1
|
Takeda M, Saito R, Konno S, Nagae T, Aoyama H, Yoshinaga S, Terasawa H, Taguchi A, Taniguchi A, Hayashi Y, Mishima M. Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:17-21. [PMID: 39661265 DOI: 10.1007/s12104-024-10210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.
Collapse
Grants
- JP23K06082 Ministry of Education, Culture, Sports, Science and Technology
- JP23K14375 Ministry of Education, Culture, Sports, Science and Technology
- JP23K06568 Ministry of Education, Culture, Sports, Science and Technology
- JP23K27305 Ministry of Education, Culture, Sports, Science and Technology
- JP22H02562 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Rino Saito
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sho Konno
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takayuki Nagae
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Aoyama
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sosuke Yoshinaga
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Terasawa
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
2
|
Kim T, Baek E, Kim J. Exploring Macrocyclic Chemical Space: Strategies and Technologies for Drug Discovery. Pharmaceuticals (Basel) 2025; 18:617. [PMID: 40430438 PMCID: PMC12114740 DOI: 10.3390/ph18050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Macrocycles have emerged as significant therapeutic candidates in drug discovery due to their unique capacity to target complex and traditionally inaccessible biological interfaces. Their structurally constrained three-dimensional configurations facilitate high-affinity interactions with challenging targets, notably protein-protein interfaces. However, despite their potential, the synthesis and optimization of macrocyclic compounds present considerable challenges related to structural complexity, synthetic accessibility, and the attainment of favorable drug-like properties, particularly cell permeability and oral bioavailability. Recent advancements in synthetic methodologies have expanded the chemical space accessible to macrocycles, enabling the creation of structurally diverse and pharmacologically active compounds. Concurrent developments in computational strategies have further enhanced macrocycle design, providing valuable insights into structural optimization and predicting molecular properties essential for therapeutic efficacy. Additionally, a deeper understanding of macrocycles' conformational adaptability, especially their ability to internally shield polar functionalities to improve membrane permeability, has significantly informed their rational design. This review discusses recent innovations in synthetic and computational methodologies that have advanced macrocycle drug discovery over the past five years. It emphasizes the importance of integrating these strategies to overcome existing challenges, illustrating how their synergy expands the therapeutic potential and chemical diversity of macrocycles. Selected case studies underscore the practical impact of these integrated approaches, highlighting promising therapeutic applications across diverse biomedical targets.
Collapse
Affiliation(s)
- Taegwan Kim
- Department of Chemistry, Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Eunbee Baek
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry, Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| |
Collapse
|
3
|
Yang L, Zhang J, Andon JS, Li L, Wang T. Rapid discovery of cyclic peptide protein aggregation inhibitors by continuous selection. Nat Chem Biol 2025; 21:588-597. [PMID: 39806068 PMCID: PMC12019813 DOI: 10.1038/s41589-024-01823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Protein aggregates are associated with numerous diseases. Here we report a platform for the rapid phenotypic selection of protein aggregation inhibitors from genetically encoded cyclic peptide libraries in Escherichia coli based on phage-assisted continuous evolution (PACE). We developed a new PACE-compatible selection for protein aggregation inhibition and used it to identify cyclic peptides that suppress amyloid-β42 and human islet amyloid polypeptide aggregation. Additionally, we integrated a negative selection that removes false positives and off-target hits, greatly improving cyclic peptide selectivity. We show that selected inhibitors are active when chemically resynthesized in in vitro assays. Our platform provides a powerful approach for the rapid discovery of cyclic peptide inhibitors of protein aggregation and may serve as the basis for the future evolution of cyclic peptides with a broad spectrum of inhibitory activities.
Collapse
Affiliation(s)
- Linwei Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jingwei Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James S Andon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Tina Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Li F, Zhang M, Liu C, Cheng J, Yang Y, Peng X, Li Z, Cai W, Yu H, Wu J, Guo Y, Geng H, Fa Y, Zhang Y, Wu D, Yin Y. De novo discovery of a molecular glue-like macrocyclic peptide that induces MCL1 homodimerization. Proc Natl Acad Sci U S A 2025; 122:e2426006122. [PMID: 40131955 PMCID: PMC12002256 DOI: 10.1073/pnas.2426006122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Macrocyclic peptides have emerged as promising drug candidates, filling the gap between small molecules and large biomolecules in drug discovery. The antiapoptotic protein myeloid cell leukemia 1 (MCL1) is crucial for numerous cancers, yet it presents challenges for selective targeting by traditional inhibitors. In this study, we identified a macrocyclic peptide, 5L1, that strongly binds to MCL1, with a dissociation constant (KD) of 7.1 nM. This peptide shows the potential to specifically inhibit the function of MCL1, and demonstrates effective antitumor activity against several blood tumor cell lines with the half maximal inhibitory concentration (IC50) values for cell-penetrating peptide-conjugated 5L1 in the range of 0.6 to 3 μM. Structural analysis revealed that it functions similarly to molecular glue, capable of binding to two MCL1 molecules simultaneously and inducing their homodimerization. This unique mechanism of action distinguishes it from traditional small-molecule MCL1 inhibitors, underscoring the potential of macrocyclic peptides functioning as molecular glues. Moreover, it inspires the development of highly selective inhibitors targeting MCL1 and other related targets with this glue-like mechanism.
Collapse
Affiliation(s)
- Fengwei Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao266061, China
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Chao Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Jie Cheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yawen Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai200030, China
| | - Zhifeng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Wenfeng Cai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Haipeng Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yuyu Guo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | | | - Yun Fa
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao266061, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao266237, China
- Shandong Research Institute of Industrial Technology, Jinan250101, China
| |
Collapse
|
5
|
Lee MA, Brown JS, Farquhar CE, Loas A, Pentelute BL. Affinity selection-mass spectrometry with linearizable macrocyclic peptide libraries. SCIENCE ADVANCES 2025; 11:eadr1018. [PMID: 40106557 PMCID: PMC11922053 DOI: 10.1126/sciadv.adr1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Despite their potential, the preparation of large synthetic macrocyclic libraries for ligand discovery and development has been limited. Here, we produce 100-million-membered macrocyclic libraries containing natural and nonnatural amino acids. Near-quantitative intramolecular disulfide formation is facilitated by rapid oxidation with iodine in solution. After use in affinity selection, treatment with dithiothreitol enables near-quantitative reduction, rendering linear peptide analogs for standard tandem mass spectrometry. We use these libraries to discover macrocyclic binders to cadherin-2 and anti-hemagglutinin antibody clone 12ca5. Structure-activity relationship studies of an initial cadherin-binding peptide [CBP; apparent dissociation constant (Kd) = 53 nanomolar] reveal residues responsible for driving affinity (hotspots) and mutation-tolerant residues (coldspots). Two original macrocyclic libraries are prepared in which these hotspots and coldspots are derivatized with nonnatural amino acids. Following discovery and validation, high-affinity ligands are discovered from the coldspot library, with NCBP-4 demonstrating improved affinity (Kd = 29 nanomolar). Overall, we expect that this work will improve the use of macrocyclic libraries in therapeutic peptide development.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
8
|
Boonpalit K, Chuntakaruk H, Kinchagawat J, Wolschann P, Hannongbua S, Rungrotmongkol T, Nutanong S. Pre-training strategy for antiviral drug screening with low-data graph neural network: A case study in HIV-1 K103N reverse transcriptase. J Comput Chem 2025; 46:e27514. [PMID: 39434589 DOI: 10.1002/jcc.27514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Graph neural networks (GNN) offer an alternative approach to boost the screening effectiveness in drug discovery. However, their efficacy is often hindered by limited datasets. To address this limitation, we introduced a robust GNN training framework, applied to various chemical databases to identify potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) against the challenging K103N-mutated HIV-1 RT. Leveraging self-supervised learning (SSL) pre-training to tackle data scarcity, we screened 1,824,367 compounds, using multi-step approach that incorporated machine learning (ML)-based screening, analysis of absorption, distribution, metabolism, and excretion (ADME) prediction, drug-likeness properties, and molecular docking. Ultimately, 45 compounds were left as potential candidates with 17 of the compounds were previously identified as NNRTIs, exemplifying the model's efficacy. The remaining 28 compounds are anticipated to be repurposed for new uses. Molecular dynamics (MD) simulations on repurposed candidates unveiled two promising preclinical drugs: one designed against Plasmodium falciparum and the other serving as an antibacterial agent. Both have superior binding affinity compared to anti-HIV drugs. This conceptual framework could be adapted for other disease-specific therapeutics, facilitating the identification of potent compounds effective against both WT and mutants while revealing novel scaffolds for drug design and discovery.
