1
|
Darriaut R, Roose-Amsaleg C, Vanhove M, Monard C. Microbiome engineering to palliate microbial dysbiosis occurring in agroecosystems. Microbiol Res 2025; 297:128178. [PMID: 40220558 DOI: 10.1016/j.micres.2025.128178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Plant health and productivity are closely tied to the fluctuations of soil microbiomes, which regulate biogeochemical processes and plant-soil interactions. However, environmental and anthropogenic stressors, including climate change, intensive agricultural practices, and industrial activities, disrupt these microbial communities. This microbial imbalance reduces soil fertility, plant health, and biodiversity, threatening agroecosystem sustainability. This review explores the mechanisms driving microbial dysbiosis in soil and plant environments. Plants under stress release chemical signals through root exudates, dynamically recruiting beneficial microbes to counteract microbial imbalances. Moreover, this review evaluates traditional methods to alleviate these stress-induced microbial alterations, such as microbial inoculants and organic soil amendments, alongside innovative strategies like phage therapy, CRISPR, and small RNA-based technologies. Despite these advancements, the practical implementation of microbiome interventions faces significant challenges. These include regulatory hurdles, economic constraints, and the need for long-term field studies to validate efficacy and ensure environmental safety.
Collapse
Affiliation(s)
- Romain Darriaut
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France.
| | - Céline Roose-Amsaleg
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Mathieu Vanhove
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Cécile Monard
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| |
Collapse
|
2
|
Pedrino M, Narcizo JP, Aguiar IR, Reginatto V, Guazzaroni ME. Upgrading Pseudomonas sp. toward Tolerance to a Synthetic Biomass Hydrolysate Enriched with Furfural and 5-Hydroxymethylfurfural. ACS OMEGA 2025; 10:5449-5459. [PMID: 39989792 PMCID: PMC11840610 DOI: 10.1021/acsomega.4c07288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Several Pseudomonas species, including Pseudomonas putida KT2440, have a broad metabolic repertoire to assimilate biomass monomers such as lignin-derived compounds but struggle to tolerate biomass hydrolysates. Here, we examined the furan derivatives tolerance in a novel and nonpathogenic Pseudomonas species (strain BJa5) and in P. putida KT2440 using tolerance adaptive laboratory evolution (TALE) to enhance growth performance in a synthetic straw sugar cane hydrolysate enriched with furfural and 5-hydroxymethylfurfural (5-HMF). Initially, wild-type strains showed prolonged lag phases and low tolerance in the synthetic hydrolysate, but tolerance was improved after 90 days of sequential batch growth. Post-TALE, BJa5 and KT2440 end strains grew in synthetic hydrolysate containing 2 g/L furfural and 1 g/L 5-HMF at 48 and 24 h, respectively. Moreover, the KT2440 end strain notably grew in 2 g/L furfural and ≥1.7 g/L 5-HMF. Genome sequencing of end strains revealed mutations in genes and intergenic regions associated with transcriptional factors, acetate metabolism enzymes, environmental response proteins, and transposases. In a proof-of-concept experiment, the BJa5 end strain demonstrated the potential to detoxify synthetic hydrolysate by reducing the titers of acetate and furfural. This ability could enable industrial microorganisms, which are typically nontolerant to toxic hydrolysates, to be used for producing value-added compounds from biodetoxified hydrolysates.
Collapse
Affiliation(s)
- Matheus Pedrino
- Department
of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Julia Pereira Narcizo
- Department
of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão
Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Inaiá Ramos Aguiar
- Department
of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Valeria Reginatto
- Department
of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão
Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - María-Eugenia Guazzaroni
- Department
of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| |
Collapse
|
3
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025; 14:257-272. [PMID: 39748701 PMCID: PMC11744930 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Velázquez E, de Lorenzo V. AND Logic Based on Suppressor tRNAs Enables Stringent Control of Sliding Base Editors in Pseudomonas putida. ACS Synth Biol 2024; 13:4191-4201. [PMID: 39660532 DOI: 10.1021/acssynbio.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Base editors, e.g., cytosine deaminases, are powerful tools for precise DNA editing in vivo, enabling both targeted nucleotide conversions and segment-specific diversification of bacterial genomes. Yet, regulation of their spatiotemporal activity is crucial to avoid off-target effects and enabling controlled evolution of specific genes and pathways. This work reports a strategy for tight control of base-editing devices through subjecting their expression to a genetic AND logic gate in which two chemical inducer inputs are strictly required for cognate activity. The case study involves an archetypal genetic device consisting of a cytosine deaminase (pmCDA1) fused to a T7 RNA polymerase (RNAPT7), which cause intensive diversification of DNA portions bordered by a T7 promoter and a T7 terminator─but whose activity in vivo has been shown unattainable to govern with standard conditional expression systems. By encoding up to three UAG stop codons into the DNA sequence of the pmCDA1-RNAPT7 fusion, which is transcribed by the 3-methylbenzoate inducible promoter Pm, we first broke the structure of the hybrid protein. Then, to overcome the interruptions caused by UAG codons, we placed transcription of a supF tRNA under the control of a cyclohexanone-dependent system. When tested in the soil bacterium and metabolic engineering chassis Pseudomonas putida KT2440, these modifications changed the performance of the sliding base editor from a flawed YES logic to a precise AND logic. We also showed that such a 2-layer control brings about a minimal background activity as compared to a single-input digitalizer circuit. These results show the ability of suppressor tRNA-based logic gates for achieving stringent expression of otherwise difficult to control devices.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
5
|
Kim HJ, Kim BC, Park H, Cho G, Lee T, Kim HT, Bhatia SK, Yang YH. Microbial production of levulinic acid from glucose by engineered Pseudomonas putida KT2440. J Biotechnol 2024; 395:161-169. [PMID: 39343057 DOI: 10.1016/j.jbiotec.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Levulinic acid(LA) is produced through acid-catalyzed hydrolysis and dehydration of lignocellulosic biomass. It is a key platform chemical used as an intermediate in various industries including biofuels, cosmetics, pharmaceuticals, and polymers. Traditional LA production uses chemical conversion, which requires high temperatures and pressures, strong acids, and produces undesirable side reactions, repolymerization products, and waste problems Therefore, we designed an integrated process to produce LA from glucose through metabolic engineering of Pseudomonas putida KT2440. As a metabolic engineering strategy, codon optimized phospho-2-dehydro-3-deoxyheptonate aldolase (AroG), 3-dehydroshikimate dehydratase (AsbF), and acetoacetate decarboxylase (Adc) were introduced to express genes of the shikimate and β-ketoadipic acid pathways, and the 3-oxoadipate CoA-transferase (pcaIJ) gene was deleted to prevent loss of biosynthetic intermediates. To increase the accumulation of the produced LA, the lva operon encoding levulinyl-CoA synthetase (LvaE) was deleted resulting in the high LA-producing strain P. putida HP203. Culture conditions such as medium, temperature, glucose concentration, and nitrogen source were optimized, and under optimal conditions, P. putida HP203 strain biosynthesized 36.3 mM (4.2 g/L) LA from glucose in a fed-batch fermentation system. When lignocellulosic biomass hydrolysate was used as the substrate, this strain produced 7.31 mM of LA. This is the first report of microbial production of LA from glucose by P. putida. This study suggests the possibility of manipulating biosynthetic pathway to produce biological products from glucose for various applications.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hanna Park
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Geunsang Cho
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Taekyu Lee
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Prieto-de Lima TS, Rojas-Jimenez K, Vaglio C. Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling. Metabolites 2024; 14:636. [PMID: 39590872 PMCID: PMC11596459 DOI: 10.3390/metabo14110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Vitamin B12 is very important for human health, as it is a cofactor for enzymatic activities and plays various roles in human physiology. It is highly valued in the pharmaceutical, food, and additive production industries. Some of the bacteria currently used for the vitamin production are difficult to modify with gene-editing tools and may have slow growth. We propose the use of the bacteria Pseudomonas putida KT2440 for the production of vitamin B12 because it has a robust chassis for genetic modifications. The present wok evaluates P. putida KT2440 as a host for vitamin B12 production and explore potential gene-editing optimization strategies. Methods: We curated and modified a genome-scale metabolic model of Pseudomonas putida KT2440 and evaluated different strategies to optimize vitamin B12 production using the knockin and OptGene algorithms from the COBRA Toolbox. Furthermore, we examined the presence of riboswitches as cis-regulatory elements and calculated theoretical biomass growth yields and vitamin B12 production using a flux balance analysis (FBA). Results: According to the flux balance analysis of P. putida KT2440 under culture conditions, the biomass production values could reach 1.802 gDW-1·h1·L-1, and vitamin B12 production could reach 0.359 µmol·gDW-1·h-1·L-1. The theoretical vitamin B12 synthesis rate calculated using P. putida KT2040 with two additional reactions was 14 times higher than that calculated using the control, Pseudomonas denitrificans, which has been used for the industrial production of this vitamin. Conclusions: We propose that, with the addition of aminopropanol linker genes and the modification of riboswitches, P. putida KT2440 may become a suitable host for the industrial production of vitamin B12.
