1
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
2
|
Zhang XF, Cui W, Wang MJ, Zhou Y, Fu TT, Jiang K, Hou YM, Tang BZ. Role of prophenoloxidase 1 from the beetle Octodonta nipae in melanized encapsulation of a wasp egg. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105082. [PMID: 37858613 DOI: 10.1016/j.dci.2023.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Exploring the function of the host immune system can help to understand the host-parasitoid interaction. Prophenoloxidase (PPO) is crucial in defensive melanization during the encapsulation of wasp eggs. However, the existence of multiple PPO sequences increases the difficulty of exploring the specific functions of individual PPOs. We previously identified three PPOs in the nipa palm hispid beetle, Octodonta nipae. Our current work showed that OnPPO1 and OnPPO2 possessed the typical characteristics of the type III copper family, but OnPPO3 lacked the conserved histidine residues, and its active sites were substituted with Gln. OnPPOs showed the highest expression in hemocytes, but OnPPO3 presented extremely low abundance compared with that of OnPPO1 and OnPPO2, and only OnPPO1 showed a quick response after wasp infection. OnPPO1 knockdown decreased the encapsulation index and inhibited melanization, whereas silencing of OnPPO3 appeared to have no adverse effect on encapsulation and melanization, and silencing of OnPPO2 presented low RNAi efficiency. Moreover, the cleavage of recombinant OnPPO1 produced a 62 kDa fragment with high PO activity. OnPPO1 could be produced by oenocytoids, granulocytes and plasmatocytes, and was distributed around wasp eggs during capsule formation. Overall, our results indicate that proteolytic cleavage of OnPPO1 plays key roles in the melanized encapsulation of wasp eggs. This finding illuminates the mechanism of PPO activation in this invasive beetle and provides guidance for its biological control.
Collapse
Affiliation(s)
- Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mou-Jun Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting-Ting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kun Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
The Entomopathogenic Nematodes H. bacteriophora and S. carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta nipae (Coleoptera: Chrysomelidae). LIFE (BASEL, SWITZERLAND) 2022; 12:life12071019. [PMID: 35888107 PMCID: PMC9323948 DOI: 10.3390/life12071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Entomopathogenic nematodes are biocontrol agents of invasive insect pests in soil and cryptic habitats. Nipa palm hispid, Octodonta nipae, is a pest of palm trees in Sothern China. To address its increasing damage, environmentally friendly control methods are required. This study aimed to test efficacy of Heterorhabditis bacteriophora and Steinernema carpocapsae on O. nipae and investigated the influence of secondary metabolites, nematodes, and their isolated cuticles on the activation of O. nipae’s prophenoloxidase system using qPCR analysis. Our data revealed that O. nipae were less susceptible to H. bacteriophora than S. carpocapsae and penetrations of infective juveniles were higher with S. carpocapsae treatment than H. bacteriophora. Moreover, expression levels of the serine protease P56, prophenoloxidase activation factor 1, PPO and serine protease inhibitor 28 upon S. carpocapsae and H. bacteriophora infections were generally downregulated at all times. However, upon heating, the cuticles lost their inhibitory effects and resulted in upregulation of the PPO gene. Similarly, the addition of arachidonic acid reversed the process and resulted in the upregulation of the PPO gene compared to the control. Further work is needed to identify toxic substances secreted by these EPNs to evade O. nipae’s immune system.
Collapse
|
4
|
Pereira HC, Pereira FF, Fernandes WC, Carneiro ZF, Lucchetta JT, Andrade GS, Zanuncio JC. Parasitism rate of Plutella xylostella (Lepidoptera: Plutellidae) larvae in greenhouse by Tetrastichus howardi (Hymenoptera: Eulophidae) females at different densities. BRAZ J BIOL 2022; 82:e263443. [DOI: 10.1590/1519-6984.263443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Parasitoids control insect pests, but their number per host affects their efficiency. The objective of this work was to evaluate the best density of Tetrastichus howardi (Olliff, 1893) (Hymenoptera: Eulophidae) individuals parasitizing fourth instar Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) larvae in greenhouse conditions. These larvae were exposed to parasitism by T. howardi females with 1:1, 3:1, 6:1, 9:1, 12:1, 15:1 and 18:1 parasitoid/host ratios with 10 replications during 96 hours. After this period the larvae were kept on host plants (Brassica oleracea) until pupa formation. Tetrastichus howardi parasitized and reproduced in P. xylostella larvae at all its densities tested, but with higher values, 84% and 10 ± 2.4 individuals, respectively, with 9:1 parasitoids/host. Nine T. howardi females per P. xylostella larvae are the adequate number to manage this insect pest.