Collapse
Affiliation(s)
- Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center for Artificial Intelligence in Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Bangkok, Thailand
| | - Jiramet Kinchagawat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
- CARIVA (Thailand) Company Ltd, Bangkok, Thailand
| | - Peter Wolschann
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Supot Hannongbua
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
9
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
10
|
Matsuda K. Macrocyclizing-thioesterases in bacterial non-ribosomal peptide biosynthesis. J Nat Med 2025; 79:1-14. [PMID: 39214926 PMCID: PMC11735501 DOI: 10.1007/s11418-024-01841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Macrocyclization of peptides reduces conformational flexibilities, potentially leading to improved drug-like properties. However, side reactions such as epimerization and oligomerization often pose synthetic challenges. Peptide-cyclizing biocatalysts in the biosynthesis of non-ribosomal peptides (NRPs) have remarkable potentials as chemoenzymatic tools to facilitate more straightforward access to complex macrocycles. This review highlights the biocatalytic potentials of NRP cyclases, especially those of cis-acting thioesterases, the most general cyclizing machinery in NRP biosynthesis. Growing insights into penicillin-binding protein-type thioesterases, a relatively new group of trans-acting thioesterases, are also summarized.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
11
|
Herrera-Guzmán K, Jaime-Vasconcelos MÁ, Torales E, Chacón I, Gaviño R, García-Ríos E, Cárdenas J, Morales-Serna JA. A practical method for the synthesis of small peptides using DCC and HOBt as activators in H 2O-THF while avoiding the use of protecting groups. RSC Adv 2024; 14:39968-39976. [PMID: 39703739 PMCID: PMC11657080 DOI: 10.1039/d4ra07847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
The synthesis of peptides in solution proceeds through successive steps involving the removal of a protecting group and the formation of the peptide bond. While most methodological efforts have focused on the development of new protecting groups and coupling agents, methodologies based on minimal protecting groups have been less explored. In this research, a peptide synthesis methodology was developed using DCC and HOBt in THF-H2O, avoiding the use of protecting groups, reducing reaction times, and reusing HOBt during successive couplings. The reaction conditions allow the production of peptides that can directly serve as the starting material for the next coupling, leading to the creation of small peptide sequences, which in turn are precursors to biologically important molecules. Here we explore the example of Sansalvamide as a template for other active peptides. Unlike SPPS, our methodology constructs the sequence from the N-terminus to C-terminus. This unique approach could streamline peptide synthesis and facilitate the development of complex peptides efficiently.
Collapse
Affiliation(s)
- Karina Herrera-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Miguel Ángel Jaime-Vasconcelos
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Eréndira Torales
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Itzel Chacón
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Rubén Gaviño
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Eréndira García-Ríos
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - Jorge Cárdenas
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria Ciudad de Mexico 04510 Mexico
| | - José A Morales-Serna
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan Tuxtepec Oaxaca 68301 Mexico
| |
Collapse
|
12
|
Santini BL, Wendel S, Halbwedl N, Knipp A, Zacharias M. cPEPmatch Webserver: A comprehensive tool and database to aid rational design of cyclic peptides for drug discovery. Comput Struct Biotechnol J 2024; 23:3155-3162. [PMID: 39253058 PMCID: PMC11381751 DOI: 10.1016/j.csbj.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Cyclic peptides have emerged as versatile scaffolds in drug discovery due to their stability and specificity. Here, we present the cPEPmatch webserver (accessible at https://t38webservices.nat.tum.de/cpepmatch/), an easy-to-use interface for the rational design of cyclic peptides targeting protein-protein interactions combined with a semi-quantitative evaluation of binding stability. This platform also offers access to a comprehensive database of cyclic peptide crystal structures. We demonstrate the webserver's utility through a series of case studies involving medically relevant protein systems, highlighting its potential to significantly advance drug discovery efforts.
Collapse
Affiliation(s)
- Brianda L Santini
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Stephanie Wendel
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Niklas Halbwedl
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Asha Knipp
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| |
Collapse
|
13
|
Santini BL, Gaardløs M, Wyrzykowski D, Rothemund S, Penk A, Zacharias M, Samsonov SA. Rational design of glycosaminoglycan binding cyclic peptides using cPEPmatch. Comput Struct Biotechnol J 2024; 23:2985-2994. [PMID: 39135886 PMCID: PMC11318538 DOI: 10.1016/j.csbj.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Cyclic peptides present a robust platform for drug design, offering high specificity and stability due to their conformationally constrained structures. In this study, we introduce an updated version of the Cyclic Peptide Matching program (cPEPmatch) tailored for the identification of cyclic peptides capable of mimicking protein-glycosaminoglycan (GAG) binding sites. We focused on engineering cyclic peptides to replicate the GAG-binding affinity of antithrombin III (ATIII), a protein that plays a crucial role in modulating anticoagulation through interaction with the GAG heparin. By integrating computational and experimental methods, we successfully identified a cyclic peptide binder with promising potential for future optimization. MD simulations and MM-GBSA calculations were used to assess binding efficacy, supplemented by umbrella sampling to approximate free energy landscapes. The binding specificity was further validated through NMR and ITC experiments. Our findings demonstrate that the computationally designed cyclic peptides effectively target GAGs, suggesting their potential as novel therapeutic agents. This study advances our understanding of peptide-GAG interactions and lays the groundwork for future development of cyclic peptide-based therapeutics.
