1
|
Watson H, Nilsson JÅ, Smith E, Ottosson F, Melander O, Hegemann A, Urhan U, Isaksson C. Urbanisation-associated shifts in the avian metabolome within the annual cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173624. [PMID: 38821291 DOI: 10.1016/j.scitotenv.2024.173624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
While organisms have evolved to cope with predictable changes in the environment, the rapid rate of current global change presents numerous novel and unpredictable stressors to which organisms have had less time to adapt. To persist in the urban environment, organisms must modify their physiology, morphology and behaviour accordingly. Metabolomics offers great potential for characterising organismal responses to natural and anthropogenic stressors at the systems level and can be applied to any species, even without genomic knowledge. Using metabolomic profiling of blood, we investigated how two closely related species of passerine bird respond to the urban environment. Great tits Parus major and blue tits Cyanistes caeruleus residing in urban and forest habitats were sampled during the breeding (spring) and non-breeding (winter) seasons across replicated sites in southern Sweden. During breeding, differences in the plasma metabolome between urban and forest birds were characterised by higher levels of amino acids in urban-dwelling tits and higher levels of fatty acyls in forest-dwelling tits. The suggested higher rates of fatty acid oxidation in forest tits could be driven by habitat-associated differences in diet and could explain the higher reproductive investment and success of forest tits. High levels of amino acids in breeding urban tits could reflect the lack of lipid-rich caterpillars in the urban environment and a dietary switch to protein-rich spiders, which could be of benefit for tackling inflammation and oxidative stress associated with pollution. In winter, metabolomic profiles indicated lower overall levels of amino acids and fatty acyls in urban tits, which could reflect relaxed energetic demands in the urban environment. Our metabolomic profiling of two urban-adapted species suggests that their metabolism is modified by urban living, though whether these changes represent adaptative or non-adaptive mechanisms to cope with anthropogenic challenges remains to be determined.
Collapse
Affiliation(s)
- Hannah Watson
- Department of Biology, Lund University, 223 62 Lund, Sweden.
| | | | - Einar Smith
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Filip Ottosson
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Utku Urhan
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | |
Collapse
|
2
|
Basile AJ, Kreisler A, Hassen R, Singh K, Symes M, Larson G, de Sousa MF, Sweazea KL. Acute metformin induces hyperglycemia in healthy adult mourning doves, Zenaida macroura. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111594. [PMID: 38311294 DOI: 10.1016/j.cbpa.2024.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Birds have the highest blood glucose among vertebrates. Several mechanisms may explain this including the lack of a functional insulin-responsive glucose transport protein, high glucagon concentrations, and reliance on lipid oxidation resulting in the production of gluconeogenic precursors. The hypothesis was that interruption of gluconeogenesis using the diabetes medication metformin would lower glucose concentrations in wild-caught birds. We captured two cohorts of adult mourning doves, Zenaida macroura, and acclimated them to captivity for two weeks. In this crossover study, cohort 1 was administered a single dose of one of the following oral treatments each week: metformin (150 or 300 mg/kg), glycogenolysis inhibitor (2.5 mg/kg 1,4-dideoxy-1,4-imino-D-arabinitol (DAB)), or water (50 μL). Whole blood glucose was measured using a glucometer at baseline, 30, 60, and 120 min following the oral doses. In contrast to mammals and chickens, 300 mg/kg metformin did not alter blood glucose (p > 0.05) whereas 150 mg/kg metformin increased blood glucose compared to water (p = 0.043). To examine whether 150 mg/kg metformin stimulated glycogenolysis, we co-administered 150 mg/kg metformin and 2.5 mg/kg DAB, which prevented the hyperglycemic response. Cohort 2 was administered the same treatments and the early response was examined (0, 5, 10, 15 min). Low-dose metformin increased blood glucose within 5 min (p = 0.039) whereas the high dose had no effect. DAB did not prevent the early response to metformin nor did it alter blood glucose concentrations when administered alone (p = 0.887). In conclusion, metformin increases endogenous blood glucose via glycogenolysis in healthy adult male mourning doves.
Collapse
Affiliation(s)
- Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Avin Kreisler
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ryan Hassen
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Kavita Singh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Maggie Symes
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America
| | - Gale Larson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | | | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America.