Collapse
|
5
|
Vommaro ML, Kurtz J, Giglio A. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). INSECTS 2021; 12:insects12050423. [PMID: 34066849 PMCID: PMC8151185 DOI: 10.3390/insects12050423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated at molecular and physiological levels, but information on morphological and functional characteristics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated overview of the morphology of circulating immune cells from mealworm beetle adults, using light and transmission electron microscopy. Based on their affinities for May-Grünwald Giemsa stain, haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circulating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation, turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical tests revealed differences in the distribution of carbohydrates among cell types underling the great plasticity of the immune response and the direct involvement of circulating immune cells in the resource allocation. In addition, our results provide a detailed morphological description of vesicle trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-098-449-2982; Fax: +39-098-449-2986
| |
Collapse
|
6
|
Variation in Parasitoid Virulence of Tetrastichus brontispae during the Targeting of Two Host Beetles. Int J Mol Sci 2021; 22:ijms22073581. [PMID: 33808261 PMCID: PMC8036858 DOI: 10.3390/ijms22073581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity.
Collapse
|
7
|
Zhang XM, Zhang HJ, Liu M, Liu B, Zhang XF, Ma CJ, Fu TT, Hou YM, Tang BZ. Cloning and Immunosuppressive Properties of an Acyl-Activating Enzyme from the Venom Apparatus of Tetrastichus brontispae (Hymenoptera: Eulophidae). Toxins (Basel) 2019; 11:E672. [PMID: 31752154 PMCID: PMC6891662 DOI: 10.3390/toxins11110672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/16/2022] Open
Abstract
Venom injected into the host plays vital roles in facilitating successful parasitization and development for parasitoid wasps, especially those devoid of polydnavirus, and the abundant venom proteins appear to be most likely involved in parasitization success. Previously, we found the four most abundant venom proteins, including 4-coumarate:CoA ligase-like 4 (4CL4-like), in the Tetrastichus brontispae (Hymenoptera: Eulophidae) venom apparatus. In this study, we cloned, expressed T. brontispae 4CL4-like (Tb4CL4-like) in Escherichia coli, and investigated its immunosuppressive properties. The deduced amino acid sequence for Tb4CL4-like shares high identity at conserved amino acids associated with the acyl-activating enzyme (AAE) consensus motif but shows only <40% identity with the members in the AAE superfamily. mRNA abundance analysis indicated that Tb4CL4-like was transcribed mainly in the venom apparatus. Recombinant Tb4CL4-like inhibited Octodonta nipae (Coleoptera: Chrysomelidae) pupal cellular encapsulation and spreading by targeting the hemocyte cytoskeleton and reduced the hemocyte-mediated phagocytosis of E. coli in vivo. Moreover, Tb4CL4-like exhibited greater affinity to palmitic acid and linolenic acid based on the molecular docking assay and is hypothesized to be involved in fatty acid metabolism. In conclusion, our results suggest that Tb4CL4-like may be an immunity-related AAE protein that is involved in the regulation of host immunity through fatty acid metabolism-derived signaling pathways.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Cheng-Jun Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ting-Ting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
8
|
Sanda NB, Hou B, Muhammad A, Ali H, Hou Y. Exploring the Role of Relish on Antimicrobial Peptide Expressions (AMPs) Upon Nematode-Bacteria Complex Challenge in the Nipa Palm Hispid Beetle, Octodonta nipae Maulik (Coleoptera: Chrysomelidae). Front Microbiol 2019; 10:2466. [PMID: 31736908 PMCID: PMC6834688 DOI: 10.3389/fmicb.2019.02466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The humoral immune responses of the nipa palm hispid beetle Octodonta nipae involves the inducible expression of the genes coding for antimicrobial peptides (AMPs) which are mediated by immune deficiency signaling pathways. In insects, the nuclear factor-κB (NF-κB) transcription factor, Relish, has been shown to regulate AMP gene expressions upon microbial infections. Here, we dissect the expression patterns of some AMPs in O. nipae during infections by entomopathogenic nematodes (EPNs) and their symbionts, before and after Relish knock down. Our results indicate that, prior to gene silencing, the AMPs attacin C1, attacin C2, and defensin 2B were especially expressed to great extents in the insects challenged with the nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora as well as with their respective symbionts Xenorhabdus nematophila and