Collapse
Affiliation(s)
- Brianda L. Santini
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | | | | | - Sven Rothemund
- Unit Peptide Technologies, Liebigstraße 21, Leipzig, Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | | |
Collapse
|
14
|
Waibl F, Casagrande F, Dey F, Riniker S. Validating Small-Molecule Force Fields for Macrocyclic Compounds Using NMR Data in Different Solvents. J Chem Inf Model 2024; 64:7938-7948. [PMID: 39405498 PMCID: PMC11523072 DOI: 10.1021/acs.jcim.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Macrocycles are a promising class of compounds as therapeutics for difficult drug targets due to a favorable combination of properties: They often exhibit improved binding affinity compared to their linear counterparts due to their reduced conformational flexibility, while still being able to adapt to environments of different polarity. To assist in the rational design of macrocyclic drugs, there is need for computational methods that can accurately predict conformational ensembles of macrocycles in different environments. Molecular dynamics (MD) simulations remain one of the most accurate methods to predict ensembles quantitatively, although the accuracy is governed by the underlying force field. In this work, we benchmark four different force fields for their application to macrocycles by performing replica exchange with solute tempering (REST2) simulations of 11 macrocyclic compounds and comparing the obtained conformational ensembles to nuclear Overhauser effect (NOE) upper distance bounds from NMR experiments. Especially, the modern force fields OpenFF 2.0 and XFF yield good results, outperforming force fields like GAFF2 and OPLS/AA. We conclude that REST2 in combination with modern force fields can often produce accurate ensembles of macrocyclic compounds. However, we also highlight examples for which all examined force fields fail to produce ensembles that fulfill the experimental constraints.
Collapse
Affiliation(s)
- Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Fabio Casagrande
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Fabian Dey
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Darling WTP, Wieske LHE, Cook DT, Aliev AE, Caron L, Humphrys EJ, Figueiredo AM, Hansen DF, Erdélyi M, Tabor AB. The Influence of Disulfide, Thioacetal and Lanthionine-Bridges on the Conformation of a Macrocyclic Peptide. Chemistry 2024; 30:e202401654. [PMID: 38953277 DOI: 10.1002/chem.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cyclisation of peptides by forming thioether (lanthionine), disulfide (cystine) or methylene thioacetal bridges between side chains is established as an important tool to stabilise a given structure, enhance metabolic stability and optimise both potency and selectivity. However, a systematic comparative study of the effects of differing bridging modalities on peptide conformation has not previously been carried out. In this paper, we have used the NMR deconvolution algorithm, NAMFIS, to determine the conformational ensembles, in aqueous solution, of three cyclic analogues of angiotensin(1-7), incorporating either disulfide, or non-reducible thioether or methylene thioacetal bridges. We demonstrate that the major solution conformations are conserved between the different bridged peptides, but the distribution of conformations differs appreciably. This suggests that subtle differences in ring size and bridging structure can be exploited to fine-tune the conformational properties of cyclic peptides, which may modulate their bioactivities.
Collapse
Affiliation(s)
- William T P Darling
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Lianne H E Wieske
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Laurent Caron
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Emily J Humphrys
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Angelo Miguel Figueiredo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
16
|
Thorpe MP, Smith AN, Blackwell DJ, Hopkins CR, Knollmann BC, Akers WS, Johnston JN. The backbone constitution drives passive permeability independent of side chains in depsipeptide and peptide macrocycles inspired by ent-verticilide. Chem Sci 2024; 15:d4sc02758b. [PMID: 39211739 PMCID: PMC11348715 DOI: 10.1039/d4sc02758b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
The number of peptide-like scaffolds found in late-stage drug development is increasing, but a critical unanswered question in the field is whether substituents (side chains) or the backbone drive passive permeability. The backbone is scrutinized in this study. Five series of macrocyclic peptidic compounds were prepared, and their passive permeability was determined (PAMPA, Caco-2), to delineate structure-permeability relationships. Each series was based on the cell-permeable antiarrhythmic compound ent-verticilide, a cyclic oligomeric depsipeptide (COD) containing repeating ester/N-Me amide didepsipeptide monomers. One key finding is that native lipophilic ester functionality can impart a favorable level of permeability, but ester content alone is not the final determinant - the analog with highest P app was discovered by a single ester-to-N-H amide replacement. Furthermore, the relative composition of esters and N-Me amides in a series had more nuanced permeability behavior. Overall, a systematic approach to structure-permeability correlations suggests that a combinatorial-like investigation of functionality in peptidic or peptide-like compounds could better identify leads with optimal passive permeability, perhaps prior to modification of side chains.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Abigail N Smith
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Wendell S Akers
- Pharmaceutical Sciences Research Center, College of Pharmacy, Lipscomb University Nashville TN 37204 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| |
Collapse
|
17
|
Yu Y, Gu M, Guo H, Deng Y, Chen D, Wang J, Wang C, Liu X, Yan W, Huang J. MuCoCP: a priori chemical knowledge-based multimodal contrastive learning pre-trained neural network for the prediction of cyclic peptide membrane penetration ability. Bioinformatics 2024; 40:btae473. [PMID: 39067027 PMCID: PMC11315609 DOI: 10.1093/bioinformatics/btae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
MOTIVATION There has been a burgeoning interest in cyclic peptide therapeutics due to their various outstanding advantages and strong potential for drug formation. However, it is undoubtedly costly and inefficient to use traditional wet lab methods to clarify their biological activities. Using artificial intelligence instead is a more energy-efficient and faster approach. MuCoCP aims to build a complete pre-trained model for extracting potential features of cyclic peptides, which can be fine-tuned to accurately predict cyclic peptide bioactivity on various downstream tasks. To maximize its effectiveness, we use a novel data augmentation method based on a priori chemical knowledge and multiple unsupervised training objective functions to greatly improve the information-grabbing ability of the model. RESULTS To assay the efficacy of the model, we conducted validation on the membrane-permeability of cyclic peptides which achieved an accuracy of 0.87 and R-squared of 0.503 on CycPeptMPDB using semi-supervised training and obtained an accuracy of 0.84 and R-squared of 0.384 using a model with frozen parameters on an external dataset. This result has achieved state-of-the-art, which substantiates the stability and generalization capability of MuCoCP. It means that MuCoCP can fully explore the high-dimensional information of cyclic peptides and make accurate predictions on downstream bioactivity tasks, which will serve as a guide for the future de novo design of cyclic peptide drugs and promote the development of cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION All code used in our proposed method can be found at https://github.com/lennonyu11234/MuCoCP.
