1
|
She H, Qu Y. Cardiovascular Plasticity and Adaptation of High-Altitude Birds and Mammals. Integr Zool 2025. [PMID: 40400082 DOI: 10.1111/1749-4877.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025]
Abstract
Exposure to a hypoxic environment at high altitudes imposes severe pressure on animals living there, which utilize substantial cardiovascular and respiratory responses to meet the physiological challenge of oxygen requirement. These responses may result from phenotypic plasticity through short-term exposure (i.e., within a generation) to a new environment or shaped by adaptation (i.e., many generations) through long-term evolution. For example, plasticity triggers a sympathetic-mediated adrenergic response, resulting in an elevation of heart rate and hypoxia-induced pulmonary vasoconstriction that eventually contributes to pulmonary hypertension in some animals. Adaptation to high altitudes can drive an increase in muscular capillarization and adaptive cardiac growth, which promote oxygen diffusion and transportation. Exposure to a high-altitude hypoxic environment stimulates excessive erythropoiesis, which has maladaptive effects and contributes to chronic mountain sickness. Maladaptation caused by plasticity at early stages can be reversed during adaptation. Despite extensive research on high-altitude adaptation, the phenotypic changes and genetic variations in cardiovascular systems responding to high-altitude hypoxia remain insufficiently integrated across taxa. While genomic and transcriptomic studies have advanced our understanding, a cross-taxa comparison of cardiovascular adaptations is still incomplete. We here review recent literature on phenotypic plasticity, adaptations, and genetic and transcriptional basis of cardiovascular systems of mammals and birds living in high altitudes with respect to their duration of exposure at high altitudes. By integrating and comparing data across mammalian and avian species, we aim to provide a framework for understanding the plasticity and adaptation of the cardiovascular system in high-altitude environments.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ma X, Wang WX. Molecular Modulation of Threadfin Fish Brain to Hypoxia Challenge and Recovery Revealed by Multi-Omics Profiling. Int J Mol Sci 2025; 26:1703. [PMID: 40004166 PMCID: PMC11855007 DOI: 10.3390/ijms26041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Migratory fish often encounter hypoxic zones during migration, which can lead to varying degrees of hypoxic stress. This issue has become increasingly severe due to human activities and climate change, which have resulted in the expansion of hypoxic zones in aquatic environments. However, there is limited research on how these species respond to hypoxic stress and subsequent recovery. In this study, we used Eleutheronema tetradactylum, a well-recognized migratory and economically valuable fish species, as a model organism. Histological analysis revealed extensive neuronal damage during hypoxia exposure, with limited recovery observed even after 12 h of reoxygenation. Differential gene expression analysis highlighted progressive alterations in genes associated with stress response, neuroactive ligand interactions, and cellular repair mechanisms. Time-series analysis of differentially expressed genes (DEGs) identified critical expression profiles throughout the hypoxia-recovery process and revealed hub genes for each stage. Furthermore, dynamic changes in miRNA expression and proteomic profiles indicated active regulation of several key biological pathways, including MAPK, HIF-1, and ECM-receptor interactions. Through miRNA-mRNA-protein correlation analysis, we propose a model that predicts key regulatory pathways and critical miRNA-mRNA-protein interactions across the various stages of hypoxia-recovery in the brain of E. tetradactylum. This study presents the first integrated analysis of miRNA, mRNA, and protein throughout the entire hypoxia-recovery process in fish brains. The molecular interactions and regulatory pathways identified in this model could serve as valuable biomarkers for future research on hypoxia-recovery mechanisms in fish.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China;
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China;
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Beckman EJ, Vargas Campos W, Benham PM, Schmitt CJ, Cheviron ZA, Witt CC. Selection on embryonic haemoglobin in an elevational generalist songbird. Biol Lett 2022; 18:20220105. [PMCID: PMC9554719 DOI: 10.1098/rsbl.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals developing at high elevation experience a suite of environmental challenges, most notably the low partial pressure of oxygen (PO2) in ambient air. In low PO2, bird species with high-elevation ancestry consistently demonstrate higher hatching success than lowland counterparts, suggesting highland birds are adapted to restricted O2 (hypoxia) in early development. Haemoglobin (Hb), the critical oxygen-transport protein, is a likely target of PO2-related selection across ontogeny since Hb isoforms expressed at distinct developmental stages demonstrate different O2 affinities. To test if Hb function is under PO2-related selection at different ontogenetic stages, we sampled a songbird, the hooded siskin (Spinus magellanicus), across two approximately 4000 m elevational transects. We sequenced all of the loci that encode avian Hb isoforms, and tested for signatures of spatially varying selection by comparing divergence patterns in Hb loci to other loci sampled across the genome. We found strong signatures of diversifying selection at non-synonymous sites in loci that contribute to embryonic (απ, βH) and definitive (βA) Hb isoforms. This is the first evidence for selection on embryonic haemoglobin in high-elevation Neoaves. We conclude that selection on Hb function at brief, but critical stages of ontogeny may be a vital component to high elevation adaptation in birds.
