1
|
Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109368. [PMID: 35589064 DOI: 10.1016/j.cbpc.2022.109368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
Herbivores rarely consume toxic plants. An increase in the proportion of toxic plant secondary metabolites (PSMs) in poisonous plants can promote detoxification and related metabolic capacity of animals. Poisonous plants with thick taproots like Stellera chamaejasme (SC) are important stored food for the plateau zokor (Eospalax baileyi) during the winter and promote the development of detoxification mechanisms in this animal. In this study, plateau zokors were administered gavages of 0.2, 1.05, and 2.10 ml/kg SC water extracts. Serum samples were collected from plateau zokors to measure the levels of transaminases and oxidative stress. Transcriptome analysis was conducted to evaluate the differential genes of multiple metabolic pathways to investigate the relationship between the physiological processes and metabolic adaptation capacity of these animals in response to SC. After SC administration, plateau zokors showed significant hepatic granular degeneration and inflammatory reactions in the liver and aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels increased in a dose-dependent manner. Further, differential expression was also found in the plateau zokor livers, with most enrichment in inflammation and detoxification metabolism pathways. The metabolic adaptation responses in P450 xenobiotic clearance, bile secretion, and pancreatic secretion (Gusb, Hmgcr, Gstm1, Gstp1, and Eobag004630005095) were verified by mRNA network analysis as key factors related to the mechanism. Plateau zokors respond to SC PSMs through changes in liver physiology, biochemistry, and genes in multiple metabolic pathways, validating our hypothesis that plateau zokors can metabolize PSMs when they ingest toxic plants.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China.
| |
Collapse
|
2
|
Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The sixteen (16) designed data set of substituted aryl amine-based triazolopyrimidine were docked against Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) employing Molegro Virtual Docker (MVD) software and their pharmacokinetic property determined through SwissADME predictor.
Results
The docking studies shows compound D16, 5-((6-methoxy-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)benzo[b]thiophen-4-ol to be the most interactive and stable derivative (re-rank score = − 114.205 kcal/mol) resulting from the hydrophobic as well as hydrogen interactions. The hydrogen interaction produced one hydrogen bond with the active residues LEU359 (H∙∙H∙∙O) at a bond distances of 2.2874 Å. All the designed derivatives were found to pass the Lipinski rule of five tests, supporting the drug-likeliness of the designed compounds.
Conclusion
The ADME analysis revealed a perfect concurrence with the Lipinski Ro5, where the derivatives were found to possess good pharmacokinetic properties such as molar refractivity (MR), number of rotatable bonds (nRotb), log of skin permeability (log Kp), blood-brain barrier (BBB). These results could a deciding factor for the optimization of novel antimalarial compounds.
Collapse
|
3
|
Nobler JD, Camp MJ, Crowell MM, Shipley LA, Dadabay C, Rachlow JL, James L, Forbey JS. Preferences of Specialist and Generalist Mammalian Herbivores for Mixtures Versus Individual Plant Secondary Metabolites. J Chem Ecol 2018; 45:74-85. [PMID: 30397901 DOI: 10.1007/s10886-018-1030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023]
Abstract
Herbivores that forage on chemically defended plants consume complex mixtures of plant secondary metabolites (PSMs). However, the mechanisms by which herbivores tolerate mixtures of PSMs are relatively poorly understood. As such, it remains difficult to predict how PSMs, singly or as complex mixtures, influence diet selection by herbivores. Although relative rates of detoxification of PSMs have been used to explain tolerance of PSMs by dietary specialist herbivores, few studies have used the rate of detoxification of individual PSMs to understand dietary preferences of individual herbivores for individual versus mixtures of PSMs. We coupled in vivo experiments using captive feeding trials with in vitro experiments using enzymatic detoxification assays to evaluate the dietary preferences and detoxification capacities of pygmy rabbits (Brachylagus idahoensis), dietary specialists on sagebrush (Artemisia spp.), and mountain cottontails (Sylvilagus nuttallii), dietary generalists. We compared preference for five single PSMs in sagebrush compared to a mixture containing those same five PSMs. We hypothesized that relative preference for individual PSMs would coincide with faster detoxification capacity for those PSMs by specialists and generalists. Pygmy rabbits generally showed little preference among individual PSMs compared to mixed PSMs, whereas mountain cottontails exhibited stronger preferences. Pygmy rabbits had faster detoxification capacities for all PSMs and consumed higher concentrations of individual PSMs versus a mixture than cottontails. However, detoxification capacity for an individual PSM did not generally coincide with preferences or avoidance of individual PSMs by either species. Cottontails avoided, but pygmy rabbits preferred, camphor, the PSM with the slowest detoxification rate by both species. Both species avoided β-pinene despite it having one of the fastest detoxification rate. Taken together our in vivo and in vitro results add to existing evidence that detoxification capacity is higher in dietary specialist than generalist herbivores. However, results also suggest that alternative mechanisms such as absorption and the pharmacological action of individual or mixtures of PSMs may play a role in determining preference of PSMs within herbivore species.