Collapse
Affiliation(s)
| | | | - Christopher Vaglio
- Health Research Institute, University of Costa Rica, San José 11501, Costa Rica;
| |
Collapse
|
7
|
Vásquez-Castro F, Wicki-Emmenegger D, Fuentes-Schweizer P, Nassar-Míguez L, Rojas-Gätjens D, Rojas-Jimenez K, Chavarría M. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001513. [PMID: 39530301 PMCID: PMC11555687 DOI: 10.1099/mic.0.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
Collapse
Affiliation(s)
- Felipe Vásquez-Castro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- CELEQ, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Layla Nassar-Míguez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
8
|
Chen W, Ma R, Feng Y, Xiao Y, Sekowska A, Danchin A, You C. GnuR Represses the Expression of Glucose and Gluconate Catabolism in Pseudomonas putida KT2440. Microb Biotechnol 2024; 17:e70059. [PMID: 39589324 PMCID: PMC11590683 DOI: 10.1111/1751-7915.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
In Pseudomonas putida KT2440, a prime chassis for biotechnology, the clustered distribution of glucose catabolism genes and four related transcription factors (TFs) may facilitate the tight regulation of glucose catabolism. However, the genes under the direct control of these TFs remain unidentified, leaving their regulatory roles elusive. Furthermore, the carbon source gluconate was metabolised similarly to glucose in KT2440, but the responses of these catabolic and TF genes to gluconate were unclear. Here, these mysteries were unravelled through multi-omics analysis integrated with physiological studies. First, we found that the expression of these catabolic and TF genes were significantly induced by both glucose and gluconate in KT2440. The independent responses of these genes to glucose and gluconate were differentiated in the gcd deletion mutant. We then defined the regulon of GnuR, one of the four related TFs, and discovered that GnuR directly repressed the expression of catabolic genes involved in the Entner-Doudoroff and the peripheral glucose and gluconate metabolism pathways. These results were further confirmed by physiological studies. Finally, a regulatory mode of an incoherent feedforward loop involving GnuR is proposed.
Collapse
Affiliation(s)
- Wenbo Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Rao Ma
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Yong Feng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | | | - Antoine Danchin
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong KongHong KongChina
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
9
|
Sun WJ, Zhang QN, Li LL, Qu MX, Zan XY, Cui FJ, Zhou Q, Wang DM, Sun L. The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01. Foods 2024; 13:3444. [PMID: 39517228 PMCID: PMC11544825 DOI: 10.3390/foods13213444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Genus Pseudomonas bacteria mainly consume glucose through the Entner-Doudoroff (ED) route due to a lack of a functional Embden-Meyerhof-Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase (edd) operon in the ED route was well investigated to find its structural characteristics and roles in the regulation of glucose consumption and 2-ketogluconic acid (2KGA) metabolism in the industrial 2KGA-producer P. plecoglossicida JUIM01. The edd operon contained four structural genes of edd, glk, gltR, and gtrS, encoding 6-PG dehydratase Edd, glucokinase Glk, response regulatory factor GltR, and histidine kinase GtrS, respectively. A promoter region was observed in the 5'-upstream of the edd gene, with a transcriptional start site located 129 bp upstream of the edd gene and in a pseudo-palindromic sequence of 5'-TTGTN7ACAA-3' specifically binding to the transcription factor HexR. The knockout of the edd gene showed a remarkably negative effect on cell growth and re-growth using 2KGA as a substrate, beneficial to 2KGA production, with an increase of 8%. The deletion of glk had no significant effect on the cell growth or glucose metabolism, while showing an adverse impact on the 2KGA production, with a decrease of 5%. The outputs of the present study would provide a theoretical basis for 2KGA-producer improvement with metabolic engineering strategies and the development and optimization of P. plecoglossicida as the chassis cells.
Collapse
Affiliation(s)
- Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qian-Nan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Lu-Lu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Meng-Xin Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qiang Zhou
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Da-Ming Wang
- Key Laboratory of Elemene Class Anti-Cancer Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| |
Collapse
|
10
|
Asin-Garcia E, Martin-Pascual M, de Buck C, Allewijn M, Müller A, Martins dos Santos VAP. GenoMine: a CRISPR-Cas9-based kill switch for biocontainment of Pseudomonas putida. Front Bioeng Biotechnol 2024; 12:1426107. [PMID: 39351062 PMCID: PMC11439788 DOI: 10.3389/fbioe.2024.1426107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse Pseudomonas putida that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators. All of them were applied not only to directly control Cas9 and its lethal effects, but also to modulate the expression of two of its inhibitors: the AcrIIA4 anti-CRISPR protein and the transcriptional repressor TetR. Either upon direct induction of the endonuclease or under non-induced conditions of its inhibitors, the presence of Cas9 suppressed cell survival which could be exploited beyond biocontainment in situations where further CRISPR genome editing is undesirable.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Claudia de Buck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Max Allewijn
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Alexandra Müller
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
11
|
Brauer A, Rosendahl S, Kängsep A, Lewańczyk AC, Rikberg R, Hõrak R, Tamman H. Isolation and characterization of a phage collection against Pseudomonas putida. Environ Microbiol 2024; 26:e16671. [PMID: 38863081 PMCID: PMC7616413 DOI: 10.1111/1462-2920.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
The environmental bacterium, Pseudomonas putida, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For P. putida to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, P. putida KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental P. putida Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for P. putida infection. Furthermore, we show that cryptic prophages present in the P. putida chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin-antitoxin systems do not play a role in the phage defence of P. putida. This research provides valuable insights into the interactions between P. putida and bacteriophages, which could have significant implications for biotechnological and environmental applications.
Collapse
Affiliation(s)
- Age Brauer
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sirli Rosendahl
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Anu Kängsep
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alicja Cecylia Lewańczyk
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Roger Rikberg
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hedvig Tamman
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Viquez C, Rojas-Gätjens D, Mesén-Porras E, Avendaño R, Sasa M, Lomonte B, Chavarría M. Venom-microbiomics of eight species of Neotropical spiders from the Theraphosidae family. J Appl Microbiol 2024; 135:lxae113. [PMID: 38692848 DOI: 10.1093/jambio/lxae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
AIM Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.