Collapse
Affiliation(s)
- Elizabeth J. Beckman
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Walter Vargas Campos
- Centro de Ornitología y Biodiversidad, Calle Sta. Rita 105, Oficina 202, Santiago de Surco, Lima, Perú
| | - Phred M. Benham
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - C. Jonathan Schmitt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | - Christopher C. Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
High-throughput sequencing revealed the expression profile and potential key molecules of the circular RNAs involved in the process of hypoxic adaptation in Tibetan chickens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Zhang Y, Su W, Zhang B, Ling Y, Kim WK, Zhang H. Comprehensive analysis of coding and non-coding RNA transcriptomes related to hypoxic adaptation in Tibetan chickens. J Anim Sci Biotechnol 2021; 12:60. [PMID: 33934713 PMCID: PMC8091548 DOI: 10.1186/s40104-021-00582-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tibetan chickens, a unique native breed in the Qinghai-Tibet Plateau of China, possess a suite of adaptive features that enable them to tolerate the high-altitude hypoxic environment. Increasing evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play roles in the hypoxic adaptation of high-altitude animals, although their exact involvement remains unclear. RESULTS This study aimed to elucidate the global landscape of mRNAs, lncRNAs, and miRNAs using transcriptome sequencing to construct a regulatory network of competing endogenous RNAs (ceRNAs) and thus provide insights into the hypoxic adaptation of Tibetan chicken embryos. In total, 354 differentially expressed genes (DE genes), 389 differentially expressed lncRNAs (DE lncRNAs), and 73 differentially expressed miRNAs (DE miRNAs) were identified between Tibetan chickens (TC) and control Chahua chickens (CH). GO and KEGG enrichment analysis revealed that several important DE miRNAs and their target DE lncRNAs and DE genes are involved in angiogenesis (including blood vessel development and blood circulation) and energy metabolism (including glucose, carbohydrate, and lipid metabolism). The ceRNA network was then constructed with the predicted DE gene-DE miRNA-DE lncRNA interactions, which further revealed the regulatory roles of these differentially expressed RNAs during hypoxic adaptation of Tibetan chickens. CONCLUSIONS Analysis of transcriptomic data revealed several key candidate ceRNAs that may play high-priority roles in the hypoxic adaptation of Tibetan chickens by regulating angiogenesis and energy metabolism. These results provide insights into the molecular mechanisms of hypoxic adaptation regulatory networks from the perspective of coding and non-coding RNAs.
Collapse
Affiliation(s)
- Ying Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Woyu Su
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA.