Collapse
Affiliation(s)
- Yunxiang Yu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengyun Gu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hai Guo
- The Second Hospital Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yabo Deng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Danna Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Jianwei Wang
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Caixia Wang
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Xia Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjin Yan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinqi Huang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
18
|
Singh S, Gleason CE, Fang M, Laimon YN, Khivansara V, Xie S, Durmaz YT, Sarkar A, Ngo K, Savla V, Li Y, Abu-Remaileh M, Li X, Tuladhar B, Odeh R, Hamkins-Indik F, He D, Membreno MW, Nosrati M, Gushwa NN, Leung SSF, Fraga-Walton B, Hernandez L, Baldomero MP, Lent BM, Spellmeyer D, Luna JF, Hoang D, Gritsenko Y, Chand M, DeMart MK, Metobo S, Bhatt C, Shapiro JA, Yang K, Dupper NJ, Bockus AT, Doench JG, Aggen JB, Liu LF, Levin B, Wang EW, Vendrell I, Fischer R, Kessler B, Gokhale PC, Signoretti S, Spektor A, Kreatsoulas C, Singh R, Earp DJ, Garcia PD, Nijhawan D, Oser MG. Cyclin A/B RxL Macrocyclic Inhibitors to Treat Cancers with High E2F Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605889. [PMID: 39211113 PMCID: PMC11360997 DOI: 10.1101/2024.08.01.605889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
Collapse
|
19
|
Kage M, Hayashi R, Matsuo A, Tamiya M, Kuramoto S, Ohara K, Irie M, Chiyoda A, Takano K, Ito T, Kotake T, Takeyama R, Ishikawa S, Nomura K, Furuichi N, Morita Y, Hashimoto S, Kawada H, Nishimura Y, Nii K, Sase H, Ohta A, Kojima T, Iikura H, Tanada M, Shiraishi T. Structure-activity relationships of middle-size cyclic peptides, KRAS inhibitors derived from an mRNA display. Bioorg Med Chem 2024; 110:117830. [PMID: 38981216 DOI: 10.1016/j.bmc.2024.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag. Here, we describe our examination of the Structure-Activity Relationship (SAR) using X-ray structures for chemical optimization near the site linked to the mRNA tag, equivalent to the C-terminus. Structural modifications near the C-terminus demonstrated a relatively wide range of tolerance for side chains. Furthermore, we show that a single atom modification is enough to change the pharmacokinetic (PK) profile. Since there are four positions where side chain modification is permissible in terms of activity, it is possible to flexibly adjust the pharmacokinetic profile by structurally optimizing the side chain. The side chain transformation findings demonstrated here may be generally applicable to hits obtained from mRNA display libraries.
Collapse
Affiliation(s)
- Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Noriyuki Furuichi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tetsuo Kojima
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| |
Collapse
|
20
|
Dai B, Chen JN, Zeng Q, Geng H, Wu YD. Accurate Structure Prediction for Cyclic Peptides Containing Proline Residues with High-Temperature Molecular Dynamics. J Phys Chem B 2024; 128:7322-7331. [PMID: 39028892 DOI: 10.1021/acs.jpcb.4c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cyclic peptides (CPs) are emerging as promising drug candidates. Numerous natural CPs and their analogs are effective therapeutics against various diseases. Notably, many of them contain peptidyl cis-prolyl bonds. Due to the high rotational barrier of peptide bonds, conventional molecular dynamics simulations struggle to effectively sample the cis/trans-isomerization of peptide bonds. Previous studies have highlighted the high accuracy of the residue-specific force field (RSFF) and the high sampling efficiency of high-temperature molecular dynamics (high-T MD). Herein, we propose a protocol that combines high-T MD with RSFF2C and a recently developed reweighting method based on probability densities for accurate structure prediction of proline-containing CPs. Our method successfully predicted 19 out of 23 CPs with the backbone rmsd < 1.0 Å compared to X-ray structures. Furthermore, we performed high-T MD and density reweighting on the sunflower trypsin inhibitor (SFTI-1)/trypsin complex to demonstrate its applicability in studying CP-complexes containing cis-prolines. Our results show that the conformation of SFTI-1 in aqueous solution is consistent with its bound conformation, potentially facilitating its binding.
Collapse
Affiliation(s)
- Botao Dai
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia-Nan Chen
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qing Zeng
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hao Geng
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Nielsen AL, Bognar Z, Mothukuri GK, Zarda A, Schüttel M, Merz ML, Ji X, Will EJ, Chinellato M, Bartling CRO, Strømgaard K, Cendron L, Angelini A, Heinis C. Large Libraries of Structurally Diverse Macrocycles Suitable for Membrane Permeation. Angew Chem Int Ed Engl 2024; 63:e202400350. [PMID: 38602024 DOI: 10.1002/anie.202400350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.
Collapse
Affiliation(s)
- Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognar
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh K Mothukuri
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anne Zarda
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Edward J Will
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christian R O Bartling
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy
- European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
24
|
Miao J, Ghosh AP, Ho MN, Li C, Huang X, Pentelute BL, Baleja JD, Lin YS. Assessing the Performance of Peptide Force Fields for Modeling the Solution Structural Ensembles of Cyclic Peptides. J Phys Chem B 2024; 128:5281-5292. [PMID: 38785765 PMCID: PMC11163431 DOI: 10.1021/acs.jpcb.4c00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Molecular dynamics simulation is a powerful tool for characterizing the solution structural ensembles of cyclic peptides. However, the ability of simulation to recapitulate experimental results and make accurate predictions largely depends on the force fields used. In our work here, we evaluate the performance of seven state-of-the-art force fields in recapitulating the experimental NMR results in water of 12 benchmark cyclic peptides, consisting of 6 cyclic pentapeptides, 4 cyclic hexapeptides, and 2 cyclic heptapeptides. The results show that RSFF2+TIP3P, RSFF2C+TIP3P, and Amber14SB+TIP3P exhibit similar and the best performance, all recapitulating the NMR-derived structure information on 10 cyclic peptides. Amber19SB+OPC successfully recapitulates the NMR-derived structure information on 8 cyclic peptides. In contrast, OPLS-AA/M+TIP4P, Amber03+TIP3P, and Amber14SBonlysc+GB-neck2 could only recapitulate the NMR-derived structure information on 5 cyclic peptides, the majority of which are not well-structured.
Collapse
Affiliation(s)
- Jiayuan Miao
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Arghya Pratim Ghosh
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Minh Ngoc Ho
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengxi Li
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Xuejian Huang
- Graduate
Program in Pharmacology and Experimental Therapeutics, Graduate School
of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - James D. Baleja
- Graduate
Program in Pharmacology and Experimental Therapeutics, Graduate School
of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Yu-Shan Lin
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
26
|
Development of cyclic peptides that can be administered orally to inhibit disease targets. Nat Chem Biol 2024; 20:551-552. [PMID: 38155305 DOI: 10.1038/s41589-023-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
|
27
|
Merz ML, Habeshian S, Li B, David JAGL, Nielsen AL, Ji X, Il Khwildy K, Duany Benitez MM, Phothirath P, Heinis C. De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol 2024; 20:624-633. [PMID: 38155304 PMCID: PMC11062899 DOI: 10.1038/s41589-023-01496-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.
