male tiger puffers reared in the OSCS displayed significantly higher complement components (c3) and inflammatory cytokine (il-6) mRNAs, whereas B-cell activating factor (baf) and tumor necrosis factor α (tnf-α) mRNAs remained unchanged. Meanwhile, the mRNA levels of pro-apoptotic (bax, caspase8) and immunity-related (c3, il-6 and il-7) genes of female tiger puffers reared in the OSCS were significantly lower and higher than female fish reared in the RAS, respectively. In conclusion, the hepatic antioxidant, anti-apoptosis, and innate immunity of tiger puffers reared in the OSCS were better than fish in the RAS, male tiger puffer obtained the best values. These results expand the knowledge on the combined RAS and OSCS alternative aquaculture model for tiger puffers and aid in their management in captive.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qiqi Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Jieming Zhai
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | - Changtao Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Bin Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| |
Collapse
|
24
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|
25
|
Sutton AO, Turko AJ, McLaughlin RL, Wright PA. Behavioral and Physiological Responses of an Amphibious, Euryhaline Mangrove Fish to Acute Salinity Exposure. COPEIA 2018. [DOI: 10.1643/cp-17-665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
27
|
Gui L, Zhang P, Liang X, Su M, Wu D, Zhang J. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus , a euryhaline fish. Gene 2016; 583:134-140. [DOI: 10.1016/j.gene.2016.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/06/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
28
|
Kavembe GD, Franchini P, Irisarri I, Machado-Schiaffino G, Meyer A. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth’s Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. J Mol Evol 2015; 81:90-109. [DOI: 10.1007/s00239-015-9696-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/29/2015] [Indexed: 11/29/2022]
|
29
|
Abstract
ABSTRACT
Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg−1). However, some species tolerate up to 130 g kg−1 salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg−1. The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex physiological phenotype evolves under high selection pressure.
Collapse
|
30
|
Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, Jakobsen KS, André C. Adaptation to Low Salinity Promotes Genomic Divergence in Atlantic Cod (Gadus morhua L.). Genome Biol Evol 2015; 7:1644-63. [PMID: 25994933 PMCID: PMC4494048 DOI: 10.1093/gbe/evv093] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How genomic selection enables species to adapt to divergent environments is a fundamental question in ecology and evolution. We investigated the genomic signatures of local adaptation in Atlantic cod (Gadus morhua L.) along a natural salinity gradient, ranging from 35‰ in the North Sea to 7‰ within the Baltic Sea. By utilizing a 12 K SNPchip, we simultaneously assessed neutral and adaptive genetic divergence across the Atlantic cod genome. Combining outlier analyses with a landscape genomic approach, we identified a set of directionally selected loci that are strongly correlated with habitat differences in salinity, oxygen, and temperature. Our results show that discrete regions within the Atlantic cod genome are subject to directional selection and associated with adaptation to the local environmental conditions in the Baltic- and the North Sea, indicating divergence hitchhiking and the presence of genomic islands of divergence. We report a suite of outlier single nucleotide polymorphisms within or closely located to genes associated with osmoregulation, as well as genes known to play important roles in the hydration and development of oocytes. These genes are likely to have key functions within a general osmoregulatory framework and are important for the survival of eggs and larvae, contributing to the buildup of reproductive isolation between the low-salinity adapted Baltic cod and the adjacent cod populations. Hence, our data suggest that adaptive responses to the environmental conditions in the Baltic Sea may contribute to a strong and effective reproductive barrier, and that Baltic cod can be viewed as an example of ongoing speciation.
Collapse
Affiliation(s)
- Paul R Berg
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Kristoffer H Ring
- Centre for Development and the Environment (SUM), University of Oslo, Norway
| | - Halvor Knutsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway Institute of Marine Research (IMR), Flødevigen, His, Norway University of Agder, Kristiansand, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | - Carl André
- Department of Biology and Environmental Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
31
|
Thanh NM, Jung H, Lyons RE, Njaci I, Yoon BH, Chand V, Tuan NV, Thu VTM, Mather P. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus). Mar Genomics 2015; 23:87-97. [PMID: 25979246 DOI: 10.1016/j.margen.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/17/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- Animal Genetics Laboratory, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia.
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Byoung-Ha Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejoen 305-333, Republic of Korea.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
32
|
Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci Rep 2015; 5:9780. [PMID: 25944748 PMCID: PMC4421831 DOI: 10.1038/srep09780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/05/2015] [Indexed: 12/28/2022] Open
Abstract
Divergent selection among environments affects species distributions and can lead to speciation. In this article, we investigated the transcriptomes of two ecotypes of scaleless carp (Gymnocypris przewalskii przewalskii and G. p. ganzihonensis) from the Tibetan Plateau. We used a transcriptome sequencing approach to screen approximately 250,000 expressed sequence tags (ESTs) from the gill and kidney tissues of twelve individuals from the Ganzi River and Lake Qinghai to understand how this freshwater fish has adapted to an ecological niche shift from saline to freshwater. We identified 9,429 loci in the gill transcriptome and 12,034 loci in the kidney transcriptome with significant differences in their expression, of which 242 protein-coding genes exhibited strong positive selection (Ka/Ks > 1). Many of the genes are involved in ion channel functions (e.g., Ca2+-binding proteins), immune responses (e.g., nephrosin) or cellular water absorption functions (e.g., aquaporins). These results have potentially broad importance in understanding shifts from saline to freshwater habitats. Furthermore, this study provides the first transcriptome of G. przewalskii, which will facilitate future ecological genomics studies and aid in the identification of genes underlying adaptation and incipient ecological speciation.