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Tang Q, Xu Q, Ding C, Zhang H, Ling Y, Wu C, Fang M. HIF-1 regulates energy metabolism of the Tibetan chicken brain during embryo development under hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 320:R704-R713. [PMID: 33596720 DOI: 10.1152/ajpregu.00052.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Tibetan chicken (Gallus gallus; TBC) is an indigenous breed found in the Qinghai-Tibet Plateau that are well adapted to a hypoxic environment. The energy metabolism of embryonic brains in TBCs under hypoxia has been little reported. This study investigated changes in energy metabolism of the TBC brain during embryo development under hypoxia. We found that TBCs exhibited a change of glycolysis and the tricarboxylic acid cycle during embryo development under hypoxia. Hypoxia-inducible factor (HIF)-1 was potentially involved in this by directly inducing overexpression of pyruvate dehydrogenase kinase 1 (PDK1) and the glycolytic genes hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) to increase glycolysis of TBCs to adapt to hypoxia. Although these may not be unique to TBCs, as we had also found similar results in Dwarf Laying Chickens, a lowland chicken breed, TBCs had a stronger regulating ability. In summary, our study revealed that HIF-1 induced energy metabolism changes in the TBC brain via upregulating expressions of PDK1 and other HIF-1 target genes like HK1 and LDHA to increase glycolysis for TBC hypoxic adaptations during embryo development. It indicates the potential application of TBC energy metabolism research for other animals living on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qinqin Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cui Ding
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Ling
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changxin Wu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens. Sci Rep 2020; 10:11213. [PMID: 32641697 PMCID: PMC7343830 DOI: 10.1038/s41598-020-68178-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The Tibetan chicken is a unique breed that has adapted to the high-altitude hypoxic conditions of the Tibetan plateau. A number of positively selected genes have been reported in these chickens; however, the mechanisms of gene expression for hypoxia adaptation are not fully understood. In the present study, eggs from Tibetan and Chahua chickens were incubated under hypoxic and normoxic conditions, and vascularization in the chorioallantoic membrane (CAM) of embryos was observed. We found that the vessel density index in the CAM of Tibetan chickens was lower than in Chahua chickens under hypoxia conditions. Transcriptomic and proteomic analyses of CAM tissues were performed in Tibetan and Chahua chicken embryos under hypoxic incubation using RNA-Seq and iTRAQ. We obtained 160 differentially expressed genes and 387 differentially expressed proteins that were mainly enriched in angiogenesis, vasculature development, blood vessel morphogenesis, blood circulation, renin-angiotensin system, and HIF-1 and VEGF signaling pathways. Twenty-six genes involved in angiogenesis and blood circulation, two genes involved in ion transport, and six genes that regulated energy metabolism were identified as candidate functional genes in regulating hypoxic adaptation of chicken embryos. This research provided insights into the molecular mechanism of hypoxia adaptation in Tibetan chickens.
Collapse
|
9
|
Liu Y, Sheng L, Ma M, Jin Y. Proteome-based identification of chicken egg yolk proteins associated with antioxidant activity on the Qinghai-Tibetan Plateau. Int J Biol Macromol 2020; 150:1093-1103. [PMID: 31743723 DOI: 10.1016/j.ijbiomac.2019.10.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
In this study, a proteome analysis of Tibetan chicken egg yolk as well as the comparison to that of lowland chicken were performed by label-free quantitative proteomics. A total of 135 proteins were identified and abundances of 19 of these proteins were significantly different between these two groups. These differential proteins were mainly associated with oxidative stress, defense, energy metabolism and tissue development through bioinformatics analysis. To further verify the species-specific diversity of the antioxidant capacity, the antioxidative activities of egg yolk proteins were further invested in vitro and in Caco-2 cells. It was observed that both Tibetan and lowland chicken egg yolk proteins showed antioxidant activities, but the former exerted a much stronger effect. PIT54 and glutathione peroxidase 3 were considered to be antioxidant-related candidate proteins. These results provide substantial evidence for the molecular mechanisms of enhancing physical activity levels of egg yolk proteins, especially with regard to the cross-species protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Yaping Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
10
|
Wang W, Yang Q, Xie K, Wang P, Luo R, Yan Z, Gao X, Zhang B, Huang X, Gun S. Transcriptional Regulation of HMOX1 Gene in Hezuo Tibetan Pigs: Roles of WT1, Sp1, and C/EBPα. Genes (Basel) 2020; 11:genes11040352. [PMID: 32224871 PMCID: PMC7231170 DOI: 10.3390/genes11040352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase 1 (HMOX1) is a stress-inducing enzyme with multiple cardiovascular protective functions, especially in hypoxia stress. However, transcriptional regulation of swine HMOX1 gene remains unclear. In the present study, we first detected tissue expression profiles of HMOX1 gene in adult Hezuo Tibetan pig and analyzed the gene structure. We found that the expression level of HMOX1 gene was highest in the spleen of the Hezuo Tibetan pig, followed by liver, lung, and kidney. A series of 5’ deletion promoter plasmids in pGL3-basic vector were used to identify the core promoter region and confirmed that the minimum core promoter region of swine HMOX1 gene was located at −387 bp to −158 bp region. Then we used bioinformatics analysis to predict transcription factors in this region. Combined with site-directed mutagenesis and RNA interference assays, it was demonstrated that the three transcription factors WT1, Sp1 and C/EBPα were important transcription regulators of HMOX1 gene. In summary, our study may lay the groundwork for further functional study of HMOX1 gene.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1804
| |
Collapse
|
11
|
Maina JN, Igbokwe CO. Comparative morphometric analysis of lungs of the semifossorial giant pouched rat (Cricetomys gambianus) and the subterranean Nigerian mole rat (Cryptomys foxi). Sci Rep 2020; 10:5244. [PMID: 32251351 PMCID: PMC7090082 DOI: 10.1038/s41598-020-61873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa.
