1
|
Ali MM, Ramadan MA, Ghazawy NA, Afify A, Mousa SA. Photochemical effect of silver nanoparticles on flesh fly larval biological system. Acta Histochem 2022; 124:151871. [PMID: 35247817 DOI: 10.1016/j.acthis.2022.151871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
With the progress of nanoscience and its applications, silver nanoparticles (AgNPs) have become one of the most interesting nanoparticles owing to their use in different fields. However, the excessive use of AgNPs and its products may cause toxicity in both the environment and in human health. The main goal of this research is to study the toxic and photochemical effects of AgNPs against Sarcophaga argyrostoma larvae through ultrastructure, morphological change, and DNA damage. Treating midgut epithelium with AgNPs led to many alterations in dark conditions, disintegrated epithelium, swollen cells, and shrunken nucleus. Organelles appeared in a loose manner and mitochondria were without cristae, endoplasmic reticulum had dark spots, and peritrophic membrane was loose in appearance. Fatty tissues were vacuolized and muscle fibers lacked normal striations and had many gaps and lysosomal bodies. In the light conditions, the epithelium appeared with detached cells and many vacuoles, organelles were ruptured with many gaps in between, and secretory vesicles were scattered. Peritrophic membrane disappeared. Muscles collapsed and vacuolized loosed fatty tissues were detected. On the other hand, control larvae epithelium appeared regularly distinct, with organelles intact and muscles had clear normal striations. Data showed that AgNPs caused ultrastructural and morphological changes of the external cuticle of the 4th instar larvae along with a significant effect on DNA damage that occurred after the larval treatment, reflecting the toxicity of AgNPs.
Collapse
|
2
|
Zhou J, Chen J, Shu Y. Lead stress affects the reproduction of Spodoptera litura but not by regulating the vitellogenin gene promoter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111581. [PMID: 33396104 DOI: 10.1016/j.ecoenv.2020.111581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) stress affects hormone-mediated responses (e.g., reproduction) in insects. In this study, the effects of Pb stress (12.5-50 mg Pb/kg in larval artificial diets) on the reproduction of the common cutworm Spodoptera litura (Lepidoptera: Noctuidae) were investigated after 7 generations. The results showed that Pb stress did not reduce the longevity of adult females, but 50 mg Pb/kg significantly reduced the longevity of adult males, regardless of the generation. After 50 mg Pb/kg stress for one or 7 generations, the peak time of egg-laying was delayed, and egg production and hatchability were decreased significantly. The vitellin content in eggs was significantly inhibited by Pb stress. The S. litura vitellogenin (Vg) gene promoter was cloned and analyzed. Multiple putative transcription factors were predicted for the 2321 bp Vg promoter region, including the TATA box, GATA, basic helix-loop-helix (bHLH) transcription factor, Broad-Complex (BR-C) binding sites, etc. The fragment from -2222 to -211 bp of the Vg promoter was the activation domain for Vg, whereas the region from -211 to -55 bp repressed the activity of the Vg promoter. The construct promoter (-782/+76) in Trichoplusia ni (Hi5) cells significantly improved Vg expression, which was not affected by Pb stress (1 or 10 mg/ml). Therefore, Pb stress significantly inhibited the reproduction of S. litura but not by regulating the Vg promoter.
