1
|
Taylor R, Denette E, Walter-Goodspeed E, Byrne T. The effects of xylazine on locomotion and motor behaviour in a planarian model. Behav Pharmacol 2025; 36:137-143. [PMID: 39869637 DOI: 10.1097/fbp.0000000000000814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In recent years, the recreational use of xylazine has increased dramatically in the USA. Although xylazine has been used as an anesthetic in veterinary medicine for decades, little is known about its behavioral effects. We took advantage of the planarian's innate negative phototaxis, the reliable movement from the light side to the dark side of a Petri dish, to explore the organism's suitability as an animal model for investigating the preclinical pharmacology of xylazine. In two experiments, we tested the effects of several doses of xylazine on locomotion by recording the latency to transition into an opaque area. Xylazine disrupted locomotion in a dose-dependent fashion. Larger doses first produced a period of hyperkinesia without forward motion. This was followed by a period of sedation. Physical stimulation disrupted sedation and evoked the resumption of locomotion. Data on the behavioral effects of xylazine outside of anesthesia and sedation are limited; therefore, the current study adds to a relatively small literature on the behavioral effects of xylazine.
Collapse
Affiliation(s)
- Ryan Taylor
- Department of Psychology, Massachusetts College of Liberal Arts, Massachusetts, USA
| | | | | | | |
Collapse
|
2
|
Ireland D, Rabeler C, Rao S, Richardson RJ, Collins EMS. Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians. PLoS One 2025; 20:e0315394. [PMID: 39883642 PMCID: PMC11781733 DOI: 10.1371/journal.pone.0315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sagar Rao
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Kakuturu J, O'Brien M, Pagán OR. Schild Analysis of the Interaction between Parthenolide and Cocaine Suggests an Allosteric Relationship for Their Effects on Planarian Motility. Biomolecules 2024; 14:1168. [PMID: 39334934 PMCID: PMC11430750 DOI: 10.3390/biom14091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The freshwater planarian is an emerging animal model in neuroscience due to its centralized nervous system that closely parallels closely parallels the nervous system of vertebrates. Cocaine, an abused drug, is the 'founding member' of the local anesthetic family. Parthenolide, a sesquiterpene lactone, acts as a behavioral and physiological antagonist of cocaine in planarians and rats, respectively. Previous work from our laboratory showed that both parthenolide and cocaine reduced planarian motility and that parthenolide reversed the cocaine-induced motility decrease at concentrations where parthenolide does not affect the movement of the worms. However, the exact mechanism of the cocaine/parthenolide antagonism is unknown. Here, we report the results of a Schild analysis to explore the parthenolide/cocaine relationship in the planarian Girardia tigrina. The Schild slopes of a family of concentration-response curves of parthenolide ± a single concentration of cocaine and vice versa were -0.55 and -0.36, respectively. These slopes were not statistically different from each other. Interestingly, the slope corresponding to the parthenolide ± cocaine (but not the cocaine ± parthenolide) data set was statistically different from -1. Our data suggest an allosteric relationship between cocaine and parthenolide for their effect on planarian motility. To the best of our knowledge, this is the first study about the mechanism of action of the antagonism between cocaine and parthenolide. Further studies are needed to determine the specific nature of the parthenolide/cocaine target(s) in this organism.
Collapse
Affiliation(s)
- Jyothi Kakuturu
- Department of Biology, West Chester University, West Chester, PA 19383, USA
- MedStar Health, Columbia, MD 21044, USA
| | - Mary O'Brien
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Oné R Pagán
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| |
Collapse
|
4
|
Benita O, Nesher N, Shomrat T. Neurophysiological measurements of planarian brain activity: a unique model for neuroscience research. Biol Open 2024; 13:bio060480. [PMID: 38979914 PMCID: PMC11391828 DOI: 10.1242/bio.060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Planarians are well-known model organisms for regeneration and developmental biology research due to their remarkable regenerative capacity. Here, we aim to advocate for the use of planaria as a valuable model for neurobiology, as well. Planarians have most of the major qualities of more developed organisms, including a primal brain. These traits combined with their exceptional regeneration capabilities, allow neurobiological experiments not possible in any other model organism, as we demonstrate by electrophysiological recording from planaria with two heads that control a shared body. To facilitate planarian neuroscience research, we developed an extracellular multi-unit recording procedure for the planarians fragile brain (Dugesia japonica). We created a semi-intact preparation restrained with fine dissection pins, enabling hours of reliable recording, via a suction electrode. Here, we demonstrate the feasibility and potential of planarian neurophysiological research by characterizing the neuronal activity during simple learning processes and responses to various stimuli. In addition, we examined the use of linalool as anesthetic agent to allows recordings from an intact, large worm and for fine electrophysiological approaches such as intracellular recording. The demonstrated ability for neurophysiological measurements, along with the inherent advantages of planarians, promotes this exceptional model organism for neuroscience research.
Collapse
Affiliation(s)
- Orel Benita
- Department of Neurobiology, Hebrew University, Jerusalem 9190401, Israel
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4029700, Israel
| |
Collapse
|
5
|
Bjedov D, Barbosa RS, de Oliveira DP, Dorta DJ, Sarmento MI, Sarmento RA, Silva ALP, Gravato C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. BIOLOGY 2024; 13:337. [PMID: 38785819 PMCID: PMC11117760 DOI: 10.3390/biology13050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 μg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Dora Bjedov
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Rone S. Barbosa
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, Campus de Ribeirão Preto, Ribeirão Preto 77402-970, SP, Brazil;
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Maíra Ignacio Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Renato Almeida Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Ana L. Patrício Silva
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
6
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
7
|
Viana TS, Campos D, Bartilotti M, Leite FG, Zanoni MVB, Dorta DJ, Oliveira DP, Pestana JLT. Magnetized vermiculite as a tool for the treatment of produced water generated by oil companies: Effects on aquatic organisms before and after treatment. J Appl Toxicol 2023; 43:1393-1405. [PMID: 37055923 DOI: 10.1002/jat.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.