Collapse
Affiliation(s)
- Carlos Viquez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Oficina subregional de Alajuela, Sistema Nacional de Áreas de Conservación (SINAC), Ministerio Ambiente y Energía (MINAE), Alajuela 20101, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Esteve Mesén-Porras
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Museo de Zoología, Centro de Investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
13
|
Lechtenberg T, Wynands B, Wierckx N. Engineering 5-hydroxymethylfurfural (HMF) oxidation in Pseudomonas boosts tolerance and accelerates 2,5-furandicarboxylic acid (FDCA) production. Metab Eng 2024; 81:262-272. [PMID: 38154655 DOI: 10.1016/j.ymben.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Due to its tolerance properties, Pseudomonas has gained particular interest as host for oxidative upgrading of the toxic aldehyde 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA), a promising biobased alternative to terephthalate in polyesters. However, until now, the native enzymes responsible for aldehyde oxidation are unknown. Here, we report the identification of the primary HMF-converting enzymes of P. taiwanensis VLB120 and P. putida KT2440 by extended gene deletions. The key players in HMF oxidation are a molybdenum-dependent periplasmic oxidoreductase and a cytoplasmic dehydrogenase. Deletion of the corresponding genes almost completely abolished HMF oxidation, leading instead to aldehyde reduction. In this context, two HMF-reducing dehydrogenases were also revealed. These discoveries enabled enhancement of Pseudomonas' furanic aldehyde oxidation machinery by genomic overexpression of the respective genes. The resulting BOX strains (Boosted OXidation) represent superior hosts for biotechnological synthesis of FDCA from HMF. The increased oxidation rates provide greatly elevated HMF tolerance, thus tackling one of the major drawbacks of whole-cell catalysis with this aldehyde. Furthermore, the ROX (Reduced OXidation) and ROAR (Reduced Oxidation And Reduction) deletion mutants offer a solid foundation for future development of Pseudomonads as biotechnological chassis notably for scenarios where rapid HMF conversion is undesirable.
Collapse
Affiliation(s)
- Thorsten Lechtenberg
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
14
|
Amendola CR, Cordell WT, Kneucker CM, Szostkiewicz CJ, Ingraham MA, Monninger M, Wilton R, Pfleger BF, Salvachúa D, Johnson CW, Beckham GT. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose. Metab Eng 2024; 81:88-99. [PMID: 38000549 DOI: 10.1016/j.ymben.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.
Collapse
Affiliation(s)
- Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - William T Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Michela Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Rosemarie Wilton
- Agile BioFoundry, Emeryville, CA, 94608, USA; Biosciences Division Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
15
|
Gao T, Guo J, Niu W. Genetic Code Expansion in Pseudomonas putida KT2440. Methods Mol Biol 2024; 2760:209-217. [PMID: 38468091 DOI: 10.1007/978-1-0716-3658-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain's biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Wei Niu
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
16
|
Vogeleer P, Millard P, Arbulú ASO, Pflüger-Grau K, Kremling A, Létisse F. Metabolic impact of heterologous protein production in Pseudomonas putida: Insights into carbon and energy flux control. Metab Eng 2024; 81:26-37. [PMID: 37918614 DOI: 10.1016/j.ymben.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
For engineered microorganisms, the production of heterologous proteins that are often useless to host cells represents a burden on resources, which have to be shared with normal cellular processes. Within a certain metabolic leeway, this competitive process has no impact on growth. However, once this leeway, or free capacity, is fully utilized, the extra load becomes a metabolic burden that inhibits cellular processes and triggers a broad cellular response, reducing cell growth and often hindering the production of heterologous proteins. In this study, we sought to characterize the metabolic rearrangements occurring in the central metabolism of Pseudomonas putida at different levels of metabolic load. To this end, we constructed a P. putida KT2440 strain that expressed two genes encoding fluorescent proteins, one in the genome under constitutive expression to monitor the free capacity, and the other on an inducible plasmid to probe heterologous protein production. We found that metabolic fluxes are considerably reshuffled, especially at the level of periplasmic pathways, as soon as the metabolic load exceeds the free capacity. Heterologous protein production leads to the decoupling of anabolism and catabolism, resulting in large excess energy production relative to the requirements of protein biosynthesis. Finally, heterologous protein production was found to exert a stronger control on carbon fluxes than on energy fluxes, indicating that the flexible nature of P. putida's central metabolic network is solicited to sustain energy production.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France; MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Ana-Sofia Ortega Arbulú
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Katharina Pflüger-Grau
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Andreas Kremling
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Fabien Létisse
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France.
| |
Collapse
|
17
|
Lammens EM, Volke DC, Schroven K, Voet M, Kerremans A, Lavigne R, Hendrix H. A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for Pseudomonas with efficient vector curing. Microbiol Spectr 2023; 11:e0270723. [PMID: 37975669 PMCID: PMC10715078 DOI: 10.1128/spectrum.02707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE The CRISPR-Cas3 editing system as presented here facilitates the creation of genomic alterations in Pseudomonas putida and Pseudomonas aeruginosa in a straightforward manner. By providing the Cas3 system as a vector set with Golden Gate compatibility and different antibiotic markers, as well as by employing the established Standard European Vector Architecture (SEVA) vector set to provide the homology repair template, this system is flexible and can readily be ported to a multitude of Gram-negative hosts. Besides genome editing, the Cas3 system can also be used as an effective and universal tool for vector curing. This is achieved by introducing a spacer that targets the origin-of-transfer, present on the majority of established (SEVA) vectors. Based on this, the Cas3 system efficiently removes up to three vectors in only a few days. As such, this curing approach may also benefit other genomic engineering methods or remove naturally occurring plasmids from bacteria.
Collapse
Affiliation(s)
| | - Daniel Christophe Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kaat Schroven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Alison Kerremans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
19
|
Jilani SB, Olson DG. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb Cell Fact 2023; 22:221. [PMID: 37891678 PMCID: PMC10612203 DOI: 10.1186/s12934-023-02223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.
Collapse
Affiliation(s)
- S Bilal Jilani
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA.
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
20
|
Werner AZ, Cordell WT, Lahive CW, Klein BC, Singer CA, Tan EC, Ingraham MA, Ramirez KJ, Kim DH, Pedersen JN, Johnson CW, Pfleger BF, Beckham GT, Salvachúa D. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development. SCIENCE ADVANCES 2023; 9:eadj0053. [PMID: 37672573 PMCID: PMC10482344 DOI: 10.1126/sciadv.adj0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Bioconversion of a heterogeneous mixture of lignin-related aromatic compounds (LRCs) to a single product via microbial biocatalysts is a promising approach to valorize lignin. Here, Pseudomonas putida KT2440 was engineered to convert mixed p-coumaroyl- and coniferyl-type LRCs to β-ketoadipic acid, a precursor for performance-advantaged polymers. Expression of enzymes mediating aromatic O-demethylation, hydroxylation, and ring-opening steps was tuned, and a global regulator was deleted. β-ketoadipate titers of 44.5 and 25 grams per liter and productivities of 1.15 and 0.66 grams per liter per hour were achieved from model LRCs and corn stover-derived LRCs, respectively, the latter representing an overall yield of 0.10 grams per gram corn stover-derived lignin. Technoeconomic analysis of the bioprocess and downstream processing predicted a β-ketoadipate minimum selling price of $2.01 per kilogram, which is cost competitive with fossil carbon-derived adipic acid ($1.10 to 1.80 per kilogram). Overall, this work achieved bioproduction metrics with economic relevance for conversion of lignin-derived streams into a performance-advantaged bioproduct.
Collapse
Affiliation(s)
- Allison Z. Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - William T. Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ciaran W. Lahive
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Bruno C. Klein
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christine A. Singer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Eric C. D. Tan
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Morgan A. Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelsey J. Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jacob Nedergaard Pedersen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
21
|
de Siqueira GMV, Guazzaroni ME. Host-Dependent Improvement of GFP Expression in Pseudomonas putida KT2440 Using Terminators of Metagenomic Origin. ACS Synth Biol 2023; 12:1562-1566. [PMID: 37126733 DOI: 10.1021/acssynbio.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcriptional terminators are key players in the flow of genetic information, but are often overlooked in circuit design. In this work, we used the Standard European Vector Architecture (SEVA) as a scaffold to investigate the effects of different terminators in the output of a reporter construct expressed in two bacterial species, and found that replacing the conventional T1 and T0 transcriptional terminators of the SEVA vector format with a set of broad-host metagenomic terminators resulted in a significant improvement in the signal of a fluorescent device in Pseudomonas putida KT2440 but not in Escherichia coli DH10B. Our results suggest that replacing the default set of terminators present in the SEVA specification may be an useful strategy for fine-tuning circuit expression in P. putida, which can be leveraged for the development of new devices with improved performance in this microbial host.