Collapse
Affiliation(s)
- Jialiang Zhou
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jin Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
DeBenedictis CA, Raab A, Ducie E, Howley S, Feldmann J, Grabrucker AM. Concentrations of Essential Trace Metals in the Brain of Animal Species-A Comparative Study. Brain Sci 2020; 10:E460. [PMID: 32709155 PMCID: PMC7407190 DOI: 10.3390/brainsci10070460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
The essential trace metals iron, zinc, and copper have a significant physiological role in healthy brain development and function. Especially zinc is important for neurogenesis, synaptogenesis, synaptic transmission and plasticity, and neurite outgrowth. Given the key role of trace metals in many cellular processes, it is important to maintain adequate levels in the brain. However, the physiological concentration of trace metals, and in particular zinc, in the human and animal brain is not well described so far. For example, little is known about the trace metal content of the brain of animals outside the class of mammals. Here, we report the concentration of iron, zinc, and copper in fresh brain tissue of different model-species of the phyla Chordata (vertebrates (mammals, fish)), Annelida, Arthropoda (insects), and Mollusca (snails), using inductively coupled plasma mass-spectrometry (ICP-MS). Our results show that the trace metals are present in the nervous system of all species and that significant differences can be detected between species of different phyla. We further show that a region-specific distribution of metals within the nervous system already exists in earthworms, hinting at a tightly controlled metal distribution. In line with this, the trace metal content of the brain of different species does not simply correlate with brain size. We conclude that although the functional consequences of the controlled metal homeostasis within the brain of many species remains elusive, trace metal biology may not only play an important role in the nervous system of mammals but across the whole animal kingdom.
Collapse
Affiliation(s)
- Chiara Alessia DeBenedictis
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
- Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Andrea Raab
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (A.R.); (J.F.)
- Institute of Chemistry, University of Graz, A-8010 Graz, Austria
- Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria
| | - Ellen Ducie
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
| | - Shauna Howley
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
| | - Joerg Feldmann
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (A.R.); (J.F.)
- Institute of Chemistry, University of Graz, A-8010 Graz, Austria
- Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas Martin Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland; (C.A.D.); (E.D.); (S.H.)
- Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
4
|
Kasozi KI, Namazi C, Basemera E, Atuheire C, Odwee A, Majalija S, Kateregga JN. Inorganic pollutants in edible grasshoppers ( Ruspolia nitidula) of Uganda and their major public health implications. Afr Health Sci 2019; 19:2679-2691. [PMID: 32127841 PMCID: PMC7040292 DOI: 10.4314/ahs.v19i3.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Inorganic contamination of food products is associated with adverse health effects, however, information on grasshoppers in Africa is sparse. The objective of the study was to determine antioxidant, heavy metal and food safety status of edible grasshoppers of Uganda. Methods A cross-sectional study was conducted in central and southwestern Uganda, in which a questionnaire was administered to grasshopper harvesters. Grasshopper samples were collected from each harvesting point and analyzed in the laboratory for antioxidant and heavy metal content i.e. Lead (Pb), Chromium (Cr), Zinc (Zn) and Cadmium (Cd) using atomic absorbance spectrometric (AAS) method on the heads and abdomen of the insects. Results Major antioxidants were Catalase > Glutathione > Glutathione peroxidase. In addition concentrations of heavy metals were in the order of Pb > Cr > Zn > Cd in the heads and abdomens of the grasshoppers. Pb concentrations were found to be higher in the heads than the abdomens and the carcinogenic potential of the grasshoppers was over 10 times over the recommended levels. Grasshoppers were found not to be safe especially in children due to their small body weight in comparison to adults. Conclusion Pb poisoning in the Ugandan children would be propagated through contaminated grasshoppers.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Catherine Namazi
- School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Elizabeth Basemera
- Department of Pharmacy and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Makerere University, Box 7062, Kampala, Uganda
| | - Collins Atuheire
- Department of Public Health, School of Allied Health, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Department of Health Sciences and Special Education, Africa Renewal University, Kampala
| | - Ambrose Odwee
- Department of Public Health, School of Allied Health, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Samuel Majalija
- Department of Pharmacy and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Makerere University, Box 7062, Kampala, Uganda
| | - John N Kateregga
- Department of Pharmacy and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Makerere University, Box 7062, Kampala, Uganda
| |
Collapse
|
5
|