Collapse
Affiliation(s)
- Tais S Viana
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mariana Bartilotti
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Fernanda G Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - Daniel J Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle P Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Feng M, Xu Z, Yin D, Zhao Z, Zhou X, Song L. Toxic effects of sodium dodecyl sulfate on planarian Dugesia japonica. PeerJ 2023; 11:e15660. [PMID: 37456884 PMCID: PMC10340106 DOI: 10.7717/peerj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Collapse
Affiliation(s)
- Minmin Feng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhenbiao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dandan Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zelong Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
9
|
Jordan L, Alcalá JA, Urcelay GP, Prados J. Conditioned Place Avoidance in the Planaria Schmidtea mediterranea: A Pre-clinical Invertebrate Model of Anxiety-Related Disorders. Behav Processes 2023; 210:104894. [PMID: 37236492 DOI: 10.1016/j.beproc.2023.104894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The objective of the present study was to develop a model of avoidance learning and its extinction in planarians (Schmidtea mediterranea). Based on previous experiments showing conditioned place preference, we developed a procedure to investigate conditioned place avoidance (CPA) using shock as an unconditioned stimulus (US) and an automated tracking system to record the animals' behaviour. In Experiment 1, we assessed the unconditioned properties of different shock intensities by measuring post shock activity. In two subsequent experiments we investigated CPA using different designs, surfaces as conditioned stimuli (CSs; rough and smooth), and different US intensities (5V and 10V). In general, we observed the successful development of CPA. However, CPA was stronger with higher shock intensities, and we found that, in our preparation, a rough surface is best at entering into an association with the shock than a smooth surface. Finally, we also observed extinction of CPA. The evidence of CPA and its extinction in flatworms validates the planaria as a pre-clinical model for the study of avoidance learning, a hallmark of anxiety disorders.
Collapse
|
10
|
Use of invertebrates to model chemically induced parkinsonism-symptoms. Biochem Soc Trans 2023; 51:435-445. [PMID: 36645005 PMCID: PMC9987996 DOI: 10.1042/bst20221172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of neurological diseases is currently growing due to the combination of several factor, including poor lifestyle and environmental imbalance which enhance the contribution of genetic factors. Parkinson's disease (PD), a chronic and progressive neurological condition, is one of the most prevalent neurodegenerative human diseases. Development of models may help to understand its pathophysiology. This review focuses on studies using invertebrate models to investigate certain chemicals that generate parkinsonian-like symptoms models. Additionally, we report some preliminary results of our own research on a crustacean (the crab Ucides cordatus) and a solitary ascidian (Styela plicata), used after induction of parkinsonism with 6-hydroxydopamine and the pesticide rotenone, respectively. We also discuss the advantages, limits, and drawbacks of using invertebrate models to study PD. We suggest prospects and directions for future investigations of PD, based on invertebrate models.
Collapse
|
11
|
Braun G, Escher BI. Prioritization of mixtures of neurotoxic chemicals for biomonitoring using high-throughput toxicokinetics and mixture toxicity modeling. ENVIRONMENT INTERNATIONAL 2023; 171:107680. [PMID: 36502700 DOI: 10.1016/j.envint.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Modern society continues to pollute the environment with larger quantities of chemicals that have also become more structurally and functionally diverse. Risk assessment of chemicals can hardly keep up with the sheer numbers that lead to complex mixtures of increasing chemical diversity including new chemicals, substitution products on top of still abundant legacy compounds. Fortunately, over the last years computational tools have helped us to identify and prioritize chemicals of concern. These include toxicokinetic models to predict exposure to chemicals as well as new approach methodologies such as in-vitro bioassays to address toxicodynamic effects. Combined, they allow for a prediction of mixtures and their respective effects and help overcome the lack of data we face for many chemicals. In this study we propose a high-throughput approach using experimental and predicted exposure, toxicokinetic and toxicodynamic data to simulate mixtures, to which a virtual population is exposed to and predict their mixture effects. The general workflow is adaptable for any type of toxicity, but we demonstrated its applicability with a case study on neurotoxicity. If no experimental data for neurotoxicity were available, we used baseline toxicity predictions as a surrogate. Baseline toxicity is the minimal toxicity any chemical has and might underestimate the true contribution to the mixture effect but many neurotoxicants are not by orders of magnitude more potent than baseline toxicity. Therefore, including baseline-toxic effects in mixture simulations yields a more realistic picture than excluding them in mixture simulations. This workflow did not only correctly identify and prioritize known chemicals of concern like benzothiazoles, organochlorine pesticides and plasticizers but we were also able to identify new potential neurotoxicants that we recommend to include in future biomonitoring studies and if found in humans, to also include in neurotoxicity screening.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Ireland D, Zhang S, Bochenek V, Hsieh JH, Rabeler C, Meyer Z, Collins EMS. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians. FRONTIERS IN TOXICOLOGY 2022; 4:948455. [PMID: 36267428 PMCID: PMC9578561 DOI: 10.3389/ftox.2022.948455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022] Open
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Siqi Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Veronica Bochenek
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Zane Meyer
- Department of Engineering, Swarthmore College, Swarthmore, PA, United States
- Department of Computer Science, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Reho G, Lelièvre V, Cadiou H. Planarian nociception: Lessons from a scrunching flatworm. Front Mol Neurosci 2022; 15:935918. [PMID: 35959107 PMCID: PMC9362985 DOI: 10.3389/fnmol.2022.935918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
In addition to being studied for their exceptional regeneration abilities, planarians (i.e., flatworms) have also been extensively used in the context of pharmacological experiments during the past century. Many researchers used planarians as a model system for the study of drug abuse because they display high similarities with the nervous system of vertebrates at cellular and molecular levels (e.g., neuronal morphology, neurotransmitter ligands, and receptor function). This research field recently led to the discovery of causal relationships between the expression of Transient Receptor Potential ion channels in planarians and their behavioral responses to noxious stimuli such as heat, cold or pharmacological analogs such as TRP agonists, among others. It has also been shown that some antinociceptive drugs modulate these behaviors. However, among the few authors that tried to implement a full behavior analysis, none reached a consensual use of the terms used to describe planarian gaits yet, nor did they establish a comprehensive description of a potential planarian nociceptive system. The aim of this review is therefore to aggregate the ancient and the most recent evidence for a true nociceptive behavior in planarians. It also highlights the convenience and relevance of this invertebrate model for nociceptive tests and suggests further lines of research. In regards to past pharmacological studies, this review finally discusses the opportunities given by the model to extensively screen for novel antinociceptive drugs.