Collapse
Affiliation(s)
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirao Preto 14040-901, Brazil
| |
Collapse
|
22
|
Bilbao A, Munoz N, Kim J, Orton DJ, Gao Y, Poorey K, Pomraning KR, Weitz K, Burnet M, Nicora CD, Wilton R, Deng S, Dai Z, Oksen E, Gee A, Fasani RA, Tsalenko A, Tanjore D, Gardner J, Smith RD, Michener JK, Gladden JM, Baker ES, Petzold CJ, Kim YM, Apffel A, Magnuson JK, Burnum-Johnson KE. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements. Nat Commun 2023; 14:2461. [PMID: 37117207 PMCID: PMC10147702 DOI: 10.1038/s41467-023-37031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Collapse
Affiliation(s)
- Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | | | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Karl Weitz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan Burnet
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Rosemarie Wilton
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ethan Oksen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Gee
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Rick A Fasani
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Anya Tsalenko
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Deepti Tanjore
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James Gardner
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua K Michener
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John M Gladden
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Sandia National Laboratory, Livermore, CA, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher J Petzold
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Alex Apffel
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Kristin E Burnum-Johnson
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| |
Collapse
|
23
|
Luo ZW, Choi KR, Lee SY. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida. Metab Eng 2023; 76:75-86. [PMID: 36693471 DOI: 10.1016/j.ymben.2023.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Terephthalic acid (TPA) is an important commodity chemical used as a monomer of polyethylene terephthalate (PET). Since a large quantity of PET is routinely manufactured and consumed worldwide, the development of sustainable biomanufacturing processes for its monomers (i.e. TPA and ethylene glycol) has recently gained much attention. In a previous study, we reported the development of a metabolically engineered Escherichia coli strain producing 6.7 g/L of TPA from p-xylene (pX) with a productivity and molar conversion yield of 0.278 g/L/h and 96.7 mol%, respectively. Here, we report metabolic engineering of Pseudomonas putida KT2440, a microbial chassis particularly suitable for the synthesis of aromatic compounds, for improved biocatalytic conversion of pX to TPA. To develop a plasmid-free, antibiotic-free, and inducer-free biocatalytic process for cost-competitive TPA production, all heterologous genes required for the synthetic pX-to-TPA bioconversion pathway were integrated into the chromosome of P. putida KT2440 by RecET-based markerless recombineering and overexpressed under the control of constitutive promoters. Next, TPA production was enhanced by integrating multiple copies of the heterologous genes to the ribosomal RNA genes through iteration of recombineering-based random integration and subsequent screening of high-performance strains. Finally, fed-batch fermentation process was optimized to further improve the performance of the engineered P. putida strain. As a result, 38.25 ± 0.11 g/L of TPA was produced from pX with a molar conversion yield of 99.6 ± 0.6%, which is equivalent to conversion of 99.3 ± 0.8 g pX to 154.6 ± 0.5 g TPA. This superior pX-to-TPA biotransformation process based on the engineered P. putida strain will pave the way to the commercial biomanufacturing of TPA in an industrial scale.
Collapse
Affiliation(s)
- Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, 34141, Republic of Korea; BioInformatics Research Center, KAIST Institute for the BioCentury, and KAIST Institute for Artificial Intelligence, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Avendaño R, Muñoz-Montero S, Rojas-Gätjens D, Fuentes-Schweizer P, Vieto S, Montenegro R, Salvador M, Frew R, Kim J, Chavarría M, Jiménez JI. Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440. Microb Biotechnol 2023; 16:931-946. [PMID: 36682039 PMCID: PMC10128140 DOI: 10.1111/1751-7915.14215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
Collapse
Affiliation(s)
- Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Manuel Salvador
- Biotechnology Applications, IDENER Research & Development, Seville, Spain
| | - Rufus Frew
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu, Korea
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose I Jiménez
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
25
|
Scribani-Rossi C, Molina-Henares MA, Angeli S, Cutruzzolà F, Paiardini A, Espinosa-Urgel M, Rinaldo S. The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine. FEMS Microbiol Lett 2023; 370:fnad077. [PMID: 37550221 PMCID: PMC10423028 DOI: 10.1093/femsle/fnad077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion. In Pseudomonas putida, KT2440, a versatile microorganism with wide biotechnological applications, modulation of c-di-GMP levels by arginine requires the transcriptional regulator ArgR, but the connections between arginine metabolism and c-di-GMP are not fully characterized. It has been recently demonstrated that arginine can be perceived by the opportunistic human pathogen Pseudomonas aeruginosa through the transducer RmcA protein (Redox regulator of c-di-GMP), which can directly decrease c-di-GMP levels and possibly affect biofilm architecture. A RmcA homolog is present in P. putida, but its function and involvement in arginine perceiving or biofilm life cycle had not been studied. Here, we present a preliminary characterization of the RmcA-dependent response to arginine in P. putida in modulating biofilm formation, c-di-GMP levels, and energy metabolism. This work contributes to further understanding the molecular mechanisms linking biofilm homeostasis and environmental adaptation.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
26
|
Batianis C, van Rosmalen RP, Major M, van Ee C, Kasiotakis A, Weusthuis RA, Martins Dos Santos VAP. A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metab Eng 2023; 75:47-57. [PMID: 36244546 DOI: 10.1016/j.ymben.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Metabolic engineering of microorganisms aims to design strains capable of producing valuable compounds under relevant industrial conditions and in an economically competitive manner. From this perspective, and beyond the need for a catalyst, biomass is essentially a cost-intensive, abundant by-product of a microbial conversion. Yet, few broadly applicable strategies focus on the optimal balance between product and biomass formation. Here, we present a genetic control module that can be used to precisely modulate growth of the industrial bacterial chassis Pseudomonas putida KT2440. The strategy is based on the controllable expression of the key metabolic enzyme complex pyruvate dehydrogenase (PDH) which functions as a metabolic valve. By tuning the PDH activity, we accurately controlled biomass formation, resulting in six distinct growth rates with parallel overproduction of excess pyruvate. We deployed this strategy to identify optimal growth patterns that improved the production yield of 2-ketoisovalerate and lycopene by 2.5- and 1.38-fold, respectively. This ability to dynamically steer fluxes to balance growth and production substantially enhances the potential of this remarkable microbial chassis for a wide range of industrial applications.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Monika Major
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cheyenne van Ee
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Alexandros Kasiotakis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands; Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
27
|
Shin SM, Jha RK, Dale T. Tackling the Catch-22 Situation of Optimizing a Sensor and a Transporter System in a Whole-Cell Microbial Biosensor Design for an Anthropogenic Small Molecule. ACS Synth Biol 2022; 11:3996-4008. [PMID: 36472954 DOI: 10.1021/acssynbio.2c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whole-cell biosensors provide a convenient detection tool for the high-throughput screening of genetically engineered biocatalytic activity. But establishing a biosensor for an anthropogenic molecule requires both a custom transporter and a transcription factor. This results in an unavoidable "Catch-22" situation in which transporter activity cannot be easily confirmed without a biosensor and a biosensor cannot be established without a functional transporter in a host organism. We overcame this type of circular problem while developing an adipic acid (ADA) sensor. First, leveraging an established cis,cis-muconic acid (ccMA) sensor, an annotated ccMA transporter MucK, which is expected to be broadly responsive to dicarboxylates, was stably expressed in the genome of Pseudomonas putida to function as a transporter for ADA, and then a PcaR transcription factor (endogenous to the strain and naturally induced by β-ketoadipic acid, BKA) was diversified and selected to detect the ADA molecule. While MucK expression is otherwise very unstable in P. putida under strong promoter expression, our optimized mucK expression was functional for over 70 generations without loss of function, and we selected an ADA sensor that showed a specificity switch of over 35-fold from BKA at low concentrations (typically <0.1 mM of inducers). Our ADA and BKA biosensors show high sensitivity (low detection concentration <10 μM) and dynamic range (∼50-fold) in an industrially relevant organism and will open new avenues for high throughput discovery and optimization of enzymes and metabolic pathways for the biomanufacture of these molecules. In particular, the novel ADA sensor will aid the discovery and evolution of efficient biocatalysts for the biological recycling of ADA from the degradation of nylon-6,6 waste.