Photorhabdus luminescens. The study also established the partial sequence of OnRelish/NF-κB p110 subunit in O. nipae, with an open reading frame coding for a protein with 102 amino acid residues. A typical Death domain-containing protein was detected (as seen in Drosophila) at the C-terminus of the protein. Phylogenetic analysis revealed that in O. nipae, Relish is clustered with registered Relish/NF-κB p110 proteins from other species of insect especially Leptinotarsa decemlineata from the same order Coleoptera. Injection of OnRelish dsRNA remarkably brought down the expression of OnRelish and also reduced the magnitude of transcription of attacin C1 and defensin 2B upon S. carpocapsae and H. bacteriophora and their symbionts infections. Altogether, our data unveil the expression pattern of OnRelish as well as that of some AMP genes it influences during immune responses of O. nipae against EPNs and their symbionts.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Kano, Nigeria
| | - Bofeng Hou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, University of Agriculture Faisalabad, Okara, Pakistan
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2019; 10:1303. [PMID: 31681013 PMCID: PMC6805723 DOI: 10.3389/fphys.2019.01303] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system of animals, including insects, is the vital factor to maintain the symbiotic interactions between animals and their associated microbes. However, the effects of gut microbiota on insect immunity remain mostly elusive. Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a destructive pest of palm trees worldwide, which has forged alliances with its gut microbiota. Here, we found that the aposymbiotic insects succumbed at a significantly faster rate than conventionally reared (CR) ones upon bacterial infection. Physiological assays confirmed that CR insects had stronger antimicrobial activity and higher phenoloxidase activity in contrast to germfree (GF) ones, indicating that the systemic immune responses of GF individuals were compromised markedly. Interestingly, under the bacterial challenge conditions, the reassociation of gut microbiota with GF insects could enhance their survival rate by rescuing their immunocompetence. Furthermore, comparative transcriptome analysis uncovered that 35 immune-related genes, including pathogen recognition receptors, effectors and immune signaling pathway, were significantly downregulated in GF insects as compared to CR ones. Collectively, our findings corrobate that intestinal commensal bacteria have profound immunostimulatory effects on RPW larvae. Therefore, knowledge on the effects of gut microbiota on RPW immune defenses may contribute to of set up efficient control strategies of this pest.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
11
|
Meng E, Li J, Tang B, Hu Y, Qiao T, Hou Y, Lin Y, Chen Z. Alteration of the phagocytosis and antimicrobial defense of Octodonta nipae (Coleoptera: Chrysomelidae) pupae to Escherichia coli following parasitism by Tetrastichus brontispae (Hymenoptera: Eulophidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:248-256. [PMID: 30514411 DOI: 10.1017/s0007485318000780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although parasites and microbial pathogens are both detrimental to insects, little information is currently available on the mechanism involved in how parasitized hosts balance their immune responses to defend against microbial infections. We addressed this in the present study by comparing the immune response between unparasitized and parasitized pupae of the chrysomelid beetle, Octodonta nipae (Maulik), to Escherichia coli invasion. In an in vivo survival assay, a markedly reduced number of E. coli colony-forming units per microliter was detected in parasitized pupae at 12 and 24 h post-parasitism, together with decreased phagocytosis and enhanced bactericidal activity at 12 h post-parasitism. The effects that parasitism had on the mRNA expression level of selected antimicrobial peptides (AMPs) of O. nipae pupae showed that nearly all transcripts of AMPs examined were highly upregulated during the early and late parasitism stages except defensin 2B, whose mRNA expression level was downregulated at 24 h post-parasitism. Further elucidation on the main maternal fluids responsible for alteration of the primary immune response against E. coli showed that ovarian fluid increased phagocytosis at 48 h post-injection. These results indicated that the enhanced degradation of E. coli in parasitized pupae resulted mainly from the elevated bactericidal activity without observing the increased transcripts of target AMPs. This study contributes to a better understanding of the mechanisms involved in the immune responses of a parasitized host to bacterial infections.