Ali S, Ullah MI, Saeed MF, Khalid S, Saqib M, Arshad M, Afzal M, Damalas CA. Heavy metal exposure through artificial diet reduces growth and survival of Spodoptera litura (Lepidoptera: Noctuidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14426-14434. [PMID: 30868456 DOI: 10.1007/s11356-019-04792-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Insect physiology is affected by the presence of toxins in the surrounding environment of insects as well as their food sources. The objective of this study was to determine the effect of heavy metal exposure to two low concentrations (50 μg/g and 150 μg/g) of lead (Pb) and zinc (Zn) through artificial diet to the larvae on biological parameters of Asian armyworm (Spodoptera litura Fabricius) (Lepidoptera: Noctuidae). Both Pb and Zn, even at low concentrations, had relatively high toxic effects on S. litura larvae (P < 0.01). S. litura larval weight and length suffered the maximum reduction when the larvae were fed on diet mixed with the high Pb concentration (150 μg/g) tested compared to the other treatments. At the same Pb concentration (150 μg/g), values of larva growth index, pupa growth index, immature growth index, standardized growth index, and fitness index were 4.66, 7.33, 7.82, 5.35, and 10.00 times lower, respectively, than those of control. At the same Zn concentration (150 μg/g), values of larval growth index, pupal growth index, immature growth index, standardized growth index, and fitness index were 5.61, 3.00, 3.04, 3.23, and 9.24 times lower, respectively, than those of control. The survival rate of S. litura larvae was also lower (12.5%) when the larvae were fed on diet mixed with Pb at 150 μg/g after 10 days of observation. Overall, the presence of those heavy metals in the environment, even at low concentrations, would exert an adverse impact on larvae development of this insect. From this point of view, findings could provide a basis for long-term evaluation of heavy metal risk and its impact on populations of important agricultural pests.
Collapse
Affiliation(s)
- Sajjad Ali
- Department of Entomology, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Irfan Ullah
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Samina Khalid
- Department of Environmental Sciences, COMSATS University, Vehari, 61100, Pakistan
| | - Muhammad Saqib
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Arshad
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Afzal
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Christos A Damalas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece.
| |
Collapse
|
6
|
Płachetka-Bożek A, Kafel A, Augustyniak M. Reproduction and development of Spodoptera exigua from cadmium and control strains under differentiated cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:138-145. [PMID: 30265877 DOI: 10.1016/j.ecoenv.2018.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The growth and development of living organisms is programmed in genes, but exogenous factors (e.g. cadmium) may modulate endogenous information. Heavy metals may disturb physiological functions and accumulate in the tissues. The insects under prolonged heavy metal stress show some modifications in their metabolism management. The aim of this study was to compare the reproduction and development between individuals of S. exigua from the strain, exposed over 130 generations to sublethal concentration of cadmium (44 mg Cd/kg dry weight of larval diet), and the individuals from the control strain, both additionally exposed to different concentration of cadmium (22-704 mg Cd/kg dry weight of larval diet). The exposure to various cadmium concentrations in the diet revealed survival difference between the cadmium and the control animals at the larvae stage. The differences between adults were not evident. The telomere length (responsible for the duration of a lifespan) in the cadmium strain was shorter in the females than in the males and the individuals from the control strain. TERF1 gene expression (indirectly responsible for the telomere length) was higher in the individuals from the cadmium strain 24 hrs after eclosion. The significant reduction in the larvae body mass was observed in both strains, when the metal concentration was equal to or higher than 264 mg/kg dry weight of larval diet. The EC50 values (defined as of body mass loss), calculated 48 hours after cadmium exposure of individuals from control and cadmium strains, were respectively 632 and 725 mg Cd/kg dry weight of diet. However, some difference in reproduction (the total number of eggs laid and the oviposition time) between the strains appeared only in the groups fed on the uncontaminated diet. The control females laid almost two times more eggs than those from the cadmium strain, and the control ones had more than two times longer oviposition time than the females from the cadmium strain. The fluctuation was also noted in the size of eggs and the hatching success on the following days when both strains were compared, while the hatching success was higher for the insects from the cadmium strain. In conclusion, the insects from the cadmium strain are more resistant to cadmium contamination, as it is evidenced by the EC50 parameter. However, the females from the cadmium strain start laying eggs statistically later, have shorter telomeres and slightly reduced TERF1 gene expression, but hutching success in the strain is significantly higher when compared with the control individuals.
Collapse
Affiliation(s)
- Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
7
|
Charry MP, Keesing V, Costello M, Tremblay LA. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays. PeerJ 2018; 6:e4936. [PMID: 29868297 PMCID: PMC5984583 DOI: 10.7717/peerj.4936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus, two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus, and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.