Collapse
Affiliation(s)
- Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States
| | - Ramesh K Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States.,Agile BioFoundry, Emeryville, California94608, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States.,Agile BioFoundry, Emeryville, California94608, United States
| |
Collapse
|
28
|
Wang X, Baidoo EEK, Kakumanu R, Xie S, Mukhopadhyay A, Lee TS. Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:137. [PMID: 36510293 PMCID: PMC9743605 DOI: 10.1186/s13068-022-02235-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
With the increasing need for microbial bioproduction to replace petrochemicals, it is critical to develop a new industrial microbial workhorse that improves the conversion of lignocellulosic carbon to biofuels and bioproducts in an economically feasible manner. Pseudomonas putida KT2440 is a promising microbial host due to its capability to grow on a broad range of carbon sources and its high tolerance to xenobiotics. In this study, we engineered P. putida KT2440 to produce isoprenoids, a vast category of compounds that provide routes to many petrochemical replacements. A heterologous mevalonate (MVA) pathway was engineered to produce potential biofuels isoprenol (C5) and epi-isozizaene (C15) for the first time in P. putida. We compared the difference between three different isoprenoid pathways in P. putida on isoprenol production and achieved 104 mg/L of isoprenol production in a batch flask experiment through optimization of the strain. As P. putida can natively consume isoprenol, we investigated how to prevent this self-consumption. We discovered that supplementing L-glutamate in the medium can effectively prevent isoprenol consumption in P. putida and metabolomics analysis showed an insufficient energy availability and an imbalanced redox status during isoprenol degradation. We also showed that the engineered P. putida strain can produce isoprenol using aromatic substrates such as p-coumarate as the sole carbon source, and this result demonstrates that P. putida is a valuable microbial chassis for isoprenoids to achieve sustainable biofuel production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xi Wang
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Silvia Xie
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
29
|
Abstract
Pseudomonas putida KT2440 is an emerging microbial chassis for biobased chemical production from renewable feedstocks and environmental bioremediation. However, tools for studying, engineering, and modulating protein complexes and biosynthetic enzymes in this organism are largely underdeveloped. Genetic code expansion for the incorporation of unnatural amino acids (unAAs) into proteins can advance such efforts and, furthermore, enable additional controls of biological processes of the strain. In this work, we established the orthogonality of two widely used archaeal tRNA synthetase and tRNA pairs in KT2440. Following the optimization of decoding systems, four unAAs were incorporated into proteins in response to a UAG stop codon at 34.6-78% efficiency. In addition, we demonstrated the utility of genetic code expansion through the incorporation of a photocross-linking amino acid, p-benzoyl-l-phenylalanine (pBpa), into glutathione S-transferase (GstA) and a chemosensory response regulator (CheY) for protein-protein interaction studies in KT2440. This work reported the successful genetic code expansion in KT2440 for the first time. Given the diverse structure and functions of unAAs that have been added to protein syntheses using the archaeal systems, our research lays down a solid foundation for future work to study and enhance the biological functions of KT2440.
Collapse
Affiliation(s)
- Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Tianyu Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Yan Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Kun Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
30
|
Calero P, Gurdo N, Nikel PI. Role of the CrcB transporter of Pseudomonas putida in the multi-level stress response elicited by mineral fluoride. Environ Microbiol 2022; 24:5082-5104. [PMID: 35726888 PMCID: PMC9796867 DOI: 10.1111/1462-2920.16110] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/07/2023]
Abstract
The presence of mineral fluoride (F- ) in the environment has both a geogenic and anthropogenic origin, and the halide has been described to be toxic in virtually all living organisms. While the evidence gathered in different microbial species supports this notion, a systematic exploration of the effects of F- salts on the metabolism and physiology of environmental bacteria remained underexplored thus far. In this work, we studied and characterized tolerance mechanisms deployed by the model soil bacterium Pseudomonas putida KT2440 against NaF. By adopting systems-level omic approaches, including functional genomics and metabolomics, we gauged the impact of this anion at different regulatory levels under conditions that impair bacterial growth. Several genes involved in halide tolerance were isolated in a genome-wide Tn-Seq screening-among which crcB, encoding an F- -specific exporter, was shown to play the predominant role in detoxification. High-resolution metabolomics, combined with the assessment of intracellular and extracellular pH values and quantitative physiology experiments, underscored the key nodes in central carbon metabolism affected by the presence of F- . Taken together, our results indicate that P. putida undergoes a general, multi-level stress response when challenged with NaF that significantly differs from that caused by other saline stressors. While microbial stress responses to saline and oxidative challenges have been extensively studied and described in the literature, very little is known about the impact of fluoride (F- ) on bacterial physiology and metabolism. This state of affairs contrasts with the fact that F- is more abundant than other halides in the Earth crust (e.g. in some soils, the F- concentration can reach up to 1 mg gsoil -1 ). Understanding the global effects of NaF treatment on bacterial physiology is not only relevant to unveil distinct mechanisms of detoxification but it could also guide microbial engineering approaches for the target incorporation of fluorine into value-added organofluorine molecules. In this regard, the soil bacterium P. putida constitutes an ideal model to explore such scenarios, since this species is particularly known for its high level of stress resistance against a variety of physicochemical perturbations.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
31
|
Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab Eng 2022; 74:191-205. [DOI: 10.1016/j.ymben.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
32
|
Wirth NT, Gurdo N, Krink N, Vidal-Verdú À, Donati S, Férnandez-Cabezón L, Wulff T, Nikel PI. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes. Metab Eng 2022; 74:83-97. [PMID: 36155822 DOI: 10.1016/j.ymben.2022.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route-the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980, Paterna, Spain
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Lorena Férnandez-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
33
|
De Wannemaeker L, Bervoets I, De Mey M. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. Biotechnol Adv 2022; 60:108028. [PMID: 36031082 DOI: 10.1016/j.biotechadv.2022.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Synthetic biology can play a major role in the development of sustainable industrial biotechnology processes. However, the development of economically viable production processes is currently hampered by the limited availability of host organisms that can be engineered for a specific production process. To date, standard hosts such as Escherichia coli and Saccharomyces cerevisiae are often used as starting points for process development since parts and tools allowing their engineering are readily available. However, their suboptimal metabolic background or impaired performance at industrial scale for a desired production process, can result in increased costs associated with process development and/or disappointing production titres. Building a universal and portable gene expression system allowing genetic engineering of hosts across the bacterial domain would unlock the bacterial domain for industrial biotechnology applications in a highly standardized manner and doing so, render industrial biotechnology processes more competitive compared to the current polluting chemical processes. This review gives an overview of a selection of bacterial hosts highly interesting for industrial biotechnology based on both their metabolic and process optimization properties. Moreover, the requirements and progress made so far to enable universal, standardized, and portable gene expression across the bacterial domain is discussed.