Collapse
Affiliation(s)
- Jordan D Nobler
- Boise State University, 1910 W. University Dr, Boise, ID, 83725, USA.
| | - Meghan J Camp
- Washington State University, PO Box 64, Pullman, WA, 99164, USA
| | - Miranda M Crowell
- University of Nevada, Reno, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Lisa A Shipley
- Washington State University, PO Box 64, Pullman, WA, 99164, USA
| | - Carolyn Dadabay
- College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Janet L Rachlow
- University of Idaho, 875 Perimeter Dr, Moscow, ID, 83844, USA
| | - Lauren James
- College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Jennifer S Forbey
- Boise State University, 1910 W. University Dr, Boise, ID, 83725, USA
| |
Collapse
|
4
|
Abstract
Background Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals) and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended. Methodology/Principal Findings We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992–1993) and one wet season (January-February1994). We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content. Conclusions/Significance Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was scarce for other frugivores and granivores.
Collapse
|
5
|
Torregrossa AM, Azzara AV, Dearing MD. Differential regulation of plant secondary compounds by herbivorous rodents. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01896.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Whalen KE, Sotka EE, Goldstone JV, Hahn ME. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:288-300. [PMID: 20546934 DOI: 10.1016/j.cbpc.2010.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 01/16/2023]
Abstract
Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer.
Collapse
Affiliation(s)
- Kristen E Whalen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
7
|
Campbell EJ, Frost RA, Mosley TK, Mosley JC, Lupton CJ, Taylor CA, Walker JW, Waldron DF, Musser J. Pharmacokinetic differences in exposure to camphor after intraruminal dosing in selectively bred lines of goats1. J Anim Sci 2010; 88:2620-6. [DOI: 10.2527/jas.2009-2585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Fink-Gremmels J. Defense mechanisms against toxic phytochemicals in the diet of domestic animals. Mol Nutr Food Res 2009; 54:249-58. [DOI: 10.1002/mnfr.200900361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Dearing M, Forbey J, McLister J, Santos L. Ambient Temperature Influences Diet Selection and Physiology of an Herbivorous Mammal, Neotoma albigula. Physiol Biochem Zool 2008; 81:891-7. [DOI: 10.1086/588490] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Skopec MM, Haley S, Torregrossa A, Dearing MD. An Oak (Quercus agrifolia) Specialist (Neotoma macrotis) and a Sympatric Generalist (Neotoma lepida) Show Similar Intakes and Digestibilities of Oak. Physiol Biochem Zool 2008; 81:426-33. [DOI: 10.1086/589106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Glendinning JI. How do predators cope with chemically defended foods? THE BIOLOGICAL BULLETIN 2007; 213:252-266. [PMID: 18083965 DOI: 10.2307/25066643] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many prey species (including plants) deter predators with defensive chemicals. These defensive chemicals act by rendering the prey's tissues noxious, toxic, or both. Here, I explore how predators cope with the presence of these chemicals in their diet. First, I describe the chemosensory mechanisms by which predators (including herbivores) detect defensive chemicals. Second, I review the mechanisms by which predators either avoid or tolerate defensive chemicals in prey. Third, I examine how effectively free-ranging predators can overcome the chemical defenses of prey. The available evidence indicates that predators have mixed success overcoming these defenses. This conclusion is based on reports of free-ranging predators rejecting unpalatable but harmless prey, or voluntarily ingesting toxic prey.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, New York 10027, USA.
| |
Collapse
|
12
|
Green AK, Haley SL, Barnes DM, Dearing MD, Karasov WH. Is alpha-pinene a substrate for permeability-glycoprotein in wood rats? J Chem Ecol 2006; 32:1197-211. [PMID: 16770713 DOI: 10.1007/s10886-006-9080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 01/23/2006] [Accepted: 01/28/2006] [Indexed: 10/24/2022]
Abstract
alpha-Pinene is the dominant monoterpene in Juniperus monosperma. Wood rat species in the genus Neotoma that consume J. monosperma vary in their inclusion of it in their wild diet and in their tolerance of whole J. monosperma or alpha-pinene in laboratory feeding trials. A proposed mechanism for variable tolerance is a difference in absorption of alpha-pinene from the small intestine that is mediated by the intestinal transporter permeability glycoprotein (Pgp). To determine if alpha-pinene is a Pgp substrate, we tested whether it can competitively inhibit Pgp and thereby increase the accumulation of a known Pgp substrate (digoxin) in (1) everted sleeves of small intestine from Neotoma stephensi, a juniper specialist, N. albigula, a sympatric generalist that consumes juniper, N. cinerea, a more distantly related generalist, and Sprague-Dawley rats, and (2) in Caco-2 cells that over express Pgp. We also measured Pgp ATPase phosphate production in transfected insect membrane vesicles exposed to alpha-pinene. We found no significant increase in digoxin accumulation with competitive inhibition experiments, and no increase in phosphate production with transfected membranes, at any concentration of alpha-pinene up to 100 muM. To test whether other compounds in juniper affect Pgp activity, we acclimated five N. stephensi to a juniper diet for 5 d, but found no significant effect compared to animals on control diet. Our data suggest that alpha-pinene is not a Pgp substrate.