Collapse
Affiliation(s)
- Maria P Charry
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Cawthron Institute, Nelson, New Zealand
| | | | - Mark Costello
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Louis A Tremblay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
8
|
Schizophyllum commune induced genotoxic and cytotoxic effects in Spodoptera litura. Sci Rep 2018; 8:4693. [PMID: 29549275 PMCID: PMC5856757 DOI: 10.1038/s41598-018-22919-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
In search for ecofriendly alternatives to chemical insecticides the present study was conducted to assess the insecticidal potential of an endophytic fungus Schizophyllum commune and its mechanism of toxicity by studying genotoxic and cytotoxic effects as well as repair potential using Spodoptera litura (Fabricius) as a model. Different endophytic fungi were isolated and tested for their insecticidal potential against S. litura. Among the tested endophytic fungi maximum mortality against S. litura was exhibited by S. commune isolated from Aloe vera. Extended development, reduced adult emergence was observed in larvae fed on diet supplemented with fungal extract. In addition to it the fungus also has propensity to increase oxidative stress which leads to significantly higher DNA damage. The significantly lower frequency of living haemocytes and increased frequency of apoptotic and necrotic cells was also observed in larvae treated with fungal extract. The extent of recovery of damage caused by fungus was found to be very low indicating long term effect of treatment. Phytochemical analysis revealed the presence of various phenolics, terpenoids and protein in fungal extract. Biosafety analysis indicated the non toxic nature of extract. This is the first report showing the insecticidal potential of S. commune and the genotoxic and cytotoxic effects associated with it.
Collapse
|
9
|
Augustyniak M, Tarnawska M, Babczyńska A, Kafel A, Zawisza-Raszka A, Adamek B, Płachetka-Bożek A. Cross tolerance in beet armyworm: long-term selection by cadmium broadens tolerance to other stressors. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1408-1418. [PMID: 29058177 DOI: 10.1007/s10646-017-1865-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Long lasting exposure of animals to stressing factor may lead to the selection of population able to cope with the stressor at lower cost than unexposed individuals. The aim of this study was to assess whether 130-generational selection of a beet armyworm to cadmium in food might have induced tolerance also to other stressors. The potential tolerance was assessed by means of unspecific stress markers: HSP70 concentration, DNA damage level, and energy budget indices in L5 larval instars of beet armyworm. The animals originated from Cd-exposed and control strains exposed additionally in a short-term experiment to high/low temperature or pesticide-spinosad. The application of the additional stressors caused, in general, an increase in the levels of studied parameters, in a strain-dependent manner. The most significant increase was found in HSP70 level in the individuals from the Cd-strain exposed to various spinosad concentration. Therefore, multigenerational contact with cadmium caused several changes that enable the insect to survive under a chronic stress, preparing the organism to the contact with an additional, new stressor. This relationship may be described as a sort of cross tolerance. This may, possibly, increase the probability of population survivorship and, at the same time, decrease the efficiency of pesticide-based plant protection efforts.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland.
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Agnieszka Zawisza-Raszka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Bogumiła Adamek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| |
Collapse
|
10
|
Abdelfattah EA, Augustyniak M, Yousef HA. Biomonitoring of genotoxicity of industrial fertilizer pollutants in Aiolopus thalassinus (Orthoptera: Acrididae) using alkaline comet assay. CHEMOSPHERE 2017; 182:762-770. [PMID: 28535484 DOI: 10.1016/j.chemosphere.2017.05.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/17/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Phosphate fertilizer industry is considered as one of the main sources of environmental pollutants. Besides solid waste products, e.g. phosphates, sulphates, and heavy metals, also atmospheric pollutants, such as hydrofluoric acid fumes (HF), sulphur dioxide (SO2), nitrogen oxides (NO2), and particulate matter with diameter up to 10 μm (PM10) can be dangerous. Genotoxic effect of these pollutants was monitored by assessing the DNA damage using alkaline comet assay on cells from brain, thoracic muscles and gut of Aiolopus thalassinus collected at three sites (A-C) located at 1, 3, and 6 km away from Abu-Zaabal Company for Fertilizers and Chemical Industries. Control site was established 32 km from the source of pollution, at the Cairo University Campus. The level of the DNA damage was significantly higher in insects from polluted sites comparing to that from the control site. A strong negative correlation between percentage of cells with visible DNA damage (% of severed cells) and the distance of the sites from Abu-Zaabal Company was found. The best parameter for monitoring of fertilizer pollutants is % of severed cells. Possible impact of Abu-Zaabal Company (extremely high concentration of phosphates and sulphates in all the polluted sites) on DNA integrity in A. thalassinus tissues was discussed. The potential use of the comet assay as a biomonitoring method of the environmental pollution caused by fertilizer industry was proposed. Specific pollution resulting from the activity of the fertilizer industry can cause comparable adverse effects in the organisms inhabiting areas up to 6 km from the source of contamination.