| |
Collapse
|
3
|
de Moraes Vilar CSM, Malheiros JM, da Silva PF, Martins EH, Dos Santos Correia LEC, de Oliveira MHV, Colnago LA, de Vasconcelos Silva JAI, Mercadante MEZ. Muscle growth affects the metabolome of the pectoralis major muscle in red-winged tinamou (Rhynchotus rufescens). Poult Sci 2023; 102:103104. [PMID: 37837680 PMCID: PMC10589898 DOI: 10.1016/j.psj.2023.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
The aim of the present study was to identify and quantify the metabolites (metabolome analysis) of the pectoralis major muscle in male red-winged tinamou (Rhynchotus rufescens) selected for growth traits. A selection index was developed for females [body weight (BW), chest circumference (CC), and thigh circumference (TC)] and males [BW, CC, TC, semen volume, and sperm concentration] in order to divide the animals into 2 experimental groups: selection group with a higher index (TinamouS) and commercial group with a lower index (TinamouC). Twenty male offspring of the 2 groups (TinamouS, n = 10; TinamouC, n = 10) were confined for 350 d. The birds were slaughtered and pectoralis major muscle samples were collected, subjected to polar and apolar metabolites extractions and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Analysis of the polar metabolomic profile identified 65 metabolites; 29 of them were differentially expressed between the experimental groups (P < 0.05). The TinamouS groups exhibited significantly higher concentrations (P < 0.05) of 25 metabolites, including anserine, aspartate, betaine, carnosine, creatine, glutamate, threonine, 3-methylhistidine, NAD+, pyruvate, and taurine. Significantly higher concentrations of cysteine, beta-alanine, lactose, and choline were observed in the TinamouC group (P < 0.05). The metabolites identified in the muscle provided information about the main metabolic pathways (higher impact value and P < 0.05), for example, phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; D-glutamine and D-glutamate metabolism; β-alanine metabolism; glycine, serine and threonine metabolism; taurine and hypotaurine metabolism; histidine metabolism; phenylalanine metabolism. The NMR spectra of apolar fraction showed 8 classes of chemical compounds. The metabolome analysis shows that the selection index resulted in the upregulation of polyunsaturated fatty acids, unsaturated fatty acids, phosphocholines, phosphoethanolamines, triacylglycerols, and glycerophospholipids. The present study suggests that, despite few generations, the selection based on muscle growth traits promoted changes in metabolite concentrations in red-winged tinamou.
Collapse
Affiliation(s)
| | | | | | - Eduardo Henrique Martins
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Beattie UK, Fefferman N, Romero LM. Varying intensities of chronic stress induce inconsistent responses in weight and plasma metabolites in house sparrows ( Passer domesticus). PeerJ 2023; 11:e15661. [PMID: 37456877 PMCID: PMC10340100 DOI: 10.7717/peerj.15661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight-all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.
Collapse
Affiliation(s)
- Ursula K. Beattie
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Nina Fefferman
- Departments of Ecology and Evolution, University of Tennessee—Knoxville, Knoxville, Tennessee, United States
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
5
|
Mohr AE, Basile AJ, Sweazea KL. An urban diet differentially alters the gut microbiome and metabolomic profiles compared with a seed diet in mourning doves. Am J Physiol Regul Integr Comp Physiol 2022; 323:R385-R396. [PMID: 35913000 PMCID: PMC9484994 DOI: 10.1152/ajpregu.00323.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsidies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning doves (Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabolomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was significantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae, Oribacterium, and Sanguibacter and decreased circulating LPS in the urban-fed birds. These differences were largely not reflected in the surveyed metabolomes and plasma inflammatory markers. This research supports the notion that the microbial composition in urban doves is impacted by diet, though may only weakly associate with host physiology.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Anthony J Basile
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
6
|
Mohr AE, Jasbi P, Vander Wyst KB, van Woerden I, Shi X, Gu H, Whisner CM, Bruening M. Association of food insecurity on gut microbiome and metabolome profiles in a diverse college-based sample. Sci Rep 2022; 12:14358. [PMID: 35999348 PMCID: PMC9399224 DOI: 10.1038/s41598-022-18515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
Voluntary caloric restriction (e.g., eating disorders) often results in alterations in the gut microbiota composition and function. However, these findings may not translate to food insecurity, where an individual experiences inconsistent access to healthy food options. In this study we compared the fecal microbiome and metabolome of racially and ethnically diverse first year college students (n = 60) experiencing different levels of food access. Students were dichotomized into food secure (FS) and food insecure (FI) groups using a validated, 2-question screener assessing food security status over the previous 30 days. Fecal samples were collected up to 5 days post survey-completion. Gut microbiome and metabolome were established using 16S rRNA amplicon sequencing, targeted liquid chromatography-tandem mass spectrometry, and gas chromatography-mass spectrometry. FI students experienced significantly greater microbial diversity with increased abundance of Enterobacteriaceae and Eisenbergiella, while FS students had greater abundance of Megasphaera and Holdemanella. Metabolites related to energy transfer and gut–brain-axis communication (picolinic acid, phosphocreatine, 2-pyrrolidinone) were elevated in FI students (q < 0.05). These findings suggest that food insecurity is associated with differential gut microbial and metabolite composition for which the future implications are unknown. Further work is needed to elucidate the longitudinal metabolic effects of food insecurity and how gut microbes influence metabolic outcomes.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.,Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA. .,Biodesign Institute Health Through Microbiomes Center, Arizona State University, Tempe, AZ, USA.