Collapse
|
14
|
Omond SET, Hale MW, Lesku JA. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022; 45:zsac053. [PMID: 35554581 PMCID: PMC9216492 DOI: 10.1093/sleep/zsac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
STUDY OBJECTIVES Sleep is a prominent behavioral and biochemical state observed in all animals studied, including platyhelminth flatworms. Investigations into the biochemical mechanisms associated with sleep-and wakefulness-are important for understanding how these states are regulated and how that regulation changed with the evolution of new types of animals. Unfortunately, beyond a handful of vertebrates, such studies on invertebrates are rare. METHODS We investigated the effect of seven neurotransmitters, and one pharmacological compound, that modulate either sleep or wakefulness in mammals, on flatworms (Girardia tigrina). Flatworms were exposed via ingestion and diffusion to four neurotransmitters that promote wakefulness in vertebrates (acetylcholine, dopamine, glutamate, histamine), and three that induce sleep (adenosine, GABA, serotonin) along with the H1 histamine receptor antagonist pyrilamine. Compounds were administered over concentrations spanning three to five orders of magnitude. Flatworms were then transferred to fresh water and video recorded for analysis. RESULTS Dopamine and histamine decreased the time spent inactive and increased distance traveled, consistent with their wake-promoting effect in vertebrates and fruit flies; pyrilamine increased restfulness and GABA showed a nonsignificant trend towards promoting restfulness in a dose-dependent manner, in agreement with their sleep-inducing effect in vertebrates, fruit flies, and Hydra. Similar to Hydra, acetylcholine, glutamate, and serotonin, but also adenosine, had no apparent effect on flatworm behavior. CONCLUSIONS These data demonstrate the potential of neurotransmitters to regulate sleep and wakefulness in flatworms and highlight the conserved action of some neurotransmitters across species.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| |
Collapse
|
15
|
Pucci C, Martinelli C, De Pasquale D, Battaglini M, di Leo N, Degl’Innocenti A, Belenli Gümüş M, Drago F, Ciofani G. Tannic Acid-Iron Complex-Based Nanoparticles as a Novel Tool against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15927-15941. [PMID: 35352893 PMCID: PMC9011352 DOI: 10.1021/acsami.1c24576] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nicoletta di Leo
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Degl’Innocenti
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Melike Belenli Gümüş
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Filippo Drago
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
16
|
Simão FCP, Machado AL, Soares AMVM, Pestana JLT. Differential accumulation of PAHs within planarian cephalic and posterior body parts. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2132-2135. [PMID: 34536160 DOI: 10.1007/s10646-021-02466-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
It has been observed that freshwater planarians can accumulate cadmium in their head portions, with neurotoxicity and head loss accompanying this phenomenon. Since planarians exhibit head loss and symptoms of neurotoxicity in response to PAHs, we investigated the differential accumulation of pyrene and B[a]P in the body and head portions of Girardia tigrina, a freshwater planarian. It is evidenced that planarian head fragments present higher amounts of pyrene- and B[a]P-equivalents than body fragments, indicating a differential distribution of these compounds within planarian tissues.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana L Machado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Morris J, Bealer EJ, Souza IDS, Repmann L, Bonelli H, Stanzione JF, Staehle MM. Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea Mediterranea. Toxicol Sci 2021; 185:220-231. [PMID: 34791476 DOI: 10.1093/toxsci/kfab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing number of commercially-used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A (BPA)). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F (BPF), and bisguaiacol (BG) on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-hour delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the two. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the central nervous system in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
Collapse
Affiliation(s)
- J Morris
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - E J Bealer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - I D S Souza
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - L Repmann
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - H Bonelli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - J F Stanzione
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - M M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| |
Collapse
|
18
|
Dong Z, Huo J, Liang A, Chen J, Chen G, Liu D. Gamma-Secretase Inhibitor (DAPT), a potential therapeutic target drug, caused neurotoxicity in planarian regeneration by inhibiting Notch signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146735. [PMID: 33812110 DOI: 10.1016/j.scitotenv.2021.146735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
DAPT (N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester) is a γ-secretase inhibitor that indirectly blocks the activity of Notch pathway. It is a potential therapeutic target drug for many diseases, such as cancer, neurological, cardiovascular, and cerebrovascular diseases. However, the pharmacological action and specific mechanisms of DAPT are not clear. Planarians have strong regenerative capacity and can regenerate a new individual with a complete nervous system in one week. Thus, they are used as an ideal indicator of environmental toxicants and a novel model for studying neurodevelopmental toxicology. In this study, different concentrations and treatment times of DAPT are used to analyze the gene expression levels of major components in Notch pathway. The results show that the optimal concentration and exposure time of DAPT is 100 nM for 10 days in planarians and indicate that the inhibitory of DAPT treatment on Notch pathway is time- and concentration-dependent. The potential impact of DAPT is effectively analyzed by qPCR, WISH, and Immunofluorescence. The results indicate that DAPT exposure causes intact planarian wavy or swollen, and regenerative planarians asymmetric growth or muti-eye. Moreover, DAPT exposure increases cell proliferation and apoptosis, results in neurodevelopmental defects and dynamic changes of some marker genes. These results suggest that the balance of proliferation and apoptosis is disturbed, and then, affecting tissue homeostasis and differentiation. These findings demonstrate that DAPT has serious side effects in organisms and relies on Notch pathway to determine cell fate, it is cautious in the use of DAPT as a potential therapeutic approach for the disease in clinical trials.
Collapse
Affiliation(s)
- Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinrui Huo
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ang Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinzi Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
19
|
Kratom pharmacology: Clues from planarians exposed to mitragynine. Physiol Behav 2021; 239:113499. [PMID: 34146575 DOI: 10.1016/j.physbeh.2021.113499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022]
Abstract
Mitragynine (MG), the most prevalent bioactive alkaloid in kratom, displays nanomolar affinity for µ, κ and δ opioid receptors and produces opioid-dependent antinociception and dependence in rats. Here, using a battery of behavioral assays, we investigated MG effects in planarians. Acute MG exposure (< 100 μM) did not affect planarian motility or environmental preference, but reduced motility was detected during abstinence from chronic MG (1, 10 μM). MG (10 μM) produced place conditioning effects that were reduced by naltrexone (10 μΜ). These results suggest that MG produces opioid-sensitive reinforcing effects in planarians and MG pharmacology is conserved across different species.
Collapse
|
20
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
21
|
Martinez O, Sire S, Saunier A, Malgouyres JM, Fournier A, Vignet C. Behavioral responses of three freshwater planaria species to light, visual and olfactory stimuli: Setting the stage for further ecotoxicological studies. Behav Processes 2020; 183:104295. [PMID: 33383124 DOI: 10.1016/j.beproc.2020.104295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
Planarians are freshwater flatworms commonly used as environmental bioindicator due to their sensitivity of response and their ease of culturing in lab. Nevertheless, to date, very few studies describing their behavior have been led. This work aims to fill the literature gap by providing preliminary results through six behavioral challenges (locomotion, exploration, light stress, planarian light/dark test, shoaling and foraging) conducted with three different species Dugesia tigrina, Schmidtea mediterranea and Schmidtea polychroa. The behavioral responses of every species in each of these six assays were recorded and differences between species were highlighted, depending on the assays and conditions. Schmidtea polychroa is less active than the two others and had the highest light aversion. Reactions observed in response to diverse and realistic stimuli helped us to select the most suitable tests and choose the species that seem the most appropriate for future ecotoxicological and neurophysiological tests. Four tests - out of the six tested- seem reliable in order to standardize planarian behavioral tests.