| | - Casmir O Igbokwe
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa
- Visiting Postdoctoral Fellow, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
12
|
Maina JN, McCracken KG, Chua B, York JM, Milsom WK. Morphological and morphometric specializations of the lung of the Andean goose, Chloephaga melanoptera: A lifelong high-altitude resident. PLoS One 2017; 12:e0174395. [PMID: 28339478 PMCID: PMC5365123 DOI: 10.1371/journal.pone.0174395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
High altitude flight in rarefied, extremely cold and hypoxic air is a very challenging activity. Only a few species of birds can achieve it. Hitherto, the structure of the lungs of such birds has not been studied. This is because of the rarity of such species and the challenges of preparing well-fixed lung tissue. Here, it was posited that in addition to the now proven physiological adaptations, high altitude flying birds will also have acquired pulmonary structural adaptations that enable them to obtain the large amounts of oxygen (O2) needed for flight at high elevation, an environment where O2 levels are very low. The Andean goose (Chloephaga melanoptera) normally resides at altitudes above 3000 meters and flies to elevations as high as 6000 meters where O2 becomes limiting. In this study, its lung was morphologically- and morphometrically investigated. It was found that structurally the lungs are exceptionally specialized for gas exchange. Atypically, the infundibulae are well-vascularized. The mass-specific volume of the lung (42.8 cm3.kg-1), the mass-specific respiratory surface area of the blood-gas (tissue) barrier (96.5 cm2.g-1) and the mass-specific volume of the pulmonary capillary blood (7.44 cm3.kg-1) were some of the highest values so far reported in birds. The pulmonary structural specializations have generated a mass-specific total (overall) pulmonary morphometric diffusing capacity of the lung for oxygen (DLo2) of 0.119 mlO2.sec-1.mbar-1.kg-1, a value that is among some of the highest ones in birds that have been studied. The adaptations of the lung of the Andean goose possibly produce the high O2 conductance needed to live and fly at high altitude.
Collapse
Affiliation(s)
- John N. Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- * E-mail:
| | - Kevin G. McCracken
- Department of Biology and Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Florida, United States of America
| | - Beverly Chua
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Julia M. York
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Huang S, Zhang L, Rehman MU, Iqbal MK, Lan Y, Mehmood K, Zhang H, Qiu G, Nabi F, Yao W, Wang M, Li J. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens. PLoS One 2017; 12:e0173698. [PMID: 28282429 PMCID: PMC5345845 DOI: 10.1371/journal.pone.0173698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/25/2017] [Indexed: 01/21/2023] Open
Abstract
Tibial dyschondroplasia (TD) is one of the most common problems in the poultry industry and leads to lameness by affecting the proximal growth plate of the tibia. However, due to the unique environmental and geographical conditions of Tibet, no case of TD has been reported in Tibetan chickens (TBCs). The present study was designed to investigate the effect of high altitude hypoxia on blood parameters and tibial growth plate development in chickens using the complete blood count, morphology, and histological examination. The results of this study showed an undesirable impact on the overall performance, body weight, and mortality of Arbor Acres chickens (AACs) exposed to a high altitude hypoxic environment. However, AACs raised under hypoxic conditions showed an elevated number of red blood cells (RBCs) and an increase in hemoglobin and hematocrit values on day 14 compared to the hypobaric normoxia group. Notably, the morphology and histology analyses showed that the size of tibial growth plates in AACs was enlarged and that the blood vessel density was also higher after exposure to the hypoxic environment for 14 days, while no such change was observed in TBCs. Altogether, our results revealed that the hypoxic environment has a potentially new role in increasing the blood vessel density of proximal tibial growth plates to strengthen and enhance the size of the growth plates, which may provide new insights for the therapeutic manipulation of hypoxia in poultry TD.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanfang Lan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gang Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi Tibet, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Faculty of Veterinary & Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences Uthal, Balochistan, Pakistan
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi Tibet, People's Republic of China
- * E-mail:
| |
Collapse
|
14
|
Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Genome Biol Evol 2016; 8:765-76. [PMID: 26907498 PMCID: PMC4824011 DOI: 10.1093/gbe/evw032] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Wenyu Gou
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jun Ma
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Hongliang Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Ying Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Gou W, Peng J, Wu Q, Zhang Q, Zhang H, Wu C. Expression pattern of heme oxygenase 1 gene and hypoxic adaptation in chicken embryos. Comp Biochem Physiol B Biochem Mol Biol 2014; 174:23-8. [PMID: 24947210 DOI: 10.1016/j.cbpb.2014.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/09/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
Abstract
Heme oxygenase 1 (HO-1), a rate-limiting enzyme of heme catabolism, has a crucial role of cytoprotective functions under hypoxia. The objective of the present study was to investigate potential differences in protective effect of HO-1 gene on chicken (Gallus gallus) embryo lung during late incubation. At embryonic day (D) D16, D18, D19, and D20 of incubation, the expression of HO-1 in the lungs of chicken embryos (Tibet and Shouguang chickens) incubated in normoxic (21% O2) and hypoxic (13% O2) conditions was measured. SNPs were screened within 5'-flanking region and coding regions with PCR-sequencing and the genotype of the SNPs was determined with PCR-RFLP in Tibet, Chahua and Shouguang chicken populations. In conclusion, the Tibet chicken had higher HO-1 expression on D19 under hypoxic incubation and had two SNPs with different frequency distributions from other chicken breeds, which might be a way that the Tibet chicken had hereditary adaptation to hypoxia during embryonic development.