Collapse
Affiliation(s)
- E Meng
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - J Li
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - B Tang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - Y Hu
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - T Qiao
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - Y Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - Y Lin
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - Z Chen
- Fuzhou Entry-Exit Inspection & Quarantine Bureau of P.R.C,Fuzhou 350002,China
| |
Collapse
|
12
|
The First Complete Genome Sequence of a Novel Tetrastichus brontispae RNA Virus-1 (TbRV-1). Viruses 2019; 11:v11030257. [PMID: 30871248 PMCID: PMC6466307 DOI: 10.3390/v11030257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
The complete sequence of a novel RNA virus isolated from Tetrastichus brontispae (TbRV-1) was determined to be 12,239 nucleotides in length with five non-overlapping, linearly arranged coding sequences (CDS), potentially encoding nucleoproteins, hypothetical proteins, matrix proteins, glycoproteins, and RNA-dependent RNA polymerases. Sequence analysis indicated that the RNA-dependent RNA polymerase of TbRV-1 shares a 65% nucleotide and 67% amino acid sequence identity with Hubei dimarhabdovirus 2, suggesting that TbRV-1 is a member of the dimarhabdovirus supergroup. This corresponded to the result of the phylogenetic analysis. The affiliation of TbRV-1 with members of the family Rhabdoviridae was further validated by similar transcription termination motifs (GGAACUUUUUUU) to the Drosophila sigmavirus. The prevalence of TbRV-1 in all tissues suggested that the virus was constitutive of, and not specific to, any wasp tissue. To our knowledge, this is the first report on the complete genome sequence of a dimarhabdovirus in parasitoids.
Collapse
|
13
|
Ali H, Muhammad A, Sanda NB, Huang Y, Hou Y. Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Octodonta nipae (Coleoptera: Chrysomelidae). Front Microbiol 2019; 10:466. [PMID: 30930872 PMCID: PMC6424052 DOI: 10.3389/fmicb.2019.00466] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Bacterial symbionts of insects affect a wide array of host traits including fitness and immunity. Octodonta nipae (Maulik), commonly known as hispid leaf beetle is a destructive palm pest around the world. Understanding the dynamics of microbiota is essential to unravel the complex interplay between O. nipae and its bacterial symbionts. In this study, bacterial 16S rRNA V3-V4 region was targeted to decipher the diversity and dynamics of bacterial symbionts across different life stages [eggs, larvae, pupae, and adult (male and female)] and reproductive organs (ovaries and testis) of O. nipae. Clustering analysis at ≥97% similarity threshold produced 3,959 operational taxonomic units (OTUs) that belonged to nine different phyla. Proteobacteria, Actinobacteria, and Firmicutes represented the bulk of taxa that underwent notable changes during metamorphosis. Enterobacteriaceae and Dermabacteraceae were the most abundant families in immature stages (eggs, larvae, and pupae), while Anaplasmataceae family was dominated in adults (male and female) and reproductive organs (ovaries and testis). The genus Serratia and Lactococcus were most abundant in eggs, whereas Pantoea and Brachybacterium represented the bulk of larvae and pupae microbiota. Interestingly the genus Wolbachia found positive to all tested samples and was recorded extremely high (>64%) in the adults and reproductive organs. The bacteria varied across the developmental stages and responsible for various metabolic activities. Selection choice exerted by the insect host as a result of its age or developmental stage could be the main reason to ascertain the shift in the bacteria populations. Maternally inherited Wolbachia was found to be an obligate endosymbiont infecting all tested life stages, body parts, and tissues. These outcomes foster our understanding of the intricate associations between bacteria and O. nipae and will incorporate in devising novel pest control strategies against this palm pest.