Collapse
Affiliation(s)
- Odile Martinez
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Sacha Sire
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Saunier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Fournier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France.
| |
Collapse
|
22
|
Sal F, Prados J, Urcelay GP. Nicotine chronic tolerance development and withdrawal in the planaria (Schmidtea mediterranea). Pharmacol Biochem Behav 2020; 200:173075. [PMID: 33245983 DOI: 10.1016/j.pbb.2020.173075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Chronic nicotine exposure reduces sensitivity to the effects of nicotine, which then results in behavioural changes and tolerance development. In the planaria, a valuable first-stage preclinical model for addictive behaviour, acute nicotine administration has been shown to steadily alter the motility of the animals, a result that has been interpreted as evidence of tolerance and withdrawal effects; however, chronic exposure - typically regarded as a condition for the development of tolerance - and the role of the contextual cues have not been systematically assessed. The present study assessed the acute and chronic effects of nicotine on the motility of planarians (Schmidtea mediterranea). The animals in the experimental groups received long chronic exposure to nicotine (ten daily 30 min exposures); a control group was exposed to water in the same context but in the absence of the drug. The motility of the animals was closely monitored on every exposure. Following this phase, all the animals were subject to three different tests: in the presence of the exposure context (without the drug, Test 1); in the presence of nicotine in the exposure context (Test 2); and in the presence of the drug in a novel context (Test 3). Exposure to nicotine consistently reduced motility; the motility in the presence of nicotine increased with repeated exposures to the drug, an instance of tolerance development. Tolerance development was dependent on nicotinic receptor activation, because it was blocked by the co-administration of mecamylamine. However, this tolerance was found to be independent of the contextual cues where the effects of the drug had been experienced. The results are discussed by reference to the existent theories of tolerance development to drugs.
Collapse
Affiliation(s)
- Fatih Sal
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Jose Prados
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Gonzalo P Urcelay
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK.
| |
Collapse
|
23
|
Simão FCP, Gravato C, Machado AL, Soares AMVM, Pestana JLT. Toxicity of different polycyclic aromatic hydrocarbons (PAHs) to the freshwater planarian Girardia tigrina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115185. [PMID: 32777698 DOI: 10.1016/j.envpol.2020.115185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Freshwater planarians have been gaining relevance as experimental animals for numerous research areas given their interesting features, such as high regeneration potential, shared features with the vertebrates' nervous system or the range of endpoints that can be easily evaluated in response to contaminants. Ecotoxicological research using these animals has been steadily increasing in the past decades, as planarians' potentialities for this research area are being recognized. In this work, we used polycyclic aromatic hydrocarbons (PAHs) as model contaminants and evaluated effects of exposure to phenanthrene, pyrene and benzo[a]pyrene (B[a]P) in planarians. The freshwater planarian Girardia tigrina was chosen and mortality, cephalic regeneration (during and post-exposure), behavioral endpoints and presence of PAHs in tissues, were evaluated. Mortality was only observed in planarians exposed to phenanthrene, with an estimated LC50 of 830 μg L-1. Results indicate that planarian behavioral endpoints were very sensitive in response to sub-lethal concentrations of PAHs, showing a greater sensitivity towards B[a]P and pyrene. Briefly, post-exposure locomotion and post-exposure feeding were significantly impaired by sub-lethal concentrations of all compounds, whereas regeneration of photoreceptors was only significantly delayed in planarians exposed to pyrene. Moreover, levels of PAH-type compounds in planarian tissues followed a concentration-dependent increase, showing uptake of compounds from experimental solutions. The present results highlight the importance of studying alternative and complementary endpoints, such as behavior, not only because these may be able to detect effects at lower levels of contamination, but also due to their ecological relevance. The simplicity of evaluating a wide range of responses to contaminants further demonstrates the utility of freshwater planarians for ecotoxicological research.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ana Luísa Machado
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
24
|
High-throughput animal tracking in chemobehavioral phenotyping: Current limitations and future perspectives. Behav Processes 2020; 180:104226. [DOI: 10.1016/j.beproc.2020.104226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
25
|
Saraiva AS, Sarmento RA, Gravato C, Rodrigues ACM, Campos D, Simão FCP, Soares AMVM. Strategies of cellular energy allocation to cope with paraquat-induced oxidative stress: Chironomids vs Planarians and the importance of using different species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140443. [PMID: 32887009 DOI: 10.1016/j.scitotenv.2020.140443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 05/22/2023]
Abstract
Paraquat (PQ) is still used in several countries worldwide as an herbicide for weed control in agricultural production, ponds, reservoirs and irrigation canals. Thus, PQ is frequently found in surface water systems and is potentially toxic to aquatic organisms, since it can cause mitochondrial dysfunction altering in the redox state of cells. This study aimed to investigate the chronic effects of PQ to Chironomus riparius and Girardia tigrina, and compare their physiological strategies to cope with environmental stress. The mean emergence time was the most sensitive endpoint for Chironomids, with the lowest observed effect concentrations (LOEC) being 0.02 for males and 0.1 mg PQ L-1 for females. Moreover, PQ reduced the body weight of male and female imagoes, with LOECs of 0.5 and 2.5 mg PQ L-1, respectively. Paraquat also decreased the respiration rate (LOEC = 2.5 mg PQ L-1) and total glutathione (tGSH) content (LOEC = 0.5 mg PQ L-1). Thus, the aerobic production of energy was not affected and allowed chironomids to cope with oxidative stress induced by PQ, but with consequent physiological costs in terms of development rates and weight of adults. In planarians, PQ decreased the locomotion and feeding activity, and delayed photoreceptor regeneration (LOECs = 2.5 mg PQ L-1 for all endpoints). Despite increased aerobic energy production (LOEC = 0.5 mg PQ L-1), planarians were not able to cope with oxidative stress induced by the highest PQ concentrations, since lipid peroxidation levels were significantly increased (LOEC = 2.5 mg PQ L-1) concomitantly with a significant decrease of tGSH (LOEC = 2.5 mg PQ L-1). These results showed that planarians were unable to cope with oxidative stress induced by PQ with consequent impairments of behavior and regeneration despite an increased aerobic energy production.