Collapse
Affiliation(s)
- Wenyu Gou
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Junfei Peng
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Qian Wu
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
| | - Qian Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Changxin Wu
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Liu C, Zhang L, Li N. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:638-44. [DOI: 10.1016/j.cbpa.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 11/16/2022]
|
17
|
Scott GR. Elevated performance: the unique physiology of birds that fly at high altitudes. ACTA ACUST UNITED AC 2011; 214:2455-62. [PMID: 21753038 DOI: 10.1242/jeb.052548] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Birds that fly at high altitudes must support vigorous exercise in oxygen-thin environments. Here I discuss the characteristics that help high fliers sustain the high rates of metabolism needed for flight at elevation. Many traits in the O(2) transport pathway distinguish birds in general from other vertebrates. These include enhanced gas-exchange efficiency in the lungs, maintenance of O(2) delivery and oxygenation in the brain during hypoxia, augmented O(2) diffusion capacity in peripheral tissues and a high aerobic capacity. These traits are not high-altitude adaptations, because they are also characteristic of lowland birds, but are nonetheless important for hypoxia tolerance and exercise capacity. However, unique specializations also appear to have arisen, presumably by high-altitude adaptation, at every step in the O(2) pathway of highland species. The distinctive features of high fliers include an enhanced hypoxic ventilatory response, an effective breathing pattern, larger lungs, haemoglobin with a higher O(2) affinity, further augmentation of O(2) diffusion capacity in the periphery and multiple alterations in the metabolic properties of cardiac and skeletal muscle. These unique specializations improve the uptake, circulation and efficient utilization of O(2) during high-altitude hypoxia. High-altitude birds also have larger wings than their lowland relatives to reduce the metabolic costs of staying aloft in low-density air. High fliers are therefore unique in many ways, but the relative roles of adaptation and plasticity (acclimatization) in high-altitude flight are still unclear. Disentangling these roles will be instrumental if we are to understand the physiological basis of altitudinal range limits and how they might shift in response to climate change.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
18
|
Rana MS, Riggs AF. Indefinite noncooperative self-association of chicken deoxy hemoglobin D. Proteins 2011; 79:1499-512. [PMID: 21337627 DOI: 10.1002/prot.22978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/04/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022]
Abstract
The minor tetrameric hemoglobin (Hb), Hb D, of chicken red blood cells self-associates upon deoxygenation. This self-association enhances the cooperativity of oxygen binding. The maximal Hill coefficient is greater than 4 at high Hb concentrations. Previous measurements at low Hb concentrations were consistent with a monomer-to-dimer equilibrium and an association constant of ∼1.3-1.6 × 10(4) M(-1). Here, the Hb tetramer is considered as the monomer. However, new results indicate that the association extends beyond the dimer. We show by combination of Hb oligomer modeling and sedimentation velocity analyses that the data can be well described by an indefinite noncooperative or isodesmic association model. In this model, the deoxy Hb D associates noncooperatively to give a linear oligomeric chain with an equilibrium association constant of 1.42 × 10(4) M(-1) at 20°C for each step. The data are also well described by a monomer-dimer-tetramer equilibrium model with monomer-to-dimer and dimer-to-tetramer association constants of 1.87 and 1.03 × 10(4) M(-1) at 20°C, respectively. A hybrid recombinant Hb D was prepared with recombinant α(D)-globin and native β-globin to give a Hb D tetramer (α(2)(D)β(2)). This rHb D undergoes decreased deoxygenation-dependent self-association compared with the native Hb D. Residue glutamate 138 has previously been proposed to influence intertetramer interactions. Our results with recombinant Hb D show that Glu138 plays no role in deoxy Hb D intertetramer interactions.