Collapse
Affiliation(s)
- Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Ali H, Muhammad A, Sanda Bala N, Hou Y. The Endosymbiotic Wolbachia and Host COI Gene Enables to Distinguish Between Two Invasive Palm Pests; Coconut Leaf Beetle, Brontispa longissima and Hispid Leaf Beetle, Octodonta nipae. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2894-2902. [PMID: 30124918 PMCID: PMC6294240 DOI: 10.1093/jee/toy233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/08/2023]
Abstract
To elucidate taxonomic eminence of identical pest species is essential for many ecological and conservation studies. Without proficient skills, accurate molecular identification and characterization are laborious and time-consuming. The coconut leaf beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), is biologically and morphologically identical to hispid leaf beetle, Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), and is known as the most harming nuisances of palm cultivation worldwide. The present examination was to establish Wolbachia genotyping analysis along with host cytochrome oxidase subunit I (COI) gene for accurate identification between these individuals of the same family (Chrysomelidae). Here, we have cloned and sequenced a gene coding Wolbachia surface protein (wsp) and COI gene regions amplified from both species by polymerase chain reaction. The nucleotide sequences were directly determined (≈600 bp for wsp and ≈804 bp for COI) and aligned using the multiple alignment algorithms in the ESPript3 package and the MEGA5 program. Comparative sequence analysis indicated that the representative of wsp and COI sequences from these two beetles were highly variable. To ensure this bacterial variation, multilocus sequence typing (MLST) of bacterial genes was conducted, and the results vindicated the same trend of variations. Furthermore, the phylogenetic analysis also indicates that B. longissima and O. nipae being the two different species harbors two distinct Wolbachia Hertig and Burt (Rickettsiales: Anaplamataceae) supergroups B and A, respectively. The present outcomes quickly discriminate between these two species. Considering its simplicity and cost-effectiveness, it can be used as a diagnostic tool for discriminating such invasive species particularly B. longissima and O. nipae which has overlapping morphologic characters.
Collapse
Affiliation(s)
- Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Nafiu Sanda Bala
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Entomopathogenic nematode Steinernema carpocapsae surpasses the cellular immune responses of the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae). Microb Pathog 2018; 124:337-345. [PMID: 30172903 DOI: 10.1016/j.micpath.2018.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.
Collapse
|
16
|
Tang BZ, Meng E, Zhang HJ, Zhang XM, Asgari S, Lin YP, Lin YY, Peng ZQ, Qiao T, Zhang XF, Hou YM. Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles. J Proteomics 2018; 192:37-53. [PMID: 30098407 DOI: 10.1016/j.jprot.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
The venom apparatus is a conserved organ in parasitoids that shows adaptations correlated with life-style diversification. Combining transcriptomics and label-free quantitative proteomics, here we explored the venom apparatus components of the endoparasitoid Tetrastichus brontispae (Eulophidae), and provide a comparison of the venom apparatus proteomes between its two closely related strains, T. brontispae-Octodonta nipae (Tb-On) and T. brontispae-Brontispa longissima (Tb-Bl). Tb-Bl targets the B. longissima pupa as its habitual host. However, Tb-On is an experimental derivative of Tb-Bl, which has been exposed to the O. nipae pupa as host consecutively for over 40 generation. Results showed that approximately 1505 venom proteins were identified in the T. brontispae venom apparatus. The extracts contained novel venom proteins, such as 4-coumarate-CoA ligase 4. A comparative venom proteome analysis revealed that significant quantitative and qualitative differences in venom composition exist between the two strains; although the most abundant venom proteins were shared between them. The differentially produced proteins were mainly enriched in fatty acid biosynthesis and melanotic encapsulation response. Six of these enriched proteins presented increased levels in Tb-On, and this result was validated by parallel reaction monitoring (PRM) analysis. Overall, our data reveal that venom composition can evolve quickly and respond to host selection.
Collapse
Affiliation(s)
- Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - E Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sassan Asgari
- School of Biological Sciences, the University of Queensland, Brisbane, QLD 4067, Australia
| | - Ya-Ping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yun-Ying Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zheng-Qiang Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
17
|
Meng E, Qiao T, Tang B, Hou Y, Yu W, Chen Z. Effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on the immune response of Octodonta nipae (Coleoptera: Chrysomelidae). JOURNAL OF INSECT PHYSIOLOGY 2018; 109:125-137. [PMID: 30025717 DOI: 10.1016/j.jinsphys.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Although the importance of parasitoids as biocontrol agents has long been recognized, systematic studies of the physiological mechanisms are scarce, especially in those parasitoids that are able to successfully invade their hosts by activating host immune responses. This study explored this phenomenon by investigating the effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on host immunity. The results showed that the injection of venom alone induced higher phenoloxidase activity, while a mixture of ovarian plus venom fluids provoked higher granulocyte and plasmatocyte spreading ratios, highlighting the role that egg surface characteristics may play in successful parasitism. After thorough investigation, the presence of a hemomucin homologue was documented on the egg surface (which was named Tetrastichus brontispae adipocyte plasma membrane associated protein-like, TbAPMAP-like), while the absence of polydnaviruses, fibrous layers and virus-like filaments was confirmed. The higher encapsulation index of eggs incubated with TbAPMAP-like polyclonal antibody demonstrated the protection of the protein against encapsulation. These results contribute to our understanding of the mechanisms used by endoparasitoids to evade encapsulation during the early parasitism stage while enriching our knowledge of local active regulatory mechanisms. It is likely that this is the first study to determine the egg protective properties of TbAPMAP-like in host-parasite systems.