Collapse
Affiliation(s)
- Althiéris S Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia, Goiano - Campus Campos Belos, 73840-000 Campos Belos, Goiás, Brazil
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima C P Simão
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
Lewallen M, Burggren W. Metabolic physiology of the freshwater planaria Girardia dorotocephela and Schmidtea mediterranea: reproductive mode, specific dynamic action, and temperature. Am J Physiol Regul Integr Comp Physiol 2020; 319:R428-R438. [PMID: 32783687 DOI: 10.1152/ajpregu.00099.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Planarians are widely used animal models for studies in regeneration, developmental biology, neurobiology, and behavior. However, surprisingly little is known about other aspects of their basic biology, even though such information might help validate these flatworms as a general animal model. We hypothesized that planaria, although dependent on simple diffusion of O2 across the integument for O2 uptake, would nonetheless show changes in oxygen consumption (V̇o2) associated with reproductive mode (sexual or asexual), feeding (specific dynamic action; SDA), temperature (Q10 values), and photoperiod typical of those responses of more complex invertebrates. In the current experiments, routine V̇o2 was measured over the range of 13-28°C in Schmidtea mediterranea and Girardia dorotocephala. At the long-term maintenance temperature of 18°C, routine V̇o2 was ~13 µL O2·g-1·h-1 in the two asexual strains, but approximately twice as high (27 µL O2·g-1·h-1) in the sexual strain of S. mediterranea, suggesting a metabolic cost for sexual reproduction. Metabolic temperature sensitivity, measured by Q10, was about one to three for all three groups. All three groups showed a large (~2- to 3-fold) increase in V̇o2 within a day following feeding, suggesting a large SDA effect. Starvation, causing "degrowth" in some planaria, resulted in a loss of one-third of body mass in sexual S. mediterranea but no body mass loss in either asexual strains. Collectively, these data indicate that, while being a relatively simple flatworm with no dedicated respiratory or circulatory system, their metabolic physiological responses are quite similar to those shown by more complex invertebrates and vertebrates, contributing to their validation as an animal model.
Collapse
Affiliation(s)
- Melissa Lewallen
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Warren Burggren
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
27
|
Zhang J, Shao X, Zhao B, Zhai L, Liu N, Gong F, Ma X, Pan X, Zhao B, Yuan Z, Zhang X. Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114471. [PMID: 32268227 DOI: 10.1016/j.envpol.2020.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Collapse
Affiliation(s)
- Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xinxin Shao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Liming Zhai
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Na Liu
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Fangbin Gong
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiaolu Pan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| |
Collapse
|
28
|
Ireland D, Bochenek V, Chaiken D, Rabeler C, Onoe S, Soni A, Collins EMS. Dugesia japonica is the best suited of three planarian species for high-throughput toxicology screening. CHEMOSPHERE 2020; 253:126718. [PMID: 32298908 PMCID: PMC7350771 DOI: 10.1016/j.chemosphere.2020.126718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 05/28/2023]
Abstract
High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina. However, only D. japonica has been demonstrated to be suitable for HTS. Here, we assess the two other species for HTS suitability by direct comparison with D. japonica. Through quantitative assessments of morphology and multiple behaviors, we assayed the effects of 4 common solvents (DMSO, ethanol, methanol, ethyl acetate) and a negative control (sorbitol) on neurodevelopment. Each chemical was screened blind at 5 concentrations at two time points over a twelve-day period. We obtained two main results: First, G. tigrina and S. mediterranea planarians showed significantly reduced movement compared to D. japonica under HTS conditions, due to decreased health over time and lack of movement under red lighting, respectively. This made it difficult to obtain meaningful readouts from these species. Second, we observed species differences in sensitivity to the solvents, suggesting that care must be taken when extrapolating chemical effects across planarian species. Overall, our data show that D. japonica is best suited for behavioral HTS given the limitations of the other species. Standardizing which planarian species is used in neurotoxicity screening will facilitate data comparisons across research groups and accelerate the application of this promising invertebrate system for first-tier chemical HTS, helping streamline toxicology testing.
Collapse
Affiliation(s)
| | | | - Daniel Chaiken
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | | | - Sumi Onoe
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Ameet Soni
- Department of Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, USA; Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
30
|
Sabry Z, Ho A, Ireland D, Rabeler C, Cochet-Escartin O, Collins EMS. Pharmacological or genetic targeting of Transient Receptor Potential (TRP) channels can disrupt the planarian escape response. PLoS One 2019; 14:e0226104. [PMID: 31805147 PMCID: PMC6894859 DOI: 10.1371/journal.pone.0226104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior's signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Alicia Ho
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Olivier Cochet-Escartin
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
31
|
Aggarwal S, Liu X, Rice C, Menell P, Clark PJ, Paparoidamis N, Xiao YC, Salvino JM, Fontana ACK, España RA, Kortagere S, Mortensen OV. Identification of a Novel Allosteric Modulator of the Human Dopamine Transporter. ACS Chem Neurosci 2019; 10:3718-3730. [PMID: 31184115 PMCID: PMC6703927 DOI: 10.1021/acschemneuro.9b00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dopamine transporter (DAT) serves a pivotal role in controlling dopamine (DA)-mediated neurotransmission by clearing DA from synaptic and perisynaptic spaces and controlling its action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DAT to mediate their effects by enhancing extracellular DA concentrations. We previously identified a novel allosteric site in the related human serotonin transporter that lies outside the central substrate and inhibitor binding pocket. We used the hybrid structure based (HSB) method to screen for allosteric modulator molecules that target a similar site in DAT. We identified a compound, KM822, that was found to be a selective, noncompetitive inhibitor of DAT. We confirmed the structural determinants of KM822 allosteric binding within the allosteric site by structure/function and substituted cysteine scanning accessibility biotinylation experiments. In the in vitro cell-based assay and ex vivo in both rat striatal synaptosomal and slice preparations, KM822 was found to decrease the affinity of cocaine for DAT. The in vivo effects of KM822 on cocaine were tested on psychostimulant-associated behaviors in a planarian model where KM822 specifically inhibited the locomotion elicited by DAT-interacting stimulants amphetamine and cocaine. Overall, KM822 provides a unique opportunity as a molecular probe to examine allosteric modulation of DAT function.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Caitlyn Rice
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Paul Menell
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Philip J. Clark
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | | | - You-cai Xiao
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Andréia C. K. Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Rodrigo A. España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Ole V. Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
32
|
Córdova López AM, Sarmento RA, de Souza Saraiva A, Pereira RR, Soares AMVM, Pestana JLT. Exposure to Roundup® affects behaviour, head regeneration and reproduction of the freshwater planarian Girardia tigrina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:453-461. [PMID: 31030151 DOI: 10.1016/j.scitotenv.2019.04.234] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The demand of glyphosate-based herbicides including Roundup® is rising in the tropics due to increase occurence of glyphosate-resistant weeds that require higher herbicide application rates but also because of their use associated with genetically engineered, glyphosate-tolerant crops. Consequently, there is now an excessive use of glyphosate in agricultural areas with potential adverse effects also for the surrounding aquatic environments. This study aimed to determine the sensitivity of the freshwater planarian Girardia tigrina to acute and chronic exposures of Roundup®. Planarians were exposed to a range of lethal and sub-lethal concentrations of Roundup® to determine the median lethal concentration (LC50) concerning its active ingredient glyphosate and also effects on locomotor velocity (pLMV), feeding rate, regeneration, reproductive parameters and morphological abnormalities. Regeneration endpoints included length of blastema and time for photoreceptors and auricles regeneration after decapitation, while effects on reproduction were assessed measuring fecundity (number of deposited cocoons) and fertility (number of hatchlings) over five weeks of exposure to glyphosate. The estimated 48 h LC50 of was 35.94 mg glyphosate/L. Dose dependent effects were observed for feeding, locomotion and regeneration endpoints with Lowest observed effect concentration (LOEC) values as low as 3.75 mg glyphosate/L. Chronic exposures to environmentally relevant concentrations of glyphosate significantly impaired fecundity and fertility rates of exposed planarians (median effective concentration, EC50 = 1.6 mg glyphosate/L for fecundity and fertility rates). Our results show deleterious effects of Roundup® on regeneration, behavior and reproduction of freshwater planarians and add important ecotoxicological data towards the environmental risk assessment of glyphosate-based herbicide in freshwater ecosystems.