Collapse
Affiliation(s)
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Egypt.
| |
Collapse
|
11
|
H. Qari S, Abdel-Fatt NA, A. Shehawy A. Assessment of DNA Damage and Biochemical Responses in Rhyzopertha dominica Exposed to Some Plant Volatile Oils. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jpt.2017.87.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta. Sci Rep 2016; 6:38716. [PMID: 27934965 PMCID: PMC5146659 DOI: 10.1038/srep38716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
Collapse
|
13
|
Augustyniak M, Płachetka-Bożek A, Kafel A, Babczyńska A, Tarnawska M, Janiak A, Loba A, Dziewięcka M, Karpeta-Kaczmarek J, Zawisza-Raszka A. Phenotypic Plasticity, Epigenetic or Genetic Modifications in Relation to the Duration of Cd-Exposure within a Microevolution Time Range in the Beet Armyworm. PLoS One 2016; 11:e0167371. [PMID: 27907095 PMCID: PMC5131940 DOI: 10.1371/journal.pone.0167371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022] Open
Abstract
In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations) exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed) were treated with H2O2 (a DNA-damaging agent) or PBS (reference). The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
- * E-mail:
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | - Anna Loba
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
14
|
Karpeta-Kaczmarek J, Kubok M, Dziewięcka M, Sawczyn T, Augustyniak M. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:266-272. [PMID: 27213568 DOI: 10.1016/j.envpol.2016.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured.
Collapse
Affiliation(s)
- Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Magdalena Kubok
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Tomasz Sawczyn
- Department of Physiology in Zabrze, Medical University of Silesia, Jordana 19, PL 41-808, Zabrze, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland.
| |
Collapse
|
15
|
Augustyniak M, Gladysz M, Dziewięcka M. The Comet assay in insects--Status, prospects and benefits for science. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:67-76. [PMID: 27036067 DOI: 10.1016/j.mrrev.2015.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/27/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022]
Abstract
The Comet assay has been recently adapted to investigate DNA damage in insects. The first reports of its use in Drosophila melanogaster appeared in 2002. Since then, the interest in the application of the Comet assay to studies of insects has been rapidly increasing. Many authors see substantial potential in the use of the Comet assay in D. melanogaster for medical toxicology studies. This application could allow the testing of drugs and result in an understanding of the mechanisms of action of toxins, which could significantly influence the limited research that has been performed on vertebrates. The possible perspectives and benefits for science are considered in this review. In the last decade, the use of the Comet assay has been described in insects other than D. melanogaster. Specifically, methods to prepare a cell suspension from insect tissues, which is a difficult task, were analyzed and compared in detail. Furthermore, attention was paid to any differences and modifications in the research protocols, such as the buffer composition and electrophoresis conditions. Various scientific fields in addition to toxicological and ecotoxicological research were considered. We expect the Comet assay to be used in environmental risk assessments and to improve our understanding of many important phenomena of insect life, such as metamorphosis, molting, diapause and quiescence. The use of this method to study species that are of key importance to humans, such as pests and beneficial insects, appears to be highly probable and very promising. The use of the Comet assay for DNA stability testing in insects will most likely rapidly increase in the future.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Marcin Gladysz
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
16
|