Collapse
Affiliation(s)
- E Meng
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Weizhen Yu
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiming Chen
- Fuzhou Entry-Exit Inspection & Quarantine Bureau of P.R.C, Fuzhou, 350002, China
| |
Collapse
|
18
|
Peng LF, Li JL, Hou YM, Zhang X. Descriptions of immature stages of Octodonta nipae (Maulik) (Coleoptera, Chrysomelidae, Cassidinae, Cryptonychini). Zookeys 2018:91-109. [PMID: 29899675 PMCID: PMC5997759 DOI: 10.3897/zookeys.764.24168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 11/12/2022] Open
Abstract
Octodonta nipae (Maulik, 1921), a hispid that damages several species of palm trees, was introduced accidently into China in 2001. The egg, larva, prepupa and pupa of O. nipae are illustrated and described in detail and compared with another invasive species, Brontispa longissima (Gestro, 1885); the scanning electron micrographs of the head capsule, antenna, maxilla, labium and lateral scoli are provided, as well as photos of body of all larval instars and pupa. It is the second description of immature stages in the genus Octodonta Chapuis.
Collapse
Affiliation(s)
- Ling-Fei Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture; Fujian Provincial Key Laboratory of Insect Ecology; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin-Lei Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture; Fujian Provincial Key Laboratory of Insect Ecology; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture; Fujian Provincial Key Laboratory of Insect Ecology; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture; Fujian Provincial Key Laboratory of Insect Ecology; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Ali H, Muhammad A, Islam SU, Islam W, Hou Y. A novel bacterial symbiont association in the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae), their dynamics and phylogeny. Microb Pathog 2018; 118:378-386. [PMID: 29596879 DOI: 10.1016/j.micpath.2018.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
The hispid leaf beetle, Octodonta nipae (Maulik), (Coleoptera: Chrysomelidae), is a devastating pest of palm cultivation worldwide. Endosymbiotic bacteria in the genus Wolbachia are arguably one of the most abundant bacterial group associated with arthropods. Owing to its critical effects on host reproduction, Wolbachia has garnered much attention as a prospective future tool for insect pest management. However, their association, infection dynamics, and functionality remain unknown in this insect pest. Here, we diagnosis for the first time, the infection prevalence, and occurrence of Wolbachia in O. nipae. Experimental evidence by the exploration of wsp gene vindicate that O. nipae is naturally infected with bacterial symbiont of genus Wolbachia, showing a complete maternal inheritance with shared a common Wolbachia strain (wNip). Moreover, MLST (gatB, fbpA, coxA, ftsZ, and hcpA) analysis enabled the detections of new sequence type (ST-484), suggesting a particular genotypic association of O. nipae and Wolbachia. Subsequently, quantitative real-time PCR (qPCR) assay demonstrated variable infection density across different life stages (eggs, larvae, pupae and adult male and female), body parts (head, thorax, abdomen), and tissues (ovaries, testes, and guts). Infection density was higher in egg and female adult stage, as well as abdomen and reproductive tissues as compared to other samples. Interestingly, Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues. Phylogeny of Wolbachia infection associated with O. nipae rectified from all tested life stages were unique and fall within the same monophyletic supergroup-A of Wolbachia clades. The infection density of symbiont is among the valuable tool to understand their biological influence on hosts, and this latest discovery would facilitate the future investigations to understand the host-symbiont complications and its prospective role as a microbiological agent to reduce pest populations.