Collapse
Affiliation(s)
- Ana M Córdova López
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil; ICEMR Amazonia Laboratory and Emerging Diseases - Iquitos Headquarters, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano, campus Campos Belos, 73840-000 Campos Belos, GO, Brazil
| | - Renata Ramos Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery. Mar Drugs 2019; 17:md17060340. [PMID: 31174272 PMCID: PMC6627923 DOI: 10.3390/md17060340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Identifying novel marine-derived neuroactive chemicals with therapeutic potential is difficult due to inherent complexities of the central nervous system (CNS), our limited understanding of the molecular foundations of neuro-psychiatric conditions, as well as the limited applications of effective high-throughput screening models that recapitulate functionalities of the intact CNS. Furthermore, nearly all neuro-modulating chemicals exhibit poorly characterized pleiotropic activities often referred to as polypharmacology. The latter renders conventional target-based in vitro screening approaches very difficult to accomplish. In this context, chemobehavioural phenotyping using innovative small organism models such as planarians and zebrafish represent powerful and highly integrative approaches to study the impact of new chemicals on central and peripheral nervous systems. In contrast to in vitro bioassays aimed predominantly at identification of chemicals acting on single targets, phenotypic chemobehavioural analysis allows for complex multi-target interactions to occur in combination with studies of polypharmacological effects of chemicals in a context of functional and intact milieu of the whole organism. In this review, we will outline recent advances in high-throughput chemobehavioural phenotyping and provide a future outlook on how those innovative methods can be utilized for rapidly screening and characterizing marine-derived compounds with prospective applications in neuropharmacology and psychosomatic medicine.
Collapse
|
34
|
Cho M, Nayak SU, Jennings T, Tallarida CS, Rawls SM. Predator odor produces anxiety-like behavioral phenotype in planarians that is counteracted by fluoxetine. Physiol Behav 2019; 206:181-184. [PMID: 30951749 DOI: 10.1016/j.physbeh.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
Avoidant behavior is a characteristic feature post-traumatic stress disorder (PTSD) and is modeled in mammals with predator odor. Light avoidance is a hallmark behavioral reaction in planarians. We hypothesized that planarians exposed to frog extract would display enhanced light avoidance that is prevented by fluoxetine. Enhanced light avoidance (i.e., less time spent in light compartment of a dish split into light and dark sides) after a 30-min frog extract exposure (0.0001-0.01%) manifested 15 min post-exposure, persisted for at least 24 h, and was counteracted by fluoxetine (10 μM). These results suggest conservation of an anxiety-like behavioral phenotype.
Collapse
Affiliation(s)
- M Cho
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Sunil U Nayak
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - T Jennings
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Ofoegbu PU, Lourenço J, Mendo S, Soares AMVM, Pestana JLT. Effects of low concentrations of psychiatric drugs (carbamazepine and fluoxetine) on the freshwater planarian, Schmidtea mediterranea. CHEMOSPHERE 2019; 217:542-549. [PMID: 30445399 DOI: 10.1016/j.chemosphere.2018.10.198] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
There is increasing knowledge about the presence of psychiatric pharmaceutical substances in the aquatic environment due to increasing number of ecotoxicological studies with sensitive species in addition to improved methods of analysis. Here, we assessed the effects of two psychiatric substances carbamazepine and fluoxetine in the planarian Schmidtea mediterranea using endpoints such as survival, behaviour (feeding, locomotion), DNA damage and regeneration. Also, planarian asexual reproduction by fissioning was used to assess the reproductive effects of these compounds. Whereas for survival, no effect was observed for carbamazepine exposure, fluoxetine exposure was toxic to planarians with an LC50 of 357.93 and 160.01 μg L-1 at 48 and 96 h, respectively. Time for head regeneration in decapitated planarians was not affected by either fluoxetine or carbamazepine exposures. Fluoxetine was more toxic than carbamazepine and caused concentration dependent increase in locomotor activity and DNA damage (LOEC's of 0.1-1.0 μg L-1), and decrease in feeding and fissioning. Despite some alteration on planarian locomotion observed under exposure to intermediate concentrations, no significant effects were observed in the other endpoints in response to carbamazepine. The observations in the present study showed that freshwater planarians such as Schmidtea mediterranea, animal models in neuropharmacology, are sensitive to low concentrations of psychiatric drugs, displaying an array of sensitive sub-lethal endpoints that can be used for the ecological risk assessment of psychiatric substances. Future studies to determine effects of these psychiatric drugs on the levels of neurotransmitters and other biochemical biomarkers in planarians are recommended.
Collapse
Affiliation(s)
- Pearl U Ofoegbu
- Department of Biology and CESAM, University of Aveiro, Portugal; Department of Biology, Federal University of Technology, Owerri, Nigeria.
| | - Joana Lourenço
- Department of Biology and CESAM, University of Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology and CESAM, University of Aveiro, Portugal
| | | | | |
Collapse
|
36
|
Zhang S, Hagstrom D, Hayes P, Graham A, Collins EMS. Multi-Behavioral Endpoint Testing of an 87-Chemical Compound Library in Freshwater Planarians. Toxicol Sci 2019; 167:26-44. [PMID: 29893936 PMCID: PMC6657585 DOI: 10.1093/toxsci/kfy145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an increased recognition in the field of toxicology of the value of medium-to-high-throughput screening methods using in vitro and alternative animal models. We have previously introduced the asexual freshwater planarian Dugesia japonica as a new alternative animal model and proposed that it is particularly well-suited for the study of developmental neurotoxicology. In this article, we discuss how we have expanded and automated our screening methodology to allow for fast screening of multiple behavioral endpoints, developmental toxicity, and mortality. Using an 87-compound library provided by the National Toxicology Program, consisting of known and suspected neurotoxicants, including drugs, flame retardants, industrial chemicals, polycyclic aromatic hydrocarbons (PAHs), pesticides, and presumptive negative controls, we further evaluate the benefits and limitations of the system for medium-throughput screening, focusing on the technical aspects of the system. We show that, in the context of this library, planarians are the most sensitive to pesticides with 16/16 compounds causing toxicity and the least sensitive to PAHs, with only 5/17 causing toxicity. Furthermore, while none of the presumptive negative controls were bioactive in adult planarians, 2/5, acetaminophen and acetylsalicylic acid, were bioactive in regenerating worms. Notably, these compounds were previously reported as developmentally toxic in mammalian studies. Through parallel screening of adults and developing animals, planarians are thus a useful model to detect such developmental-specific effects, which was observed for 13 chemicals in this library. We use the data and experience gained from this screen to propose guidelines for best practices when using planarians for toxicology screens.