Shu Y, Zhou J, Lu K, Li K, Zhou Q. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure. CHEMOSPHERE 2015; 139:441-451. [PMID: 26248226 DOI: 10.1016/j.chemosphere.2015.07.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
When cutworm Spodoptera litura larvae were fed on the diets with different lead (Pb) concentrations for one or five generations, changes in growth and food utilization were recorded; Pb accumulations were detected by Atomic Absorption Spectrophotometer; changes in midgut cell ultrastructure were observed by Transmission Electron Microscopy (TEM). The effects of Pb stress on S. litura growth and food utilization differed significantly between insects of the 1st and 5th generation. The male-female rate of 200mgkg(-1) Pb treatment from the 1st generation and 50mgkg(-1) Pb treatment from the 5th generation was significantly higher than control. No significant difference of Pb accumulations was found in larvae, pupae and adults between the 1st and 5th generation. No significant difference of Pb accumulations in corresponding tissues of larvae was found between male and female. Compared to fat body, hemolymph, head, foregut and hindgut, the highest Pb accumulation was found in migut of larvae exposed to 200mgkg(-1) Pb. TEM showed that expanded intercellular spaces were observed in Pb-treated midgut cells. The nuclei were strongly destroyed by Pb stress, evidenced by chromatin condensation and destroyed nuclear envelope. Mitochondria became swollen with some broken cristae after exposure to Pb. Therefore, neither gender nor progeny difference was present in Pb accumulations of S. litura, although effects of Pb stress on S. litura growth and food utilization differed from different generations and genders. Pb accumulations in midgut caused pathological changes in cells ultrastructure, possibly reflected the growth and food utilization of S. litura.
Collapse
Affiliation(s)
- Yinghua Shu
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jialiang Zhou
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Lu
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Keqing Li
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Zhou
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
Shu Y, Zhang Y, Cheng M, Zeng H, Wang J. Multilevel assessment of Cry1Ab Bt-maize straw return affecting the earthworm Eisenia fetida. CHEMOSPHERE 2015; 137:59-69. [PMID: 26011413 DOI: 10.1016/j.chemosphere.2015.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Non-target effects of two varieties of Bacillus thuringiensis (Bt)-maize straw (5422Bt1 [event Bt11] and 5422CBCL [MON810]) return on the Eisenia fetida were investigated by using multilevel assessments, compared to near-isogenic non-Bt-maize (5422). 5422Bt1 straw return had no deleterious effects on adult earthworms and had significantly positive effects on juveniles over three generations. Negative, no, and positive effects on adults treated with 5422CBCL straw were observed in the 1st, 2nd and 3rd generation, respectively. Negative and positive effects were observed on juveniles produced from the 1st- and 2nd-generation adults treated with 5422CBCL straw, respectively. Glutathione peroxidase activity of earthworms from Bt-maize treatments was significantly higher than that of control on the 90th d. Translationally controlled tumour protein (TCTP) and superoxide dismutase (SOD) genes were down-regulated, while annetocin (ANN) expression was up-regulated in 5422Bt1 treatments. TCTP and SOD genes were up-regulated, while ANN and heat shock protein 70 were down-regulated in E. fetida from 5422CBCL treatments. Enzyme-linked immunosorbent assay revealed that Cry1Ab released from 5422Bt1 and 5422CBCL straw degraded rapidly on the 15th and 30th d and had a slow decline in the rest testing time. Cry1Ab concentrations in the soil, casts and guts of earthworm significantly decreased over the course of the experiment. This study was the first to evaluate generational effects of Bt-maize straw return on earthworms under laboratory conditions. The responses of enzymes activity and genes expression may contribute to better understand above different effects of Bt-maize straw return on earthworms from the 1st generation.