Collapse
Affiliation(s)
- Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Saif Ul Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
20
|
Liu NY, Xu ZW, Yan W, Ren XM, Zhang ZQ, Zhu JY. Venomics reveals novel ion transport peptide-likes (ITPLs) from the parasitoid wasp Tetrastichus brontispae. Toxicon 2017; 141:88-93. [PMID: 29197474 DOI: 10.1016/j.toxicon.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/02/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Despite substantial advances in uncovering constituents of parasitoid venoms due to their potential applications as insecticides and pharmaceuticals, most of these studies are primarily restricted to braconid and ichneumonid wasps. Little information is available regarding virulent factors from venom of Eulophidae. In order to provide insight into the venom components of this family and parasitoid venom evolution, a venom protein repertoire (venomics) of the endoparasitoid wasp, Tetrastichus brontispae was deciphered using a proteomic approach. A large number of diverse venom proteins/peptides were identified, including novel proteins and those proteins commonly found in the venoms of other parasitoids such as serine protease, esterase, dipeptidyl peptidase IV, acid phosphatase, major royal jelly protein, superoxide dismutase, and venom allergen 3/5. Three ion transport peptide-likes (ITPLs) were abundantly detected in T. brontispae venom. Of these, two of them are reported as a novel form for the first time, with the characteristics of lengthened amino acid sequences and additional cysteine residues. These venom ITPLs are obviously apart from other general members within the crustacean hyperglycemic hormone/ion transport peptide (CHH/ITP) family. It implies that they would evolve unique functions essential for parasitism success.
Collapse
Affiliation(s)
- Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhi-Wen Xu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Wei Yan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang 571339, China.
| | - Xue-Min Ren
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhi-Quan Zhang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
21
|
Zhang H, Tang B, Lin Y, Chen Z, Zhang X, Ji T, Zhang X, Hou Y. Identification of three prophenoloxidase-activating factors (PPAFs) from an invasive beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) and their roles in the prophenoloxidase activation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21425. [PMID: 28990217 DOI: 10.1002/arch.21425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A typical characteristic of the insect innate immune system is the activation of the serine protease cascade in the hemolymph. As being the terminal component of the extracellular serine protease cascade in the prophenoloxidase (proPO) activating system, proPO-activating factors (PPAFs) activated by the upstream cascade may generate active phenoloxidase, which then induces downstream melanization. In the present study, we reported three PPAFs from the nipa palm hispid beetle Octodonta nipae (Maulik) (designated as OnPPAF1, OnPPAF2, OnPPAF3). All three OnPPAFs contained a single clip domain at the amino-terminus followed by a trypsin-like serine protease domain at the carboxyl-terminus, except the Ser in the active sites of OnPPAF2 and OnPPAF3 was substituted with Gly. Transcript expression analysis revealed that all OnPPAFs were highly expressed in hemolymph, whereas OnPPAF2 showed an extremely low mRNA abundance compared with that of OnPPAF1 and OnPPAF3, and that the abundance of all three OnPPAFs was dramatically increased upon bacterial challenge. Knockdown of OnPPAF1 or OnPPAF3 resulted in a reduction of hemolymph phenoloxidase activity and an inhibition of hemolymph melanization, whereas the knockdown of OnPPAF2 did not affect the proPO cascade. Our work thus implies that the three OnPPAFs may have different functions and regulation during immune responses in O. nipae.
Collapse
Affiliation(s)
- HuaJian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - BaoZhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - YaPing Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - ZhiMing Chen
- Fuzhou Entry-Exit Inspection & Quarantine Bureau of P.R.C., Fuzhou, China
| | - XiaFang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - TianLiang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - XiaoMei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - YouMing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Pu YC, Ma TL, Hou YM, Sun M. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PEST MANAGEMENT SCIENCE 2017; 73:1494-1502. [PMID: 27862867 DOI: 10.1002/ps.4485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/31/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The red palm weevil (RPW), Rhynchophorus ferrugineus, is an invasive wood-boring insect that damages palms and sugarcane. Bacillus thuringiensis (Bt) is an entomopathogenic bacterium which has been modified into various strains and widely used in pest management. The aim of this study was to evaluate the susceptibility of RPW to the HA strain of Bt. RESULTS Five concentrations of Bt bioassays were used on RPW eggs, second instars and fourth instars. Average egg hatching rates exceeded 85% using Bt suspensions or distilled water. Hatch times were extended significantly using higher Bt concentrations. For second instar larvae, the LC50 was 4.92 × 109 CFU mL-1 15 d after feeding; the LT50 values decreased with each higher concentration. The corrected mortality of second instars increased significantly with increased concentrations after 15 d, ranging from 16.97% to 94.32%. Significant differences occurred in the boring activity of fourth instars when dipped in Bt suspensions or crawling on treated sugarcane. Bacterial infection in dead larvae was confirmed using molecular techniques. CONCLUSION Our results indicated that Bt can be used in RPW control as a potential biological control agent and can effectively reduce palm trees damage. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Chen Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tian-Ling Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ming Sun
- Department of Life Science, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|