Collapse
Affiliation(s)
- Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sevan Habeshian
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bo Li
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Alexandre G L David
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Khaled Il Khwildy
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maury M Duany Benitez
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Phoukham Phothirath
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
28
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
29
|
Abstract
Cyclic peptides are fascinating molecules abundantly found in nature and exploited as molecular format for drug development as well as other applications, ranging from research tools to food additives. Advances in peptide technologies made over many years through improved methods for synthesis and drug development have resulted in a steady stream of new drugs, with an average of around one cyclic peptide drug approved per year. Powerful technologies for screening random peptide libraries, and de novo generating ligands, have enabled the development of cyclic peptide drugs independent of naturally derived molecules and now offer virtually unlimited development opportunities. In this review, we feature therapeutically relevant cyclic peptides derived from nature and discuss the unique properties of cyclic peptides, the enormous technological advances in peptide ligand development in recent years, and current challenges and opportunities for developing cyclic peptides that address unmet medical needs.
Collapse
Affiliation(s)
- Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
30
|
Tong Y, Zhang P, Yang X, Liu X, Zhang J, Grudniewska M, Jung I, Abegg D, Liu J, Childs-Disney JL, Gibaut QMR, Haniff HS, Adibekian A, Mouradian MM, Disney MD. Decreasing the intrinsically disordered protein α-synuclein levels by targeting its structured mRNA with a ribonuclease-targeting chimera. Proc Natl Acad Sci U S A 2024; 121:e2306682120. [PMID: 38181056 PMCID: PMC10786272 DOI: 10.1073/pnas.2306682120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
α-Synuclein is an important drug target for the treatment of Parkinson's disease (PD), but it is an intrinsically disordered protein lacking typical small-molecule binding pockets. In contrast, the encoding SNCA mRNA has regions of ordered structure in its 5' untranslated region (UTR). Here, we present an integrated approach to identify small molecules that bind this structured region and inhibit α-synuclein translation. A drug-like, RNA-focused compound collection was studied for binding to the 5' UTR of SNCA mRNA, affording Synucleozid-2.0, a drug-like small molecule that decreases α-synuclein levels by inhibiting ribosomes from assembling onto SNCA mRNA. This RNA-binding small molecule was converted into a ribonuclease-targeting chimera (RiboTAC) to degrade cellular SNCA mRNA. RNA-seq and proteomics studies demonstrated that the RiboTAC (Syn-RiboTAC) selectively degraded SNCA mRNA to reduce its protein levels, affording a fivefold enhancement of cytoprotective effects as compared to Synucleozid-2.0. As observed in many diseases, transcriptome-wide changes in RNA expression are observed in PD. Syn-RiboTAC also rescued the expression of ~50% of genes that were abnormally expressed in dopaminergic neurons differentiated from PD patient-derived iPSCs. These studies demonstrate that the druggability of the proteome can be expanded greatly by targeting the encoding mRNAs with both small molecule binders and RiboTAC degraders.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Peiyuan Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Xueyi Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Xiaohui Liu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Jie Zhang
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Magda Grudniewska
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Ikrak Jung
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Jun Liu
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Quentin M. R. Gibaut
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | | | - M. Maral Mouradian
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| |
Collapse
|
31
|
Konno S, Tanaka M, Mizuguchi T, Toyokai H, Taguchi A, Taniguchi A, Hayashi Y. Peptide mixed phosphonates for covalent complex formation with thioesterases in nonribosomal peptide synthetases. J Pept Sci 2024; 30:e3532. [PMID: 37423887 DOI: 10.1002/psc.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Natural macrocyclic peptides derived from microorganisms are medicinal resources that are important for the development of new therapeutic agents. Most of these molecules are biosynthesized by a nonribosomal peptide synthetase (NRPS). The thioesterase (TE) domain in NRPS is responsible for the macrocyclization of mature linear peptide thioesters in a final biosynthetic step. NRPS-TEs can cyclize synthetic linear peptide analogs and can be utilized as biocatalysts for the preparation of natural product derivatives. Although the structures and enzymatic activities of TEs have been investigated, the substrate recognition and substrate-TE interaction during the macrocyclization step are still unknown. To understand the TE-mediated macrocyclization, here we report the development of a substrate-based analog with mixed phosphonate warheads, which can react irreversibly with the Ser residue at the active site of TE. We have demonstrated that the tyrocidine A linear peptide (TLP) with a p-nitrophenyl phosphonate (PNP) enables efficient complex formation with tyrocidine synthetase C (TycC)-TE containing tyrocidine synthetase.
Collapse
Affiliation(s)
- Sho Konno
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Miyu Tanaka
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoe Mizuguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Haruka Toyokai
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
32
|
Asano D, Takakusa H, Nakai D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics 2023; 16:47. [PMID: 38258058 PMCID: PMC10820198 DOI: 10.3390/pharmaceutics16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
To meet unmet medical needs, middle-to-large molecules, including peptides and oligonucleotides, have emerged as new therapeutic modalities. Owing to their middle-to-large molecular sizes, middle-to-large molecules are not suitable for oral absorption, but there are high expectations around orally bioavailable macromolecular drugs, since oral administration is the most convenient dosing route. Therefore, extensive efforts have been made to create bioavailable middle-to-large molecules or develop absorption enhancement technology, from which some successes have recently been reported. For example, Rybelsus® tablets and Mycapssa® capsules, both of which contain absorption enhancers, were approved as oral medications for type 2 diabetes and acromegaly, respectively. The oral administration of Rybelsus and Mycapssa exposes their pharmacologically active peptides with molecular weights greater than 1000, namely, semaglutide and octreotide, respectively, into systemic circulation. Although these two medications represent major achievements in the development of orally absorbable peptide formulations, the oral bioavailability of peptides after taking Rybelsus and Mycapssa is still only around 1%. In this article, we review the approaches and recent advances of orally bioavailable middle-to-large molecules and discuss challenges for improving their oral absorption.
Collapse
Affiliation(s)
- Daigo Asano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (H.T.); (D.N.)
| | | | | |
Collapse
|
33
|
Serwetnyk M, Crowley VM, Brackett CM, Carter TR, Elahi A, Kommalapati VK, Chadli A, Blagg BSJ. Enniatin A Analogues as Novel Hsp90 Inhibitors that Modulate Triple-Negative Breast Cancer. ACS Med Chem Lett 2023; 14:1785-1790. [PMID: 38116437 PMCID: PMC10726464 DOI: 10.1021/acsmedchemlett.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
The 90 kilo-Dalton heat shock protein (Hsp90) is a molecular chaperone that facilitates the maturation of nascent polypeptides into their biologically active conformation. Because many of the >400 known client protein substrates are implicated in the development/progression of cancer, it is hypothesized that Hsp90 inhibition will simultaneously shut down numerous oncogenic pathways. Unfortunately, most of the small molecule Hsp90 inhibitors that have undergone clinical evaluation thus far have failed due to various toxicities. Therefore, the disruption of Hsp90 protein-protein interactions with cochaperones and/or client substrates has been proposed as an alternative way to achieve Hsp90 inhibition without such adverse events. The hexadepsipeptide Enniatin A (EnnA) has recently been reported to be one such inhibitor that also manifests immunogenic activity. Herein, we report preliminary structure-activity relationship (SAR) studies to determine the structural features that confer this unprecedented activity for an Hsp90 inhibitor. Our studies find that EnnA's branching moieties are necessary for its activity, but some structural modifications are tolerated.