Collapse
|
33
|
Cozzi RRF, Robertson GN, Spieker M, Claus LN, Zaparilla GMM, Garrow KL, Marshall WS. Paracellular pathway remodeling enhances sodium secretion by teleost fish in hypersaline environments. ACTA ACUST UNITED AC 2015; 218:1259-69. [PMID: 25750413 DOI: 10.1242/jeb.117317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
In vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes. Distribution of CFTR was not explained by membrane raft organization, because chlorpromazine (50 μmol l(-1)) and filipin (1.5 μmol l(-1)) did not affect opercular epithelia electrophysiology. Isolated opercular epithelia bathed in SW on the mucosal side had a transepithelial potential (Vt) of +40.1±0.9 mV (N=24), sufficient for passive Na(+) secretion (Nernst equilibrium voltage≡ENa=+24.11 mV). Opercular epithelia from fish acclimated to 2SW and bathed in 2SW had higher Vt of +45.1±1.2 mV (N=24), sufficient for passive Na(+) secretion (ENa=+40.74 mV), but with diminished net driving force. Bumetanide block of Cl(-) secretion reduced Vt by 45% and 29% in SW and 2SW, respectively, a decrease in the driving force for Na(+) extrusion. Estimates of shunt conductance from epithelial conductance (Gt) versus short-circuit current (Isc) plots (extrapolation to zero Isc) suggested a reduction in total epithelial shunt conductance in 2SW-acclimated fish. In contrast, the morphological elaboration of tight junctions, leading to an increase in accessory-cell-ionocyte contact points, suggests an increase in local paracellular conductance, compensating for the diminished net driving force for Na(+) and allowing salt secretion, even in extreme salinities.
Collapse
Affiliation(s)
- Regina R F Cozzi
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - George N Robertson
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Melanie Spieker
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Lauren N Claus
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Gabriella M M Zaparilla
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - Kelly L Garrow
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| | - William S Marshall
- Department of Biology, St Francis Xavier University, J. Bruce Brown Hall, Room 214, 2320 Notre Dame Avenue, Antigonish, Nova Scotia, Canada B2G 2W5
| |
Collapse
|
34
|
Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:23-38. [PMID: 24947209 DOI: 10.1016/j.cbpb.2014.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/12/2023]
Abstract
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.
Collapse
|
35
|
Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water. PLoS One 2014; 9:e87591. [PMID: 24498146 PMCID: PMC3909219 DOI: 10.1371/journal.pone.0087591] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/28/2013] [Indexed: 01/19/2023] Open
Abstract
The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na(+) and Cl(-) in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in part related to its ability to up-regulate key ion transporters in the posterior intestine. The findings pave the way for future iono-regulatory studies on the Mozambique tilapia esophageal-gastrointestinal tract.
Collapse
|
36
|
Sorteni C, Clavenzani P, De Giorgio R, Portnoy O, Sirri R, Mordenti O, Di Biase A, Parmeggiani A, Menconi V, Chiocchetti R. Enteric neuroplasticity in seawater-adapted European eel (Anguilla anguilla). J Anat 2013; 224:180-91. [PMID: 24433383 DOI: 10.1111/joa.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea. During seawater adaptation, eels modify their physiology, and their digestive system adapts to the new environment, drinking salt water to compensate for the continuous water loss. In that period, eels stop feeding until spawning. Thus, the eel represents a unique model to understand the adaptive changes of the enteric nervous system (ENS) to modified salinity and starvation. To this purpose, we assessed and compared the enteric neuronal density in the cranial portion of the intestine of freshwater eels (control), lagoon eels captured in brackish water before their migration to the Sargasso Sea (T0), and starved seawater eels hormonally induced to sexual maturity (T18; 18 weeks of starvation and treatment with standardized carp pituitary extract). Furthermore, we analyzed the modification of intestinal neuronal density of hormonally untreated eels during prolonged starvation (10 weeks) in seawater and freshwater. The density of myenteric (MP) and submucosal plexus (SMP) HuC/D-immunoreactive (Hu-IR) neurons was assessed in wholemount preparations and cryosections. The number of MP and SMP HuC/D-IR neurons progressively increased from the freshwater to the salty water habitat (control > T0 > T18; P < 0.05). Compared with freshwater eels, the number of MP and SMP HuC/D-IR neurons significantly increased (P < 0.05) in the intestine of starved untreated salt water eels. In conclusion, high salinity evokes enteric neuroplasticity as indicated by the increasing number of HuC/D-IR MP and SMP neurons, a mechanism likely contributing to maintaining the body homeostasis of this fish in extreme conditions.
Collapse
Affiliation(s)
- C Sorteni
- Department of Veterinary Medical Science (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy; Centro interdipartimentale di ricerca sull'alimentazione umana, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kültz D, Li J, Gardell A, Sacchi R. Quantitative molecular phenotyping of gill remodeling in a cichlid fish responding to salinity stress. Mol Cell Proteomics 2013; 12:3962-75. [PMID: 24065692 DOI: 10.1074/mcp.m113.029827] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California Davis, One Shields Avenue, Davis, California 95616
| | | | | | | |
Collapse
|