Collapse
Affiliation(s)
- Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Miaomiao Cheng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huilan Zeng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Xie G, Zou J, Zhao L, Wu M, Wang S, Zhang F, Tang B. Inhibitional effects of metal Zn²⁺ on the reproduction of Aphis medicaginis and its predation by Harmonia axyridis. PLoS One 2014; 9:e87639. [PMID: 24533059 PMCID: PMC3922717 DOI: 10.1371/journal.pone.0087639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/29/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Contamination, including metals, can disturb the reproductive processes of many organisms, including both prey and predatory insects. However, there is virtually no information on the effects of high level Zinc (Zn) pollution on aphids and ladybirds. The high concentrations of Zn²⁺ or Zn pollution inhibit reproduction in the phytophagous aphid, Aphis medicaginis, and the predatory ladybird Harmonia axyridis could provide important information. RESULTS It was observed in this study that Zn concentrations in Vicia faba (broad bean) seeds and seedlings in all Zn²⁺ treatments were significantly higher than that in the control group, and increased with increasing Zn²⁺ concentrations in the solution. The rate of reproduction in A. medicaginis declined significantly (p<0.05) over time in the five groups fed on broad bean seedlings treated with different concentrations of Zn²⁺ solution compared with the control group. These results showed that higher concentrations of Zn²⁺ significantly inhibited the reproductive capacity of A. medicaginis. We also cloned and identified a gene encoding vitellogenin (Vg) from A. medicaginis, which has an important role in vitellogenesis, and therefore, reproduction was affected by exposure to Zn²⁺. Expression of AmVg was reduced with increasing exposure to Zn²⁺ and also in the F1-F3 generations of aphids exposed to different Zn²⁺ concentrations. Predation by H. axyridis was also reduced in aphids exposed to high-levels of Zn²⁺. Similarly, ovipositioning by H. axyridis was also reduced. CONCLUSIONS Our results suggest that Zn²⁺ can significantly affect the reproductive capacity of both A. medicaginis and its predator H. axyridis, the former through effects on the expression of AmVg and the latter through avoidance of aphids containing high levels of Zn²⁺.
Collapse
Affiliation(s)
- Guoqiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiaping Zou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengjing Wu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
19
|
Stewart AD, Anand RR, Laird JS, Verrall M, Ryan CG, de Jonge MD, Paterson D, Howard DL. Distribution of metals in the termite Tumulitermes tumuli (Froggatt): two types of Malpighian tubule concretion host Zn and Ca mutually exclusively. PLoS One 2011; 6:e27578. [PMID: 22087339 PMCID: PMC3210811 DOI: 10.1371/journal.pone.0027578] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/19/2011] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine specific distribution of metals in the termite Tumulitermes tumuli (Froggatt) and identify specific organs within the termite that host elevated metals and therefore play an important role in the regulation and transfer of these back into the environment. Like other insects, termites bio-accumulate essential metals to reinforce cuticular structures and utilize storage detoxification for other metals including Ca, P, Mg and K. Previously, Mn and Zn have been found concentrated in mandible tips and are associated with increased hardness whereas Ca, P, Mg and K are accumulated in Malpighian tubules. Using high resolution Particle Induced X-Ray Emission (PIXE) mapping of whole termites and Scanning Electron Microscope (SEM) Energy Dispersive X-ray (EDX) spot analysis, localised accumulations of metals in the termite T. tumuli were identified. Tumulitermes tumuli was found to have proportionally high Mn concentrations in mandible tips. Malpighian tubules had significant enrichment of Zn (1.6%), Mg (4.9%), P (6.8%), Ca (2.7%) and K (2.4%). Synchrotron scanning X-ray Fluorescence Microprobe (XFM) mapping demonstrated two different concretion types defined by the mutually exclusive presence of Ca and Zn. In-situ SEM EDX realisation of these concretions is problematic due to the excitation volume caused by operating conditions required to detect minor amounts of Zn in the presence of significant amounts of Na. For this reason, previous researchers have not demonstrated this surprising finding.