Collapse
Affiliation(s)
- Lien De Wannemaeker
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Indra Bervoets
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Toribio AJ, Suárez-Estrella F, Jurado MM, López-González JA, Martínez-Gallardo MR, López MJ. Design and validation of cyanobacteria-rhizobacteria consortia for tomato seedlings growth promotion. Sci Rep 2022; 12:13150. [PMID: 35909166 PMCID: PMC9339543 DOI: 10.1038/s41598-022-17547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
The use of rhizobacteria provide great benefits in terms of nitrogen supply, suppression of plant diseases, or production of vitamins and phytohormones that stimulate the plant growth. At the same time, cyanobacteria can photosynthesize, fix nitrogen, synthesize substances that stimulate rhizogenesis, plant aerial growth, or even suppose an extra supply of carbon usable by heterotrophic bacteria, as well as act as biological control agents, give them an enormous value as plant growth promoters. The present study focused on the in vitro establishment of consortia using heterotrophic bacteria and cyanobacteria and the determination of their effectiveness in the development of tomato seedlings. Microbial collection was composed of 3 cyanobacteria (SAB-M612 and SAB-B866 belonging to Nostocaceae Family) and GS (unidentified cyanobacterium) and two phosphate and potassium solubilizing heterotrophic bacteria (Pseudomonas putida-BIO175 and Pantoea cypripedii-BIO175). The results revealed the influence of the culture medium, incubation time and the microbial components of each consortium in determining their success as biofertilizers. In this work, the most compatible consortia were obtained by combining the SAB-B866 and GS cyanobacteria with either of the two heterotrophic bacteria. Cyanobacteria GS promoted the growth of both rhizobacteria in vitro (increasing logarithmic units when they grew together). While Cyanobacteria SAB-B866 together with both rhizobacteria stimulated the growth of tomato seedlings in planta, leading to greater aerial development of the treated seedlings. Parameters such as fresh weight and stem diameter stood out in the plants treated with the consortia (SAB-B866 and both bacteria) compared to the untreated plants, where the values doubled. However, the increase was more discrete for the parameters stem length and number of leaves. These results suggest that the artificial formulation of microbial consortia can have positive synergistic effects on plant growth, which is of enormous agro-biotechnological interest.
Collapse
Affiliation(s)
- A J Toribio
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain.
| | - F Suárez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M M Jurado
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J A López-González
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M R Martínez-Gallardo
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M J López
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| |
Collapse
|
35
|
Lemare M, Puja H, David SR, Mathieu S, Ihiawakrim D, Geoffroy VA, Rigouin C. Engineering siderophore production in Pseudomonas to improve asbestos weathering. Microb Biotechnol 2022; 15:2351-2363. [PMID: 35748120 PMCID: PMC9437886 DOI: 10.1111/1751-7915.14099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/25/2022] [Indexed: 11/01/2022] Open
Abstract
Iron plays a key role in microbial metabolism and bacteria have developed multiple siderophore-driven mechanisms due to its poor bioavailability for organisms in the environment. Iron-bearing minerals generally serve as a nutrient source to sustain bacterial growth after bioweathering. Siderophores are high-affinity ferric iron chelators, of which the biosynthesis is tightly regulated by the presence of iron. Pyoverdine-producing Pseudomonas have shown their ability to extract iron and magnesium from asbestos waste as nutrients. However, such bioweathering is rapidly limited due to repression of the pyoverdine pathway and the low bacterial requirement for iron. We developed a metabolically engineered strain of Pseudomonas aeruginosa for which pyoverdine production was no longer repressed by iron as a proof of concept. We compared siderophore-promoted dissolution of flocking asbestos waste by this optimized strain to that by the wild-type strain. Interestingly, pyoverdine production by the optimized strain was seven times higher in the presence of asbestos waste and the dissolution of magnesium and iron from the chrysotile fibres contained in flocking asbestos waste was significantly enhanced. This innovative mineral weathering process contributes to remove toxic iron from the asbestos fibres and may contribute to the development of an eco-friendly method to manage asbestos waste.
Collapse
Affiliation(s)
- Marion Lemare
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Hélène Puja
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien R David
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien Mathieu
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS-UMR7504, IPCMS, 23 Rue du Loess, BP, 43, 67034, Strasbourg, France
| | - Valérie A Geoffroy
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| |
Collapse
|
36
|
Mueller J, Willett H, Feist AM, Niu W. Engineering Pseudomonas putida for Improved Utilization of Syringyl Aromatics. Biotechnol Bioeng 2022; 119:2541-2550. [PMID: 35524438 PMCID: PMC9378539 DOI: 10.1002/bit.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Lignin is a largely untapped source for the bioproduction of value‐added chemicals. Pseudomonas putida KT2440 has emerged as a strong candidate for bioprocessing of lignin feedstocks due to its resistance to several industrial solvents, broad metabolic capabilities, and genetic amenability. Here we demonstrate the engineering of P. putida for the ability to metabolize syringic acid, one of the major products that comes from the breakdown of the syringyl component of lignin. The rational design was first applied for the construction of strain Sy‐1 by overexpressing a native vanillate demethylase. Subsequent adaptive laboratory evolution (ALE) led to the generation of mutations that achieved robust growth on syringic acid as a sole carbon source. The best mutant showed a 30% increase in the growth rate over the original engineered strain. Genomic sequencing revealed multiple mutations repeated in separate evolved replicates. Reverse engineering of mutations identified in agmR, gbdR, fleQ, and the intergenic region of gstB and yadG into the parental strain recaptured the improved growth of the evolved strains to varied extent. These findings thus reveal the ability of P. putida to utilize lignin more fully as a feedstock and make it a more economically viable chassis for chemical production.
Collapse
Affiliation(s)
- Joshua Mueller
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Howard Willett
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.,The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
37
|
Zhong C, Zhou Y, Fu J, Qi X, Wang Z, Li J, Zhang P, Zong G, Cao G. Cadmium stress efficiently enhanced meropenem degradation by the meropenem- and cadmium-resistant strain Pseudomonas putida R51. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128354. [PMID: 35123130 DOI: 10.1016/j.jhazmat.2022.128354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The β-lactam antibiotic meropenem (MEM) is widely used in infectious disease treatment and consequently can be released into the environment, causing environmental pollution. In this study, Pseudomonas putida strain R51 was isolated from the wastewater of a poultry farm and found to efficiently degrade MEM. The genome of strain R51 contains a variety of heavy metal and antibiotic resistance genes, including the metallo-β-lactamase gene (JQN61_03315) and cadmium resistance gene cadA (JQN61_19995). Under cadmium stress, the degradation rate of MEM increased significantly in strain R51. Transcriptional analysis revealed that the expression of JQN61_03315 and cadA significantly increased under cadmium stress and that the expression of many genes associated with heavy metal and antibiotic resistance also changed significantly. Molecular docking analysis suggested that metallo-β-lactamase JQN61_03315 binds to MEM. In addition, no plasmid was found in strain R51, and no mobile genetic elements were found nearby JQN61_03315. In conclusion. we proposed that JQN61_03315 was responsible for the degradation of MEM, that the expression of this gene was induced under cadmium stress, and that strain R51 can be used for bioremediation of MEM without the risk for the transmission of the MEM resistance gene. These findings will have importance for studying the microbial degradation of MEM in the presence of heavy metal pollutants.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiafang Fu
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyu Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhen Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiaqi Li
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Peipei Zhang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Gongli Zong
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
38
|
Gurdo N, Volke DC, Nikel PI. Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends Biotechnol 2022; 40:1148-1159. [DOI: 10.1016/j.tibtech.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
|
39
|
She J, Liu J, He H, Zhang Q, Lin Y, Wang J, Yin M, Wang L, Wei X, Huang Y, Chen C, Lin W, Chen N, Xiao T. Microbial response and adaption to thallium contamination in soil profiles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127080. [PMID: 34523503 DOI: 10.1016/j.jhazmat.2021.127080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.