Collapse
Affiliation(s)
- Adam K Green
- Department of Biology, Santa Barbara City College, CA 93109, USA.
| | | | | | | | | |
Collapse
|
13
|
Sorensen JS, Skopec MM, Dearing MD. Application of Pharmacological Approaches to Plant–Mammal Interactions. J Chem Ecol 2006; 32:1229-46. [PMID: 16770715 DOI: 10.1007/s10886-006-9086-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 01/23/2006] [Accepted: 02/10/2006] [Indexed: 05/10/2023]
Abstract
The dominant theory in the field of mammalian herbivore-plant interactions is that intake, and therefore tolerance, of plant secondary metabolites (PSMs) is regulated by mechanisms that reduce absorption and increase detoxification of PSMs. Methods designed by pharmacologists to measure detoxification enzyme activity, metabolite excretion, and most recently, drug absorption, have been successfully applied by ecologists to study PSM intake in a variety of mammalian study systems. Here, we describe several pharmacological and molecular techniques used to investigate the fate of drugs in human that have potential to further advance knowledge of mammalian herbivore-plant interactions.
Collapse
|
14
|
Sorensen JS, Dearing MD. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J Chem Ecol 2006; 32:1181-96. [PMID: 16770712 DOI: 10.1007/s10886-006-9079-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/12/2005] [Accepted: 01/23/2006] [Indexed: 01/14/2023]
Abstract
The recent discovery of efflux transporters in the gut has revolutionized our understanding of the absorption and bioavailability of pharmaceuticals and other xenobiotics in humans. Despite the celebrity of efflux transporters in the areas of pharmacology and medicine, their significance is only beginning to be realized in the area of plant-herbivore interactions. This review integrates reports on the importance of gut efflux transporters to diet selection by herbivores. The diets of herbivores are laden with toxic plant secondary metabolites (PSMs) that until recently were thought to be processed almost exclusively by detoxification enzymes in the liver. We describe how efflux transporters in the gut may play a critical role in regulating the absorption of PSMs in herbivores and dictating diet selection. Recent studies suggest that the role of efflux transporters in mediating diet selection in herbivores may be as critical as detoxification enzymes. In addition to diet selection, gut efflux transporters have implications for other aspects of plant-animal interactions. They may be significant components of the evolutionary arms race that influences chemical diversity in plants. Furthermore, in agricultural systems, gut efflux transporters may play an important role in the effectiveness of pesticides. This synthesis paper introduces a new direction in plant-herbivore interactions by providing a complementary mechanism, regulated absorption, to detoxification that may define tolerance to PSMs by herbivores.
Collapse
|
15
|
Dearing MD, Foley WJ, McLean S. The Influence of Plant Secondary Metabolites on the Nutritional Ecology of Herbivorous Terrestrial Vertebrates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102003.152617] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, Utah 84112;
| | - William J. Foley
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia;
| | - Stuart McLean
- School of Pharmacy, University of Tasmania, Hobart, Tasmania 7005, Australia;
| |
Collapse
|
16
|
Foley WJ, Moore BD. Plant secondary metabolites and vertebrate herbivores--from physiological regulation to ecosystem function. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:430-5. [PMID: 15939665 DOI: 10.1016/j.pbi.2005.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 05/17/2005] [Indexed: 05/02/2023]
Abstract
Plant secondary metabolites can constrain the diet of vertebrates and these effects can flow through to community dynamics. Recent studies have moved beyond attempting to correlate diet choice with secondary metabolite profiles and instead focus on mechanisms that animals use to detect toxins and to regulate their intake and absorption. These include molecularly determined taste specificity, serotonin-mediated learning and the control of toxin absorption by permeability-glycoproteins. Focus on the detoxification pathways employed by specialist and generalist herbivores has facilitated explicit tests of the long-standing hypothesis that detoxification rates limit feeding. Understanding the molecular basis of differences amongst species in their tolerance of plant secondary metabolites opens many opportunities for understanding the evolutionary history of interactions between vertebrates and their food plants.
Collapse
Affiliation(s)
- William J Foley
- School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|