Collapse
Affiliation(s)
| | | | | | | | - Eva-Maria S Collins
- Division of Cell and Developmental Biology
- Department of Physics, University of California San Diego, La Jolla California 92093
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081
| |
Collapse
|
37
|
Wu JP, Li MH. The use of freshwater planarians in environmental toxicology studies: Advantages and potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:45-56. [PMID: 29859407 DOI: 10.1016/j.ecoenv.2018.05.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Regarding the humane use of animals in scientific research, invertebrates are often recommended in toxicological studies. "Freshwater planarians" refers to numerous free-living freshwater members of the Class "Turbellaria" of the phylum Platyhelminthes. This group of invertebrates has received extensive attention from biologists for many years because of their unique biological characteristics, such as the primitive form of the central nervous system and notable capability to regenerate tissues. Using freshwater planarians as test animals in chemical toxicity studies has grown in popularity since the 1960s. Results from various toxicological experiments have collectively suggested that freshwater planarians can serve as not only alternative models for chemical toxicity screenings in laboratories but also as potential bioindicators for the quality of freshwater environments. However, thus far, no standardized battery of tests for conducting toxicological studies that includes freshwater planarians has been proposed. This paper comprehensively reviews the toxicological information obtained from chemically exposed planarians and proposes practical factors for consideration in toxicity experiments with freshwater planarians as test organisms.
Collapse
Affiliation(s)
- Jui-Pin Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Hui Li
- Environmental Toxicology Lab, Department of Geography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
39
|
Önlü S, Saçan MT. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:20-28. [PMID: 29506002 DOI: 10.1016/j.jhazmat.2018.02.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Freshwater planarian Dugesia japonica has a critical ecological importance owing to its unique properties. This study presents for the first time an in silico approach to determine a priori the acute toxicity of contaminants of emerging concern towards D. japonica. Quantitative structure-toxicity/toxicity-toxicity relationship (QSTR/QTTR) models provided here allow producing reliable information using the existing data, thus, reducing the demand of in vivo and in vitro experiments, and contributing to the need for a more holistic approach to environmental safety assessment. Both models are promising for being notably simple and robust, meeting rigorous validation metrics and the OECD criteria. The QTTR model based on the available Daphnia magna data might also contribute to the US EPA Interspecies Correlation Estimation web application. Moreover, the proposed models were applied on hundreds of environmentally significant chemicals lacking experimental D. japonica toxicity data and predicted toxicity values were reported for the first time. The models presented here can be used as potential tools in toxicity assessment, screening and prioritization of chemicals and development of risk management measures in a scientific and regulatory frame.
Collapse
Affiliation(s)
- Serli Önlü
- Boğaziçi University, Institute of Environmental Sciences, Ecotoxicology and Chemometrics Lab, Hisar Campus, Bebek, 34342 Istanbul, Turkey
| | - Melek Türker Saçan
- Boğaziçi University, Institute of Environmental Sciences, Ecotoxicology and Chemometrics Lab, Hisar Campus, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
40
|
Saraiva AS, Sarmento RA, Golovko O, Randak T, Pestana JLT, Soares AMVM. Lethal and sub-lethal effects of cyproconazole on freshwater organisms: a case study with Chironomus riparius and Dugesia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12169-12176. [PMID: 29455353 DOI: 10.1007/s11356-017-1180-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/28/2017] [Indexed: 06/08/2023]
Abstract
The fungicide cyproconazole (CPZ) inhibits the biosynthesis of ergosterol, an essential sterol component in fungal cell membrane and can also affect non-target organisms by its inhibitory effects on P450 monooxygenases. The predicted environmental concentration of CPZ is up to 49.05 μg/L and 145.89 μg/kg in surface waters and sediments, respectively, and information about CPZ toxicity towards non-target aquatic organisms is still limited. This study aimed to address the lack of ecotoxicological data for CPZ, and thus, an evaluation of the lethal and sub-lethal effects of CPZ was performed using two freshwater invertebrates (the midge Chironomus riparius and the planarian Dugesia tigrina). The estimated CPZ 48 h LC50 (95% CI) was 17.46 mg/L for C. riparius and 47.38 mg/L for D. tigrina. The emergence time (EmT50) of C. riparius was delayed by CPZ exposure from 0.76 mg/L. On the other hand, planarians showed higher tolerance to CPZ exposure. Sub-lethal effects of CPZ on planarians included reductions in locomotion (1.8 mg/L), delayed photoreceptors regeneration (from 0.45 mg/L), and feeding inhibition (5.6 mg/L). Our results confirm the moderate toxicity of CPZ towards aquatic invertebrates but sub-lethal effects observed also suggest potential chronic effects of CPZ with consequences for population dynamics.
Collapse
Affiliation(s)
- Althiéris S Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano - campus Campos Belos, Campos Belos, Goiás, 73840-000, Brazil
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil.
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Oksana Golovko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomas Randak
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
41
|
Mohammed Jawad RA, Hutchinson CV, Prados J. Dissociation of place preference and tolerance responses to sucrose using a dopamine antagonist in the planarian. Psychopharmacology (Berl) 2018; 235:829-836. [PMID: 29197982 PMCID: PMC5847079 DOI: 10.1007/s00213-017-4801-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 10/29/2022]
Abstract
In rodents, sucrose has been found to elicit addictive-like behaviours like the development of tolerance and the association with cues present at the time of consumption. Furthermore, the neurochemical response to sucrose binges is equivalent to the one observed in response to the abuse of addictive substances like cocaine. The experiments reported here address the effects of sucrose on an invertebrate model, the Platyhelminth brown planarian. The animals exposed to a 10% sucrose solution in one context developed a conditioned place preference (CPP) which was subsequently extinguished in the absence of the rewarding agent. However, one exposure to sucrose per se sufficed to reinstate the CPP response, suggesting sucrose-induced CPP can be characterised as a standard Pavlovian response. The same training procedure led to the development of context-specific tolerance to the effects of sucrose. However, comparing animals treated with dopamine D1 antagonist (SCH-23390) with control animals showed that the establishment of CPP, but not the development of tolerance, is mediated by the dopamine reward system.