Collapse
Affiliation(s)
- Mitra S Rana
- Section of Neurobiology, School of Biological Sciences, University of Texas, Austin, Texas 78712-0252, USA
| | | |
Collapse
|
19
|
A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0392-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Liu C, Zhang LF, Song ML, Bao HG, Zhao CJ, Li N. Highly efficient dissociation of oxygen from hemoglobin in Tibetan chicken embryos compared with lowland chicken embryos incubated in hypoxia. Poult Sci 2010; 88:2689-94. [PMID: 19903969 DOI: 10.3382/ps.2009-00311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen is one of the critical determinants for normal embryonic and fetal development. In avian embryos, lack of oxygen will lead to high fetal mortality, heteroplasia, and cardiovascular dysfunction. Tibetan chicken is a breed native to Tibet that could survive and keep higher hatchability regardless of negative effects of hypoxia. Generally, adaptive animals in high altitudes are characterized by higher hemoglobin concentrations and oxygen affinity. In the present study, the capacity of oxygen supply in late chick embryo (including d 17, 19, and 21) was compared between Tibetan chicken and a lowland breed, Dwarf White chicken, by determining the hemoglobin concentrations and oxygen equilibrium curves in both hypoxic (13% O(2)) and normoxic (21% O(2)) conditions. The results showed that a higher level of hemoglobin concentration was induced by hypoxia in Tibetan chicken embryos, and the hemoglobin could perform with better cooperativity and deliver oxygen to tissues more easily. Further investigation revealed that the carbonic anhydrase II mRNA in red blood cells of Tibetan chicken was increasingly induced to a higher level in hypoxia than that of the lowland breed. These results suggested that the stronger capacity of oxygen dissociation was an important characteristic of Tibetan chicken embryo to survive in hypoxia and the upregulating mode of carbonic anhydrase II mRNA might assist this dissociation. Therefore, for avian at high altitudes, the efficient dissociation of oxygen might reveal another aspect associated with the hypoxia adaptability.
Collapse
Affiliation(s)
- C Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
21
|
Function of inducible nitric oxide synthase on adaptability to hypoxia in Tibetan chicken. YI CHUAN = HEREDITAS 2009; 31:400-6. [DOI: 10.3724/sp.j.1005.2009.00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Zhang H, Wang XT, Chamba Y, Ling Y, Wu CX. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult Sci 2008; 87:2112-6. [PMID: 18809874 DOI: 10.3382/ps.2008-00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The experiments were conducted to assess how hatching performance is affected by chicken breeds and environment of high altitude and to analyze the vital factor of the low hatchability at a 2,900-m altitude. Eggs of Tibetan and Dwarf chickens were incubated at conditions of normobaric normoxia, normobaric hypoxia, hypobaric hypoxia, and supplemental O2 at high altitude (hypobaric normoxia) during the whole incubation or at 0 to 7, 8 to 14, and 15 to 22 d of incubation, respectively. The results showed that the Tibetan chickens had greater hatchability (79.72%), lower water loss (12.90%), greater relative embryo weight (38.08%), and relative chick weight (68.41%) compared with the Dwarf chickens (31.69, 15.79, 30.71, and 65.21%, respectively) when both of them were incubated at a 2,900-m altitude. The hatchability was 71.60% in Tibetan chicken and 36.23% in Dwarf chicken under the normobaric hypoxia condition. The hatchability of chicken was efficiently increased with supplemental O2. The previous results indicated that the O2 deficit is the main factor resulting in the low hatchability and the poor chick quality of the lowland chicken breed when incubated at a 2,900-m altitude. Breeding chickens for adaptability to hypoxia and supplemental O2 is a good way to improve the hatchability and chick quality at that altitude.
Collapse
Affiliation(s)
- H Zhang
- College of Animal Science and Technology, China Agricultural University, Bejing, China 100193
| | | | | | | | | |
Collapse
|