| | - Meg Bruening
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Basile AJ, Singh KC, Watson DF, Sweazea KL. Effect of macronutrient and micronutrient manipulation on avian blood glucose concentration: A systematic review. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111279. [PMID: 35902002 DOI: 10.1016/j.cbpa.2022.111279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Animals with natural protections against diabetes complications may provide clues to improve human health. Birds are unique in their ability to avoid hyperglycemia-associated complications (e.g., glycation and oxidative stress) despite having naturally high blood glucose (BG) concentrations. This makes them useful models to elucidate strategies to prevent and/or treat diabetes-related complications in mammals. As diet plays a key role in BG concentration and diabetes risk, this systematic review aimed to summarize the effects of macro and micronutrient manipulation on avian BG. Three databases were searched (PubMed, SCOPUS, and Web of Science) for articles that met inclusion criteria: altered at least one nutrient and measured BG in at least one avian species. The search yielded 91 articles that produced 128 datasets (i.e., one nutrient manipulation in one sample). Across all macronutrient manipulations (n = 69 datasets), 62% reported no change in BG and 23% measured an increase (p < 0.001). Within the macronutrient groups (carbohydrate, lipid, protein, and mixed) most datasets showed no change in BG (67%, 62%, 52%, and 86%, respectively). Across micronutrient manipulations (n = 59 datasets), 51% demonstrated no change and 41% decreased BG (p < 0.001). While manipulations that altered vitamin intake largely produced no change in BG (62%), 48% of datasets examining altered mineral intake found no change and 46% decreased BG. Chromium was the most studied micronutrient (n = 24 datasets), where 67% of datasets reported a decrease in BG. These results suggest birds are largely able to maintain blood glucose homeostasis in response to altered nutrient intake indicative of dietary flexibility.
Collapse
Affiliation(s)
- Anthony J Basile
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Kavita C Singh
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Deborah F Watson
- College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA.
| |
Collapse
|
8
|
Sun J, Wang G, Zhi X, Zhao X, Sun W, Chu Y, Wu X. Efficacy and safety evaluation of acupuncture in the treatment of impaired glucose regulation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27934. [PMID: 34918640 PMCID: PMC8677887 DOI: 10.1097/md.0000000000027934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Impaired of glucose regulation belongs to the stage of prediabetes, which is a state of glucose metabolism between diabetes and normal blood glucose. The prevalence of prediabetes in people over 20 years old in China is significantly higher than that in diabetic patients. If no measures are taken to prevent the transition from prediabetes to diabetes, the number of diabetic patients in China will further increase. This study conducted a meta-analysis of the effectiveness of acupuncture in the treatment of impaired glucose regulation by collecting relevant literatures. METHODS Nine electronic databases: PubMed, EMBASE, Cochrane library, Web of Science, Google Scholar, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, Chinese Scientific and Journal Database, Wan Fang database, and 2 clinical trials register platforms: Chinese Clinical Trial Registry, ClinicalTrials.gov (www.ClinicalTrials.gov/) will be searched for randomized clinical trails of acupuncture for impaired glucose regulation. The screening process will be developed by 2 independent reviewers, and meta-analysis will be performed with RevMan (V5.3.5) software. RESULTS This meta-analysis further confirmed the benefits of acupuncture in the treatment of impaired of glucose regulation. CONCLUSION This study will provide a high-quality evidence of the efficacy and safety of acupuncture on patients with impaired glucose regulation. PROSPERO REGISTRATION NUMBER INPLASY202170058. ETHICS AND DISSEMINATION This systematics review will evaluate the efficacy and safety of acupuncture in the treatment of impaired of glucose regulation. Since all the data included were published, the systematic review did not require ethical approval.
Collapse
Affiliation(s)
- Jiabao Sun
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Gaofeng Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zhi
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuewei Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weichen Sun
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | | | | |
Collapse
|
9
|
Basile AJ, Renner MW, Kayata L, Deviche P, Sweazea KL. A Four-Week Urban Diet Impairs Vasodilation but Not Nutritional Physiology in Wild-Caught Mourning Doves ( Zenaida macroura). Physiol Biochem Zool 2021; 94:241-252. [PMID: 34032554 DOI: 10.1086/714831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractBirds living in urban areas routinely consume anthropogenic foods, but the physiological consequences of this consumption are poorly understood. To address this question, we investigated the effects of an urban diet (UD) in wild, urban-caught mourning doves in a controlled environment. Since anthropogenic foods often contain a high proportion of refined carbohydrate and fat, we predicted that UD consumption alters body mass as well as plasma and tissue metabolites and that it impairs vasodilation. To test this prediction, we compared body mass, various nutritional physiology parameters, and peripheral vasodilation of doves fed an UD (1∶1 ratio of bird seeds and french fries; [Formula: see text]) with those of doves receiving a control diet (CON, bird seed diet; [Formula: see text]) for 4 wk. At the end of the dietary manipulation period, birds were euthanized, and we dissected cranial tibial arteries to measure ex vivo vasodilation in response to acetylcholine treatment after phenylephrine-induced vasoconstriction. We also collected cardiac blood as well as liver, pectoralis, and gastrocnemius muscle samples to measure nutritional metabolite concentrations. Vasodilation of tibial arteries was impaired in UD- compared to CON-fed birds ([Formula: see text]), suggesting the potential for UD consumption to alter cardiovascular function. Body mass, plasma osmolality, glucose, sodium, insulin, triglyceride, uric acid, liver glycogen and triglycerides, and muscle glycogen did not differ between groups. The results suggest that short-term consumption of a diet composed of 50% anthropogenic foods is not associated with major metabolic perturbations in urban mourning doves.
Collapse
|
10
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
11
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|