Collapse
Affiliation(s)
- Rafat A. Mohammed Jawad
- 0000 0004 1936 8411grid.9918.9Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH UK ,Muthanna University, Samawah, Iraq
| | - Claire V. Hutchinson
- 0000 0004 1936 8411grid.9918.9Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Jose Prados
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
42
|
Silva B, Fernandes C, Guedes de Pinho P, Remião F. Chiral Resolution and Enantioselectivity of Synthetic Cathinones: A Brief Review. J Anal Toxicol 2017; 42:17-24. [DOI: 10.1093/jat/bkx074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/15/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
- Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Paula Guedes de Pinho
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
43
|
Abstract
Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10 µM sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures) followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4 µM. Treatment with 4 µM sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.
Collapse
|
44
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
45
|
Cochet-Escartin O, Carter JA, Chakraverti-Wuerthwein M, Sinha J, Collins EMS. Slo1 regulates ethanol-induced scrunching in freshwater planarians. Phys Biol 2016; 13:055001. [DOI: 10.1088/1478-3975/13/5/055001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Hagstrom D, Cochet-Escartin O, Collins EMS. Planarian brain regeneration as a model system for developmental neurotoxicology. ACTA ACUST UNITED AC 2016; 3:65-77. [PMID: 27499880 PMCID: PMC4895328 DOI: 10.1002/reg2.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
Freshwater planarians, famous for their regenerative prowess, have long been recognized as a valuable in vivo animal model to study the effects of chemical exposure. In this review, we summarize the current techniques and tools used in the literature to assess toxicity in the planarian system. We focus on the planarian's particular amenability for neurotoxicology and neuroregeneration studies, owing to the planarian's unique ability to regenerate a centralized nervous system. Zooming in from the organismal to the molecular level, we show that planarians offer a repertoire of morphological and behavioral readouts while also being amenable to mechanistic studies of compound toxicity. Finally, we discuss the open challenges and opportunities for planarian brain regeneration to become an important model system for modern toxicology.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Division of Biological Sciences University of California San Diego, La Jolla California 92093 USA
| | | | - Eva-Maria S Collins
- Division of Biological Sciences University of California San Diego, La Jolla California 92093 USA; Department of Physics University of California San Diego, La Jolla California 92093 USA
| |
Collapse
|
47
|
Rodrigues ACM, Henriques JF, Domingues I, Golovko O, Žlábek V, Barata C, Soares AMVM, Pestana JLT. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:371-376. [PMID: 26561438 DOI: 10.1016/j.aquatox.2015.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Recent advances in video tracking technologies provide the tools for a sensitive and reproducible analysis of invertebrate activity under stressful conditions nurturing the field of behavioural ecotoxicology. This study aimed to evaluate behavioural responses of the freshwater planarian Dugesia subtentaculata exposed to a model compound, chlorantraniliprole (CAP). This compound is an anthranilic diamide insecticide and due to its neurotoxic action can, at low concentrations, impair behaviour of exposed organisms. Behavioural endpoints measured included feeding and locomotor activities. Feeding responses were based on planarian predatory behaviour using Chironomus riparius larvae as prey. Locomotion was measured by the traditional planarian locomotor velocity (pLMV) assay and additionally using an automated video tracking system using a Zebrabox(®) (Viewpoint, France) device. While feeding and pLMV were significantly impaired at 131.7μg/L CAP, the video tracking system showed that total distance covered by planarians was significantly reduced at concentrations as low as 26.2μg/L CAP. Our results show that more advanced automated video recording systems can be used in the development of sensitive bioassays allowing a reliable, time- and cost-effective quantification of behaviour in aquatic invertebrates. Due to their ecological relevance, behavioural responses should not be disregarded in risk assessment strategies and we advocate the suitability of planarians as suitable organisms for behavioural ecotoxicological studies.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Jorge F Henriques
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Hagstrom D, Cochet-Escartin O, Zhang S, Khuu C, Collins EMS. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology. Toxicol Sci 2015; 147:270-85. [PMID: 26116028 PMCID: PMC4838007 DOI: 10.1093/toxsci/kfv129] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models.
Collapse
Affiliation(s)
- Danielle Hagstrom
- *Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | | | - Siqi Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093
| | - Cindy Khuu
- *Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Eva-Maria S Collins
- *Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; Physics Department, University of California, San Diego, La Jolla, California 92093; and
| |
Collapse
|
49
|
Blackiston DJ, Shomrat T, Levin M. The stability of memories during brain remodeling: A perspective. Commun Integr Biol 2015; 8:e1073424. [PMID: 27066165 PMCID: PMC4802789 DOI: 10.1080/19420889.2015.1073424] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023] Open
Abstract
One of the most important features of the nervous system is memory: the ability to represent and store experiences, in a manner that alters behavior and cognition at future times when the original stimulus is no longer present. However, the brain is not always an anatomically stable structure: many animal species regenerate all or part of the brain after severe injury, or remodel their CNS toward a new configuration as part of their life cycle. This raises a fascinating question: what are the dynamics of memories during brain regeneration? Can stable memories remain intact when cellular turnover and spatial rearrangement modify the biological hardware within which experiences are stored? What can we learn from model species that exhibit both, regeneration and memory, with respect to robustness and stability requirements for long-term memories encoded in living tissues? In this Perspective, we discuss relevant data in regenerating planaria, metamorphosing insects, and hibernating ground squirrels. While much remains to be done to understand this remarkable process, molecular-level insight will have important implications for cognitive science, regenerative medicine of the brain, and the development of non-traditional computational media in synthetic bioengineering.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology; Tufts University ; Medford, MA USA
| | - Tal Shomrat
- Department of Neurobiology; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus; Jerusalem, Israel; School of Marine Sciences, Ruppin Academic Center; Michmoret, Israel
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology; Tufts University ; Medford, MA USA
| |
Collapse
|
50
|
Moustakas D, Mezzio M, Rodriguez BR, Constable MA, Mulligan ME, Voura EB. Guarana provides additional stimulation over caffeine alone in the planarian model. PLoS One 2015; 10:e0123310. [PMID: 25880065 PMCID: PMC4399916 DOI: 10.1371/journal.pone.0123310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose.
Collapse
Affiliation(s)
- Dimitrios Moustakas
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
- New York College of Podiatric Medicine, New York, New York, United States of America
| | - Michael Mezzio
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
| | - Branden R. Rodriguez
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
| | - Mic Andre Constable
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
| | - Margaret E. Mulligan
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
| | - Evelyn B. Voura
- Department of Biology, Colgate University, Hamilton, New York, United States of America
- Department of Math and Science, Dominican College, Orangeburg, New York, United States of America
- * E-mail:
| |
Collapse
|