Collapse
Affiliation(s)
- Michael
A. Serwetnyk
- Department
of Chemistry and Biochemistry, Warren Family Research Center for Drug
Discovery and Development, The University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Vincent M. Crowley
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66045, United States
| | - Christopher M. Brackett
- Department
of Chemistry and Biochemistry, Warren Family Research Center for Drug
Discovery and Development, The University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Trever R. Carter
- Department
of Chemistry and Biochemistry, Warren Family Research Center for Drug
Discovery and Development, The University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Asif Elahi
- Georgia
Cancer Center, Medical College of Georgia
at Augusta University, 1410 Laney Walker Boulevard, Augusta, Georgia 30912, United States
| | - Vamsi Krishna Kommalapati
- Georgia
Cancer Center, Medical College of Georgia
at Augusta University, 1410 Laney Walker Boulevard, Augusta, Georgia 30912, United States
| | - Ahmed Chadli
- Georgia
Cancer Center, Medical College of Georgia
at Augusta University, 1410 Laney Walker Boulevard, Augusta, Georgia 30912, United States
| | - Brian S. J. Blagg
- Department
of Chemistry and Biochemistry, Warren Family Research Center for Drug
Discovery and Development, The University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
34
|
García-Castro M, Fuentes-Rios D, López-Romero JM, Romero A, Moya-Utrera F, Díaz-Morilla A, Sarabia F. n-Tuples on Scaffold Diversity Inspired by Drug Hybridisation to Enhance Drugability: Application to Cytarabine. Mar Drugs 2023; 21:637. [PMID: 38132958 PMCID: PMC10744741 DOI: 10.3390/md21120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
A mathematical concept, n-tuples are originally applied to medicinal chemistry, especially with the creation of scaffold diversity inspired by the hybridisation of different commercial drugs with cytarabine, a synthetic arabinonucleoside derived from two marine natural products, spongouridine and spongothymidine. The new methodology explores the virtual chemical-factorial combination of different commercial drugs (immunosuppressant, antibiotic, antiemetic, anti-inflammatory, and anticancer) with the anticancer drug cytarabine. Real chemical combinations were designed and synthesised for 8-duples, obtaining a small representative library of interesting organic molecules to be biologically tested as proof of concept. The synthesised library contains classical molecular properties regarding the Lipinski rules and/or beyond rules of five (bRo5) and is represented by the covalent combination of the anticancer drug cytarabine with ibuprofen, flurbiprofen, folic acid, sulfasalazine, ciprofloxacin, bortezomib, and methotrexate. The insertion of specific nomenclature could be implemented into artificial intelligence algorithms in order to enhance the efficiency of drug-hunting programs. The novel methodology has proven useful for the straightforward synthesis of most of the theoretically proposed duples and, in principle, could be extended to any other central drug.
Collapse
Affiliation(s)
- Miguel García-Castro
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Vale N, Ribeiro E, Cruz I, Stulberg V, Koksch B, Costa B. New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. J Funct Biomater 2023; 14:565. [PMID: 38132819 PMCID: PMC10744333 DOI: 10.3390/jfb14120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the effectiveness of the antineoplastic agent 5-FU in cancer cells by leveraging the unique properties of cationic antimicrobial peptides (CAMPs) and cell-penetrating peptides (CPPs). Traditional anticancer therapies face substantial limitations, including unfavorable pharmacokinetic profiles and inadequate specificity for tumor sites. These drawbacks often necessitate higher therapeutic agent doses, leading to severe toxicity in normal cells and adverse side effects. Peptides have emerged as promising carriers for targeted drug delivery, with their ability to selectively deliver therapeutics to cells expressing specific receptors. This enhances intracellular drug delivery, minimizes drug resistance, and reduces toxicity. In this research, we comprehensively evaluate the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of various AMPs and CPPs to gain insights into their potential as anticancer agents. The peptide synthesis involved a solid-phase synthesis using a Liberty Microwave Peptide Synthesizer. The peptide purity was confirmed via LC-MS and HPLC methods. For the ADMET screening, computational tools were employed, assessing parameters like absorption, distribution, metabolism, excretion, and toxicity. The cell lines A549 and UM-UC-5 were cultured and treated with 5-FU, CAMPs, and CPPs. The cell viability was measured using the MTT assay. The physicochemical properties analysis revealed favorable drug-likeness attributes. The peptides exhibited potential inhibitory activity against CYP3A4. The ADMET predictions indicated variable absorption and distribution characteristics. Furthermore, we assessed the effectiveness of these peptides alone and in combination with 5-FU, a widely used antineoplastic agent, in two distinct cancer cell lines, UM-UC-5 and A549. Our findings indicate that CAMPs can significantly reduce the cell viability in A549 cells, while CPPs exhibit promising results in UM-UC-5 cells. Understanding these multifaceted effects could open new avenues for antiviral and anticancer research. Further, experimental validation is necessary to confirm the mechanism of action of these peptides, especially in combination with 5-FU.
Collapse
Affiliation(s)
- Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Cruz
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Valentina Stulberg
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
36
|
Sasaki T, Kasama T, Nokihara K. A novel cyclic peptide library immobilized on gel-type beads focusing on rapid construction and characterization for comprehensive drug discovery. Chem Biol Drug Des 2023; 102:1327-1335. [PMID: 37658589 DOI: 10.1111/cbdd.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Medium sized molecules such as peptides and macrocycles have recently drawn much attention as potent sources of medicinal lead compounds, whereas the possibility of obtaining a practical drug from them remains limited. The present paper describes a concept of discovering novel medicinal targets or binding modes as well as lead compounds by the one-peptide-on-one-bead (OPOB) technology for comprehensive screening. The difficulty and problems in conventional drug discovery methods that generally deal with one predetermined target are considered. The building blocks used for the present libraries were selected based on previous results in development of peptidic drugs. Each constituent has the common structure of cyclic form prepared by disulfide of cysteinyl residues or thioether linkages, additionally a methionine residue was inserted for the site-specific rapid cleavage by cyanogen bromide to liberate the immobilized peptides allowing reliable characterization by MALDI-TOF-MS/MS without LC-purification. Thus, a high throughput construction method for cyclic peptide libraries as well as characterization of single bead are proposed for drug discovery.
Collapse
|
37
|
Miyazaki K, Sasaki A, Mizuuchi H. Advances in the Evaluation of Gastrointestinal Absorption Considering the Mucus Layer. Pharmaceutics 2023; 15:2714. [PMID: 38140055 PMCID: PMC10747107 DOI: 10.3390/pharmaceutics15122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Because of the increasing sophistication of formulation technology and the increasing polymerization of compounds directed toward undruggable drug targets, the influence of the mucus layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding the complex structure of the mucus layer containing highly glycosylated glycoprotein mucins, lipids bound to the mucins, and water held by glycans interacting with each other is critical. Recent advances in cell culture and engineering techniques have led to the development of evaluation systems that closely mimic the ecological environment and have been applied to the evaluation of gastrointestinal drug absorption while considering the mucus layer. This review provides a better understanding of the mucus layer components and the gastrointestinal tract's biological defense barrier, selects an assessment system for drug absorption in the mucus layer based on evaluation objectives, and discusses the overview and features of each assessment system.