Collapse
Affiliation(s)
- Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Changzhi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenli Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Nan Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
40
|
Rojas-Gätjens D, Fuentes-Schweizer P, Rojas-Jiménez K, Pérez-Pantoja D, Avendaño R, Alpízar R, Coronado-Ruíz C, Chavarría M. Methylotrophs and Hydrocarbon-Degrading Bacteria Are Key Players in the Microbial Community of an Abandoned Century-Old Oil Exploration Well. MICROBIAL ECOLOGY 2022; 83:83-99. [PMID: 33864491 DOI: 10.1007/s00248-021-01748-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In this work, we studied the microbial community and the physicochemical conditions prevailing in an exploratory oil well, abandoned a century ago, located in the Cahuita National Park (Costa Rica). According to our analysis, Cahuita well is characterized by a continuous efflux of methane and the presence of a mixture of hydrocarbons including phenanthrene/anthracene, fluoranthene, pyrene, dibenzothiophene, tricyclic terpanes, pyrene, sesquiterpenes, sterane, and n-alkanes. Based on the analysis of 16S rRNA gene amplicons, we detected a significant abundance of methylotrophic bacteria such as Methylobacillus (6.3-26.0% of total reads) and Methylococcus (4.1-30.6%) and the presence of common genera associated with hydrocarbon degradation, such as Comamonas (0.8-4.6%), Hydrogenophaga (1.5-3.3%) Rhodobacter (1.0-4.9%), and Flavobacterium (1.1-6.5%). The importance of C1 metabolism in this niche was confirmed by amplifying the methane monooxygenase (MMO)-encoding gene (pmo) from environmental DNA and the isolation of two strains closely related to Methylorubrum rhodesianum and Paracoccus communis with the ability to growth using methanol and formate as sole carbon source respectively. In addition, we were able to isolated 20 bacterial strains from the genera Pseudomonas, Acinetobacter, and Microbacterium which showed the capability to grow using the hydrocarbons detected in the oil well as sole carbon source. This work describes the physicochemical properties and microbiota of an environment exposed to hydrocarbons for 100 years, and it not only represents a contribution to the understanding of microbial communities in environments with permanently high concentrations of these compounds but also has biotechnological implications for bioremediation of petroleum-polluted sites.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Paola Fuentes-Schweizer
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jiménez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Randall Alpízar
- Hidroambiente Consultores, 45, Goicoechea, San José, Costa Rica
| | - Carolina Coronado-Ruíz
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica.
- Escuela de Química, Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
| |
Collapse
|
41
|
Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab Eng 2022; 70:31-42. [PMID: 34982998 DOI: 10.1016/j.ymben.2021.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity. Here, we hypothesized that replacement of PobA, the native P. putida PHBH, with PraI, a PHBH from Paenibacillus sp. JJ-1b with a broader nicotinamide cofactor preference, could alleviate this bottleneck. Biochemical assays confirmed the strict preference of NADPH for PobA, while PraI can utilize either NADH or NADPH. Kinetic assays demonstrated that both PobA and PraI can utilize NADPH with comparable catalytic efficiency and that PraI also efficiently utilizes NADH at roughly half the catalytic efficiency. The X-ray crystal structure of PraI was solved and revealed absolute conservation of the active site architecture to other PHBH structures despite their differing cofactor preferences. To understand the effect in vivo, we compared three P. putida strains engineered to produce MA from p-coumarate (pCA), showing that expression of praI leads to lower 4-HBA accumulation and decreased NADP+/NADPH ratios relative to strains harboring pobA, indicative of a relieved 4-HBA bottleneck due to increased NADPH availability. In bioreactor cultivations, a strain exclusively expressing praI achieved a titer of 40 g/L MA at 100% molar yield and a productivity of 0.5 g/L/h. Overall, this study demonstrates the benefit of sampling readily available natural enzyme diversity for debottlenecking metabolic flux in an engineered strain for microbial conversion of lignin-derived compounds to value-added products.
Collapse
|
42
|
Aparicio T, de Lorenzo V, Martínez-García E. High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy. Methods Mol Biol 2022; 2479:37-52. [PMID: 35583731 DOI: 10.1007/978-1-0716-2233-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to engineer bacterial genomes in an efficient way is crucial for many bio-related technologies. Single-stranded (ss) DNA recombineering technology allows to introduce mutations within bacterial genomes in a very simple and straightforward way. This technology was initially developed for E. coli but was later extended to other organisms of interest, including the environmentally and metabolically versatile Pseudomonas putida. The technology is based on three pillars: (1) adoption of a phage recombinase that works effectively in the target strain, (2) ease of introduction of short ssDNA oligonucleotide that carries the mutation into the bacterial cells at stake and (3) momentary suppression of the endogenous mismatch repair (MMR) through transient expression of a dominant negative mutL allele. In this way, the recombinase protects the ssDNA and stimulates recombination, while MutLE36KPP temporarily inhibits the endogenous MMR system, thereby allowing the introduction of virtually any possible type of genomic edits. In this chapter, a protocol is detailed for easily performing recombineering experiments aimed at entering single and multiple changes in the chromosome of P. putida. This was made by implementing the workflow named High-Efficiency Multi-site genomic Editing (HEMSE), which delivers simultaneous mutations with a simple and effective protocol.
Collapse
Affiliation(s)
- Tomás Aparicio
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | | |
Collapse
|
43
|
Cros A, Alfaro-Espinoza G, De Maria A, Wirth NT, Nikel PI. Synthetic metabolism for biohalogenation. Curr Opin Biotechnol 2021; 74:180-193. [PMID: 34954625 DOI: 10.1016/j.copbio.2021.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
The pressing need for novel bioproduction approaches faces a limitation in the number and type of molecules accessed through synthetic biology. Halogenation is widely used for tuning physicochemical properties of molecules and polymers, but traditional halogenation chemistry often lacks specificity and generates harmful by-products. Here, we pose that deploying synthetic metabolism tailored for biohalogenation represents an unique opportunity towards economically attractive and environmentally friendly organohalide production. On this background, we discuss growth-coupled selection of functional metabolic modules that harness the rich repertoire of biosynthetic and biodegradation capabilities of environmental bacteria for in vivo biohalogenation. By rationally combining these approaches, the chemical landscape of living cells can accommodate bioproduction of added-value organohalides which, as of today, are obtained by traditional chemistry.
Collapse
Affiliation(s)
- Antonin Cros
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gabriela Alfaro-Espinoza
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
| | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
Wilkes RA, Waldbauer J, Aristilde L. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. mBio 2021; 12:e0325921. [PMID: 34903058 PMCID: PMC8669468 DOI: 10.1128/mbio.03259-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Gluconeogenic carbon metabolism is not well understood, especially within the context of flux partitioning between energy generation and biomass production, despite the importance of gluconeogenic carbon substrates in natural and engineered carbon processing. Here, using multiple omics approaches, we elucidate the metabolic mechanisms that facilitate gluconeogenic fast-growth phenotypes in Pseudomonas putida and Comamonas testosteroni, two Proteobacteria species with distinct metabolic networks. In contrast to the genetic constraint of C. testosteroni, which lacks the enzymes required for both sugar uptake and a complete oxidative pentose phosphate (PP) pathway, sugar metabolism in P. putida is known to generate surplus NADPH by relying on the oxidative PP pathway within its characteristic cyclic connection between the Entner-Doudoroff (ED) and Embden-Meyerhoff-Parnas (EMP) pathways. Remarkably, similar to the genome-based metabolic decoupling in C. testosteroni, our 13C-fluxomics reveals an inactive oxidative PP pathway and disconnected EMP and ED pathways in P. putida during gluconeogenic feeding, thus requiring transhydrogenase reactions to supply NADPH for anabolism in both species by leveraging the high tricarboxylic acid cycle flux during gluconeogenic growth. Furthermore, metabolomics and proteomics analyses of both species during gluconeogenic feeding, relative to glycolytic feeding, demonstrate a 5-fold depletion in phosphorylated metabolites and the absence of or up to a 17-fold decrease in proteins of the PP and ED pathways. Such metabolic remodeling, which is reportedly lacking in Escherichia coli exhibiting a gluconeogenic slow-growth phenotype, may serve to minimize futile carbon cycling while favoring the gluconeogenic metabolic regime in relevant proteobacterial species. IMPORTANCE Glycolytic metabolism of sugars is extensively studied in the Proteobacteria, but gluconeogenic carbon sources (e.g., organic acids, amino acids, aromatics) that feed into the tricarboxylic acid (TCA) cycle are widely reported to produce a fast-growth phenotype, particularly in species with biotechnological relevance. Much remains unknown about the importance of glycolysis-associated pathways in the metabolism of gluconeogenic carbon substrates. Here, we demonstrate that two distinct proteobacterial species, through genetic constraints or metabolic regulation at specific metabolic nodes, bypass the oxidative PP pathway during gluconeogenic growth and avoid unnecessary carbon fluxes by depleting protein investment into connected glycolysis pathways. Both species can leverage instead the high TCA cycle flux during gluconeogenic feeding to meet NADPH demand. Importantly, lack of a complete oxidative pentose phosphate pathway is a widespread metabolic trait in Proteobacteria with a gluconeogenic carbon preference, thus highlighting the important relevance of our findings toward elucidating the metabolic architecture in these bacteria.