Collapse
Affiliation(s)
- Aaron D Stewart
- CSIRO Earth Science and Resource Engineering, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Al-Shami SA, Rawi CSM, Ahmad AH, Nor SAM. Genotoxicity of heavy metals to the larvae of Chironomuskiiensis Tokunaga after short-term exposure. Toxicol Ind Health 2011; 28:734-9. [DOI: 10.1177/0748233711422729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The genotoxic effects of increasing concentrations (below lethal concentration [LC50]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal–Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
Collapse
Affiliation(s)
- Salman A Al-Shami
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Che Salmah Md Rawi
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Siti Azizah Mohd Nor
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia (USM), Penang, Malaysia
| |
Collapse
|
21
|
Shu Y, Du Y, Wang J. Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:102-10. [DOI: 10.1016/j.cbpa.2010.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/09/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
|
22
|
Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:2130-2136. [PMID: 19577297 DOI: 10.1016/j.ecoenv.2009.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 03/02/2009] [Accepted: 06/11/2009] [Indexed: 05/28/2023]
Abstract
Reproductive toxicity of Zn to insects was investigated in this study. By exposing phytophagous insect Spodoptera litura Fabricius to Zn in artificial diets of larvae, we investigated the effects of Zn on reproduction at ecological and molecular levels. A significantly shorter period of laying eggs was observed in S. litura exposed to 300-750mg Zn/kg. The oviposition rate, fecundity and hatchability of female adults treated with 750mg Zn/kg were significantly lower than those of the controls (31.43%, 20.95% and 52%, respectively, compared to the control). The Zn accumulation and vitellin (Vn) content in eggs were tested by inductively coupled plasma-atomic emission spectrometry and Bradford combining Western-blot, respectively. The results showed that Zn accumulated in the eggs, which has affected the weight and Vn content of eggs with significant negative correlations. The down-regulated expression levels of vitellogenin (Vg) mRNA were detected by real-time polymerase chain reaction (RT-PCR): the relative quantity of Vg mRNA was less than half of the controls at higher than 450mg Zn/kg wet weight. These results indicated that excess Zn made expression of Vg gene down-regulated and caused poor accumulation of egg yolk, which led to a reduction in egg numbers and failure of eggs to hatch.
Collapse
Affiliation(s)
- Yinghua Shu
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
23
|
Dhawan A, Bajpayee M, Parmar D. The Comet Assay: A Versatile Tool for Assessing DNA Damage. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Mahima Bajpayee
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Devendra Parmar
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| |
Collapse
|
24
|
Rost-Roszkowska MM, Poprawa I, Klag J, Migula P, Mesjasz-Przybyłowicz J, Przybyłowicz W. Degeneration of the midgut epithelium in Epilachna cf. nylanderi (Insecta, Coccinellidae): apoptosis, autophagy, and necrosis. CAN J ZOOL 2008. [DOI: 10.1139/z08-096] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates mechanisms of adaptation to metal toxicity peculiar to the midgut epithelium of Epilachna cf. nylanderi (Mulsant, 1850) (Coccinellidae). This species of beetle has currently been identified in only one locality in South Africa and is known to feed on the nickel hyperaccumulator Berkheya coddii Roessl. (Asteraceae), an endemic plant species of the South African ultramafic ecosystem. Our focus involves an analysis of the morphological features of cells forming the midgut epithelium, which is the first organ exposed to toxic levels of metals ingested by the insect. Through the three key processes of apoptosis, necrosis, and autophagy, excess metals are eliminated from the organism and homeostatic conditions are maintained. Apoptosis and necrosis are both known to be involved in the degradation of midgut epithelial cells, while the role of autophagy is mainly implicated in the disintegration of the organelles of cells. This study reports on the participation of these three key degenerative processes in the removal of excess metals based on targeted observations of the insect midgut epithelium by light and electron microscopies. Additionally, the TUNEL reaction was specifically used to detect apoptosis.
Collapse
Affiliation(s)
- Magdalena M. Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Jerzy Klag
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Paweł Migula
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Jolanta Mesjasz-Przybyłowicz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| | - Wojciech Przybyłowicz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
- Materials Research Group, iThemba LABS, Somerset West 7129, South Africa
| |
Collapse
|
25
|
Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 2008; 25:5-32. [PMID: 18427939 DOI: 10.1007/s10565-008-9072-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.
Collapse
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly Industrial Toxicology Research Centre), PO Box 80, M.G. Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|