Collapse
Affiliation(s)
- Kaori Miyazaki
- DMPK Research Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama 227-0033, Japan; (A.S.); (H.M.)
| | | | | |
Collapse
|
38
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
39
|
Ehinger FJ, Niehs SP, Dose B, Dell M, Krabbe J, Pidot SJ, Stinear TP, Scherlach K, Ross C, Lackner G, Hertweck C. Analysis of Rhizonin Biosynthesis Reveals Origin of Pharmacophoric Furylalanine Moieties in Diverse Cyclopeptides. Angew Chem Int Ed Engl 2023; 62:e202308540. [PMID: 37650335 DOI: 10.1002/anie.202308540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.
Collapse
Affiliation(s)
- Friedrich J Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sarah P Niehs
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Claudia Ross
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
40
|
Suzuki R, Mattos DR, Kitamura T, Tsujioka R, Kobayashi K, Inuki S, Ohno H, Ishmael JE, McPhail KL, Oishi S. Design of Synthetic Surrogates for the Macrolactone Linker Motif in Coibamide A. ACS Med Chem Lett 2023; 14:1344-1350. [PMID: 37849553 PMCID: PMC10578308 DOI: 10.1021/acsmedchemlett.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
A marine cyanobacterial cyclic depsipeptide, coibamide A (CbA), inhibits the mammalian protein secretory pathway by blocking the Sec61 translocon, which is an emerging drug target for cancer and other chronic diseases. In our previous structure-activity relationship study of CbA, the macrolactone ester linker was replaced with alkyl/alkenyl surrogates to provide synthetically accessible macrocyclic scaffolds. To optimize the cellular bioactivity profile of CbA analogues, novel lysine mimetics having β- and ε-methyl groups have now been designed and synthesized by a stereoselective route. A significant increase in cytotoxicity was observed upon introduction of these two methyl groups, corresponding to the d-MeAla α-methyl and MeThr β-methyl of CbA. All synthetic products retained the ability to inhibit secretion of a model Sec61 substrate. Tandem evaluation of secretory function inhibition in living cells and cytotoxicity was an effective strategy to assess the impact of structural modifications to the linker for ring closure.
Collapse
Affiliation(s)
- Rikito Suzuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rina Tsujioka
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuya Kobayashi
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shinsuke Inuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
41
|
Yan JX, Wu Q, Maity M, Braun DR, Alas I, Wang X, Yin X, Zhu Y, Bell BA, Rajski SR, Ge Y, Richardson DD, Zhong W, Bugni TS. Rapid Unambiguous Structure Elucidation of Streptnatamide A, a New Cyclic Peptide Isolated from A Marine-derived Streptomyces sp. Chemistry 2023; 29:e202301813. [PMID: 37452377 PMCID: PMC10592287 DOI: 10.1002/chem.202301813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Cyclic peptides have been excellent source of drug leads. With the advances in discovery platforms, the pharmaceutical industry has a growing interest in cyclic peptides and has pushed several into clinical trials. However, structural complexity of cyclic peptides brings extreme challenges for structure elucidation efforts. Isotopic fine structure analysis, Nuclear magnetic resonance (NMR), and detailed tandem mass spectrometry rapidly provided peptide sequence for streptnatamide A, a cyclic peptide isolated from a marine-derived Streptomyces sp. Marfey's analysis determined the stereochemistry of all amino acids, enabling the unambiguous structure determination of this compound. A non-ribosomal peptide synthetase biosynthetic gene cluster (stp) was tentatively identified and annotated for streptnatamide A based on the in silico analysis of whole genome sequencing data. These analytical tools will be powerful tools to overcome the challenges for cyclic peptide structure elucidation and accelerate the development of bioactive cyclic peptides.
Collapse
Affiliation(s)
- Jia-Xuan Yan
- Merck & Co., Inc., 126 E. Lincoln Ave, 07065, Rahway, NJ, USA
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
- Current address: Department of Chemistry, Institute of Biomolecular Design & Discovery, Yale University, 06516, West Haven, CT, USA
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Imraan Alas
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Xiao Wang
- Merck & Co., Inc., 126 E. Lincoln Ave, 07065, Rahway, NJ, USA
| | - Xing Yin
- Merck & Co., Inc., 126 E. Lincoln Ave, 07065, Rahway, NJ, USA
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave, 53705, Madison, WI, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 53705, Madison, WI, USA
| | - Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave, 53705, Madison, WI, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, 53705, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, 53706, Madison, WI, USA
| | | | - Wendy Zhong
- Merck & Co., Inc., 126 E. Lincoln Ave, 07065, Rahway, NJ, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, 53705, Madison, WI, USA
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, 600 Highland Ave, 53792, Madison, WI, USA
| |
Collapse
|
42
|
Dougnon G, Ito M. Molecular Descriptors and QSAR Models for Sedative Activity of Sesquiterpenes Administered to Mice via Inhalation. PLANTA MEDICA 2023; 89:1236-1249. [PMID: 35158383 DOI: 10.1055/a-1770-7581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Essential oils are often utilized for therapeutic purposes and are composed of complex structural molecules, including sesquiterpenes, with high molecular weight and potential for stereochemistry. A detailed study on the properties of selected sesquiterpenes was conducted as part of a broader investigation on the effects of sesquiterpenes on the central nervous system. A set of 18 sesquiterpenes, rigorously selected from an original list of 114, was divided into 2 groups i.e., the training and test sets, with each containing 9 compounds. The training set was evaluated for the sedative activity in mice through inhalation, and all compounds were sedatives at any dose in the range of 4 × 10-4-4 × 10-2 mg/cage, except for curzerene. Molecular determinants of the sedative activities of sesquiterpenes were evaluated using quantitative structure-activity relationship (QSAR) and structure-activity relationship (SAR) analyses. An additional test set of six compounds obtained from the literature was utilized for validating the QSAR model. The parental carbonyl cation and an oxygen-containing groups are possible determinants of sedative activity. The QSAR study using multiple regression models could reasonably predict the sedative activity of sesquiterpenes with statistical parameters such as the correlation coefficient r2 = 0.82 > 0.6 and q2 LOO = 0.71 > 0.5 obtained using the leave-one-out cross-validation technique. Molar refractivity and the number of hydrogen bond acceptors were statistically important in predicting the activities. The present study could help predict the sedative activity of additional sesquiterpenes, thus accelerating the process of drug development.