Collapse
Affiliation(s)
- Rebecca A. Wilkes
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
45
|
Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of Pseudomonas for bioremediation of oxyanions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:773-789. [PMID: 34369104 DOI: 10.1111/1758-2229.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Non-metal, metal and metalloid oxyanions occur naturally in minerals and rocks of the Earth's crust and are mostly found in low concentrations or confined in specific regions of the planet. However, anthropogenic activities including urban development, mining, agriculture, industrial activities and new technologies have increased the release of oxyanions to the environment, which threatens the sustainability of natural ecosystems, in turn affecting human development. For these reasons, the implementation of new methods that could allow not only the remediation of oxyanion contaminants but also the recovery of valuable elements from oxyanions of the environment is imperative. From this perspective, the use of microorganisms emerges as a strategy complementary to physical, mechanical and chemical methods. In this review, we discuss the opportunities that the Pseudomonas genus offers for the bioremediation of oxyanions, which is derived from its specialized central metabolism and the high number of oxidoreductases present in the genomes of these bacteria. Finally, we review the current knowledge on the transport and metabolism of specific oxyanions in Pseudomonas species. We consider that the Pseudomonas genus is an excellent starting point for the development of biotechnological approaches for the upcycling of oxyanions into added-value metal and metalloid byproducts.
Collapse
Affiliation(s)
- Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - José I Jiménez
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| |
Collapse
|
46
|
Lu C, Batianis C, Akwafo EO, Wijffels RH, Martins Dos Santos VAP, Weusthuis RA. When metabolic prowess is too much of a good thing: how carbon catabolite repression and metabolic versatility impede production of esterified α,ω-diols in Pseudomonas putida KT2440. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:218. [PMID: 34801079 PMCID: PMC8606055 DOI: 10.1186/s13068-021-02066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Medium-chain-length α,ω-diols (mcl-diols) are important building blocks in polymer production. Recently, microbial mcl-diol production from alkanes was achieved in E. coli (albeit at low rates) using the alkane monooxygenase system AlkBGTL and esterification module Atf1. Owing to its remarkable versatility and conversion capabilities and hence potential for enabling an economically viable process, we assessed whether the industrially robust P. putida can be a suitable production organism of mcl-diols. RESULTS AlkBGTL and Atf1 were successfully expressed as was shown by oxidation of alkanes to alkanols, and esterification to alkyl acetates. However, the conversion rate was lower than that by E. coli, and not fully to diols. The conversion was improved by using citrate instead of glucose as energy source, indicating that carbon catabolite repression plays a role. By overexpressing the activator of AlkBGTL-Atf1, AlkS and deleting Crc or CyoB, key genes in carbon catabolite repression of P. putida increased diacetoxyhexane production by 76% and 65%, respectively. Removing Crc/Hfq attachment sites of mRNAs resulted in the highest diacetoxyhexane production. When the intermediate hexyl acetate was used as substrate, hexanol was detected. This indicated that P. putida expressed esterases, hampering accumulation of the corresponding esters and diesters. Sixteen putative esterase genes present in P. putida were screened and tested. Among them, Est12/K was proven to be the dominant one. Deletion of Est12/K halted hydrolysis of hexyl acetate and diacetoxyhexane. As a result of relieving catabolite repression and preventing the hydrolysis of ester, the optimal strain produced 3.7 mM hexyl acetate from hexane and 6.9 mM 6-hydroxy hexyl acetate and diacetoxyhexane from hexyl acetate, increased by 12.7- and 4.2-fold, respectively, as compared to the starting strain. CONCLUSIONS This study shows that the metabolic versatility of P. putida, and the associated carbon catabolite repression, can hinder production of diols and related esters. Growth on mcl-alcohol and diol esters could be prevented by deleting the dominant esterase. Carbon catabolite repression could be relieved by removing the Crc/Hfq attachment sites. This strategy can be used for efficient expression of other genes regulated by Crc/Hfq in Pseudomonas and related species to steer bioconversion processes.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Edward Ofori Akwafo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
- Lifeglimmer GmbH, Berlin, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb Biotechnol 2021; 14:2679-2685. [PMID: 33047876 PMCID: PMC8601172 DOI: 10.1111/1751-7915.13678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 10/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
Collapse
Affiliation(s)
- David R. Espeso
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Pavel Dvořák
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrno62500Czech Republic
| | - Tomás Aparicio
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
48
|
Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, Bratti F, Dexter GN, Elmore JR, Huenemann JD, Peabody GL, Johnson CW, Rorrer NA, Salvachúa D, Guss AM, Beckham GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab Eng 2021; 67:250-261. [PMID: 34265401 DOI: 10.1016/j.ymben.2021.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L βKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to βKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.
Collapse
Affiliation(s)
- Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Rita Clare
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Thomas D Mand
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Isabel Pardo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Felicia Bratti
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Gara N Dexter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joshua R Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jay D Huenemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - George L Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Adam M Guss
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
| |
Collapse
|
49
|
|
50
|
Liang T, Sun J, Ju S, Su S, Yang L, Wu J. Construction of T7-Like Expression System in Pseudomonas putida KT2440 to Enhance the Heterologous Expression Level. Front Chem 2021; 9:664967. [PMID: 34336782 PMCID: PMC8322953 DOI: 10.3389/fchem.2021.664967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 has become an attractive chassis for heterologous expression with the development of effective genetic manipulation tools. Improving the level of transcriptional regulation is particularly important for extending the potential of P. putida KT2440 in heterologous expression. Although many strategies have been applied to enhance the heterologous expression level in P. putida KT2440, it was still at a relatively low level. Herein we constructed a T7-like expression system in P. putida KT2440, mimicking the pET expression system in Escherichia coli, which consisted of T7-like RNA polymerase (MmP1) integrated strain and the corresponding expression vector for the heterologous expression enhancement. With the optimization of the insertion site and the copy number of RNA polymerase (RNAP), the relative fluorescence intensity (RFI) of the super-folder green fluorescent protein (sfGFP) was improved by 1.4-fold in MmP1 RNAP integrated strain. The induction point and IPTG concentration were also optimized. This strategy was extended to the gene-reduced strain EM42 and the expression of sfGFP was improved by 2.1-fold. The optimal RNAP integration site was also used for introducing T7 RNAP in P. putida KT2440 and the expression level was enhanced, indicating the generality of the integration site for the T7 expression system. Compared to other inducible expression systems in KT2440, the heterologous expression level of the Mmp1 system and T7 system were more than 2.5 times higher. Furthermore, the 3.6-fold enhanced expression level of a difficult-to-express nicotinate dehydrogenase from Comamonas testosteroni JA1 verified the efficiency of the T7-like expression system in P. putida KT2440. Taken together, we constructed and optimized the T7-like and T7 expression system in P. putida, thus providing a set of applicable chassis and corresponding plasmids to improve recombinant expression level, expecting to be used for difficult-to-express proteins.
Collapse
Affiliation(s)
- Tianxin Liang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jun Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Shuyun Ju
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Shenyi Su
- Hwa Chong Institution, Singapore, Singapore
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|