Collapse
Affiliation(s)
- Godfried Dougnon
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Yoshida M, Inaba T, Shibuya Y, Igarashi M, Kigoshi H. Concise Total Synthesis and Biological Evaluation of Pargamicin A and its Diastereomer, Piperazic Acid-containing Cyclopeptides. Chempluschem 2023; 88:e202300339. [PMID: 37492977 DOI: 10.1002/cplu.202300339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
We have accomplished the total synthesis, structure determination, and biological evaluation of pargamicin A and one of its diastereomers. Two key tripeptide segments were synthesized using a linear peptide elongation process that includes the direct coupling of a poorly nucleophilic piperazic acid derivative. The resulting tripeptides were coupled using triphosgene/collidine at ambient temperature leading to a precursor for the final cyclization step. T3P-promoted macrolactamization under high-dilution conditions, followed by the removal of the benzyl protecting group was used to furnish two putative structures of pargamicin A. Comparison of the 1 H and 13 C NMR spectra and the antibacterial activity of the natural and synthetic products successfully revealed that the absolute configuration of the N-hydroxy-Ile residue of pargamicin A is 2S,3S. A biological evaluation of synthetically obtained pargamicin A and its diastereomer suggested that the stereostructure of the cyclic peptide scaffold of the natural product plays a crucial role in determining the strength of its antibacterial activity.
Collapse
Affiliation(s)
- Masahito Yoshida
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tetsuya Inaba
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yuko Shibuya
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Kigoshi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
44
|
Alboreggia G, Udompholkul P, Baggio C, Pellecchia M. Mixture-Based Screening of Focused Combinatorial Libraries by NMR: Application to the Antiapoptotic Protein hMcl-1. J Med Chem 2023. [PMID: 37464766 PMCID: PMC10388297 DOI: 10.1021/acs.jmedchem.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
We report on an innovative ligand discovery strategy based on protein NMR-based screening of a combinatorial library of ∼125,000 compounds that was arranged in 96 distinct mixtures. Using sensitive solution protein NMR spectroscopy and chemical perturbation-based screening followed by an iterative synthesis, deconvolutions, and optimization strategy, we demonstrate that the approach could be useful in the identification of initial binding molecules for difficult drug targets, such as those involved in protein-protein interactions. As an application, we will report novel agents targeting the Bcl-2 family protein hMcl-1. The approach is of general applicability and could be deployed as an effective screening strategy for de novo identification of ligands, particularly when tackling targets involved in protein-protein interactions.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
45
|
Tanada M, Tamiya M, Matsuo A, Chiyoda A, Takano K, Ito T, Irie M, Kotake T, Takeyama R, Kawada H, Hayashi R, Ishikawa S, Nomura K, Furuichi N, Morita Y, Kage M, Hashimoto S, Nii K, Sase H, Ohara K, Ohta A, Kuramoto S, Nishimura Y, Iikura H, Shiraishi T. Development of Orally Bioavailable Peptides Targeting an Intracellular Protein: From a Hit to a Clinical KRAS Inhibitor. J Am Chem Soc 2023. [PMID: 37463267 DOI: 10.1021/jacs.3c03886] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.
Collapse
Affiliation(s)
- Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Noriyuki Furuichi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| |
Collapse
|
46
|
Zhang P, Koch G, Zhang Y, Yang K, Lokey RS. DNA-Compatible Conditions for the Formation of N-Methyl Peptide Bonds. ACS OMEGA 2023; 8:23477-23483. [PMID: 37426286 PMCID: PMC10323948 DOI: 10.1021/acsomega.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
DNA-encoded libraries (DELs) are a powerful platform in drug discovery. Peptides have unique properties that make them attractive pharmaceutical candidates. N-methylation of the peptide backbone can confer beneficial properties such as increased proteolytic stability and membrane permeability. Herein, we evaluate different DEL reaction systems and report a DNA-compatible protocol for forming N-methylated amide bonds. The DNA-compatible, bis(trichloromethyl)carbonate-mediated amide coupling is efficient for the formation of N-methyl peptide bonds, which promises to increase the opportunity to identify passively cell-permeable macrocyclic peptide hits by DNA-encoded technology.
Collapse
Affiliation(s)
- Panpan Zhang
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Grant Koch
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Yankun Zhang
- College
of Letters and Science, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin Yang
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
47
|
Abrigo NA, Dods KK, Makovsky CA, Lohan S, Mitra K, Newcomb KM, Le A, Hartman MCT. Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies. ACS Chem Biol 2023; 18:746-755. [PMID: 36920103 PMCID: PMC11165944 DOI: 10.1021/acschembio.2c00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A key limitation for the development of peptides as therapeutics is their lack of cell permeability. Recent work has shown that short, arginine-rich macrocyclic peptides containing hydrophobic amino acids are able to penetrate cells and reach the cytosol. Here, we have developed a new strategy for developing cyclic cell penetrating peptides (CPPs) that shifts some of the hydrophobic character to the peptide cyclization linker, allowing us to do a linker screen to find cyclic CPPs with improved cellular uptake. We demonstrate that both hydrophobicity and position of the alkylation points on the linker affect uptake of macrocyclic cell penetrating peptides (CPPs). Our best peptide, 4i, is on par with or better than prototypical CPPs Arg9 (R9) and CPP12 under assays measuring total cellular uptake and cytosolic delivery. 4i was also able to carry a peptide previously discovered from an in vitro selection, 8.6, and a cytotoxic peptide into the cytosol. A bicyclic variant of 4i showed even better cytosolic entry than 4i, highlighting the plasticity of this class of peptides toward modifications. Since our CPPs are cyclized via their side chains (as opposed to head-to-tail cyclization), they are compatible with powerful technologies for peptide ligand discovery including phage display and mRNA display. Access to diverse libraries with inherent cell permeability will afford the ability to find cell permeable hits to many challenging intracellular targets.
Collapse
Affiliation(s)
- Nicolas A Abrigo
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Chelsea A Makovsky
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Sandeep Lohan
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Koushambi Mitra
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Kaylee M Newcomb
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Anthony Le
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| |
Collapse
|
48
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
49
|
Moxam J, Naylon S, Richaud AD, Zhao G, Padilla A, Roche SP. Passive Membrane Permeability of Sizable Acyclic β-Hairpin Peptides. ACS Med Chem Lett 2023; 14:278-284. [PMID: 36923919 PMCID: PMC10009788 DOI: 10.1021/acsmedchemlett.2c00486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The recent shift toward increasingly larger drug modalities has created a significant demand for novel classes of compounds with high membrane permeability that can inhibit intracellular protein-protein interactions (PPIs). While major advances have been made in the design of cell-permeable helices, stapled β-sheets, and cyclic peptides, the development of large acyclic β-hairpins lags far behind. Therefore, we investigated a series of 26 β-hairpins (MW > 1.6 kDa) belonging to a chemical space far beyond the Lipinski "rule of five" (fbRo5) and showed that, in addition to their innate plasticity, the lipophilicity of these peptides (log D 7.4 ≈ 0 ± 0.7) can be tuned to drastically improve the balance between aqueous solubility and passive membrane permeability.
Collapse
Affiliation(s)
- Jillene Moxam
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Sarah Naylon
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alexis D. Richaud
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Guangkuan Zhao
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
| | - Alberto Padilla
- Department
of Natural Science, Keiser University, Fort Lauderdale, Florida 33309, United States
| | - Stéphane P. Roche
- Department
of Chemistry and Biochemistry, Florida Atlantic
University, Boca Raton, Florida 33431, United States
- Center
for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
50
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|